Configire: take multi-block modules into build loop.
[openssl.git] / crypto / sha / sha256.c
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9
10 #include <stdlib.h>
11 #include <string.h>
12
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #include <openssl/opensslv.h>
16
17 __fips_constseg
18 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
19
20 int SHA224_Init (SHA256_CTX *c)
21         {
22         memset (c,0,sizeof(*c));
23         c->h[0]=0xc1059ed8UL;   c->h[1]=0x367cd507UL;
24         c->h[2]=0x3070dd17UL;   c->h[3]=0xf70e5939UL;
25         c->h[4]=0xffc00b31UL;   c->h[5]=0x68581511UL;
26         c->h[6]=0x64f98fa7UL;   c->h[7]=0xbefa4fa4UL;
27         c->md_len=SHA224_DIGEST_LENGTH;
28         return 1;
29         }
30
31 int SHA256_Init (SHA256_CTX *c)
32         {
33         memset (c,0,sizeof(*c));
34         c->h[0]=0x6a09e667UL;   c->h[1]=0xbb67ae85UL;
35         c->h[2]=0x3c6ef372UL;   c->h[3]=0xa54ff53aUL;
36         c->h[4]=0x510e527fUL;   c->h[5]=0x9b05688cUL;
37         c->h[6]=0x1f83d9abUL;   c->h[7]=0x5be0cd19UL;
38         c->md_len=SHA256_DIGEST_LENGTH;
39         return 1;
40         }
41
42 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
43         {
44         SHA256_CTX c;
45         static unsigned char m[SHA224_DIGEST_LENGTH];
46
47         if (md == NULL) md=m;
48         SHA224_Init(&c);
49         SHA256_Update(&c,d,n);
50         SHA256_Final(md,&c);
51         OPENSSL_cleanse(&c,sizeof(c));
52         return(md);
53         }
54
55 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
56         {
57         SHA256_CTX c;
58         static unsigned char m[SHA256_DIGEST_LENGTH];
59
60         if (md == NULL) md=m;
61         SHA256_Init(&c);
62         SHA256_Update(&c,d,n);
63         SHA256_Final(md,&c);
64         OPENSSL_cleanse(&c,sizeof(c));
65         return(md);
66         }
67
68 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
69 {   return SHA256_Update (c,data,len);   }
70 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
71 {   return SHA256_Final (md,c);   }
72
73 #define DATA_ORDER_IS_BIG_ENDIAN
74
75 #define HASH_LONG               SHA_LONG
76 #define HASH_CTX                SHA256_CTX
77 #define HASH_CBLOCK             SHA_CBLOCK
78 /*
79  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
80  * default: case below covers for it. It's not clear however if it's
81  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
82  * but if it is, then default: case shall be extended. For reference.
83  * Idea behind separate cases for pre-defined lenghts is to let the
84  * compiler decide if it's appropriate to unroll small loops.
85  */
86 #define HASH_MAKE_STRING(c,s)   do {    \
87         unsigned long ll;               \
88         unsigned int  nn;               \
89         switch ((c)->md_len)            \
90         {   case SHA224_DIGEST_LENGTH:  \
91                 for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++)       \
92                 {   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }  \
93                 break;                  \
94             case SHA256_DIGEST_LENGTH:  \
95                 for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++)       \
96                 {   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }  \
97                 break;                  \
98             default:                    \
99                 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
100                     return 0;                           \
101                 for (nn=0;nn<(c)->md_len/4;nn++)                \
102                 {   ll=(c)->h[nn]; (void)HOST_l2c(ll,(s));   }  \
103                 break;                  \
104         }                               \
105         } while (0)
106
107 #define HASH_UPDATE             SHA256_Update
108 #define HASH_TRANSFORM          SHA256_Transform
109 #define HASH_FINAL              SHA256_Final
110 #define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
111 #ifndef SHA256_ASM
112 static
113 #endif
114 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
115
116 #include "md32_common.h"
117
118 #ifndef SHA256_ASM
119 __fips_constseg
120 static const SHA_LONG K256[64] = {
121         0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
122         0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
123         0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
124         0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
125         0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
126         0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
127         0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
128         0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
129         0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
130         0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
131         0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
132         0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
133         0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
134         0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
135         0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
136         0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
137
138 /*
139  * FIPS specification refers to right rotations, while our ROTATE macro
140  * is left one. This is why you might notice that rotation coefficients
141  * differ from those observed in FIPS document by 32-N...
142  */
143 #define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
144 #define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
145 #define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
146 #define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
147
148 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
149 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
150
151 #ifdef OPENSSL_SMALL_FOOTPRINT
152
153 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
154         {
155         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
156         SHA_LONG        X[16],l;
157         int i;
158         const unsigned char *data=in;
159
160                         while (num--) {
161
162         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
163         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
164
165         for (i=0;i<16;i++)
166                 {
167                 HOST_c2l(data,l); T1 = X[i] = l;
168                 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
169                 T2 = Sigma0(a) + Maj(a,b,c);
170                 h = g;  g = f;  f = e;  e = d + T1;
171                 d = c;  c = b;  b = a;  a = T1 + T2;
172                 }
173
174         for (;i<64;i++)
175                 {
176                 s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
177                 s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
178
179                 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
180                 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
181                 T2 = Sigma0(a) + Maj(a,b,c);
182                 h = g;  g = f;  f = e;  e = d + T1;
183                 d = c;  c = b;  b = a;  a = T1 + T2;
184                 }
185
186         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
187         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
188
189                         }
190 }
191
192 #else
193
194 #define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
195         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
196         h = Sigma0(a) + Maj(a,b,c);                     \
197         d += T1;        h += T1;                } while (0)
198
199 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
200         s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
201         s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
202         T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
203         ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
204
205 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
206         {
207         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
208         SHA_LONG        X[16];
209         int i;
210         const unsigned char *data=in;
211         const union { long one; char little; } is_endian = {1};
212
213                         while (num--) {
214
215         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
216         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
217
218         if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
219                 {
220                 const SHA_LONG *W=(const SHA_LONG *)data;
221
222                 T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
223                 T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
224                 T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
225                 T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
226                 T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
227                 T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
228                 T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
229                 T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
230                 T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
231                 T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
232                 T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
233                 T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
234                 T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
235                 T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
236                 T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
237                 T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
238
239                 data += SHA256_CBLOCK;
240                 }
241         else
242                 {
243                 SHA_LONG l;
244
245                 HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
246                 HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
247                 HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
248                 HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
249                 HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
250                 HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
251                 HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
252                 HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
253                 HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
254                 HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
255                 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
256                 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
257                 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
258                 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
259                 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
260                 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
261                 }
262
263         for (i=16;i<64;i+=8)
264                 {
265                 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
266                 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
267                 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
268                 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
269                 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
270                 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
271                 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
272                 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
273                 }
274
275         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
276         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
277
278                         }
279         }
280
281 #endif
282 #endif /* SHA256_ASM */
283
284 #endif /* OPENSSL_NO_SHA256 */