2f4078f44423ff66e32aa0fffd3133ba47084d65
[openssl.git] / crypto / sha / sha256.c
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include <openssl/opensslconf.h>
11 #include <openssl/crypto.h>
12 #include <openssl/sha.h>
13 #include <openssl/opensslv.h>
14
15 const char *SHA256_version="SHA-256" OPENSSL_VERSION_PTEXT;
16
17 int SHA224_Init (SHA256_CTX *c)
18         {
19         c->h[0]=0xc1059ed8UL;   c->h[1]=0x367cd507UL;
20         c->h[2]=0x3070dd17UL;   c->h[3]=0xf70e5939UL;
21         c->h[4]=0xffc00b31UL;   c->h[5]=0x68581511UL;
22         c->h[6]=0x64f98fa7UL;   c->h[7]=0xbefa4fa4UL;
23         c->Nl=0;        c->Nh=0;
24         c->num=0;       c->md_len=SHA224_DIGEST_LENGTH;
25         return 1;
26         }
27
28 int SHA256_Init (SHA256_CTX *c)
29         {
30         c->h[0]=0x6a09e667UL;   c->h[1]=0xbb67ae85UL;
31         c->h[2]=0x3c6ef372UL;   c->h[3]=0xa54ff53aUL;
32         c->h[4]=0x510e527fUL;   c->h[5]=0x9b05688cUL;
33         c->h[6]=0x1f83d9abUL;   c->h[7]=0x5be0cd19UL;
34         c->Nl=0;        c->Nh=0;
35         c->num=0;       c->md_len=SHA256_DIGEST_LENGTH;
36         return 1;
37         }
38
39 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
40         {
41         SHA256_CTX c;
42         static unsigned char m[SHA224_DIGEST_LENGTH];
43
44         if (md == NULL) md=m;
45         SHA224_Init(&c);
46         SHA256_Update(&c,d,n);
47         SHA256_Final(md,&c);
48         OPENSSL_cleanse(&c,sizeof(c));
49         return(md);
50         }
51
52 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
53         {
54         SHA256_CTX c;
55         static unsigned char m[SHA256_DIGEST_LENGTH];
56
57         if (md == NULL) md=m;
58         SHA256_Init(&c);
59         SHA256_Update(&c,d,n);
60         SHA256_Final(md,&c);
61         OPENSSL_cleanse(&c,sizeof(c));
62         return(md);
63         }
64
65 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
66 {   return SHA256_Update (c,data,len);   }
67 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
68 {   return SHA256_Final (md,c);   }
69
70 #ifndef SHA_LONG_LOG2
71 #define SHA_LONG_LOG2   2       /* default to 32 bits */
72 #endif
73
74 #define DATA_ORDER_IS_BIG_ENDIAN
75
76 #define HASH_LONG               SHA_LONG
77 #define HASH_LONG_LOG2          SHA_LONG_LOG2
78 #define HASH_CTX                SHA256_CTX
79 #define HASH_CBLOCK             SHA_CBLOCK
80 #define HASH_LBLOCK             SHA_LBLOCK
81 /*
82  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
83  * default: case below covers for it. It's not clear however if it's
84  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
85  * but if it is, then default: case shall be extended. For reference.
86  * Idea behind separate cases for pre-defined lenghts is to let the
87  * compiler decide if it's appropriate to unroll small loops.
88  */
89 #define HASH_MAKE_STRING(c,s)   do {    \
90         unsigned long ll;               \
91         unsigned int  n;                \
92         switch ((c)->md_len)            \
93         {   case SHA224_DIGEST_LENGTH:  \
94                 for (n=0;n<SHA224_DIGEST_LENGTH/4;n++)  \
95                 {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
96                 break;                  \
97             case SHA256_DIGEST_LENGTH:  \
98                 for (n=0;n<SHA256_DIGEST_LENGTH/4;n++)  \
99                 {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
100                 break;                  \
101             default:                    \
102                 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
103                     return 0;                           \
104                 for (n=0;n<(c)->md_len/4;n++)           \
105                 {   ll=(c)->h[n]; HOST_l2c(ll,(s));   } \
106                 break;                  \
107         }                               \
108         } while (0)
109
110 #define HASH_UPDATE             SHA256_Update
111 #define HASH_TRANSFORM          SHA256_Transform
112 #define HASH_FINAL              SHA256_Final
113 #define HASH_BLOCK_HOST_ORDER   sha256_block_host_order
114 #define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
115 void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
116 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
117
118 #include "md32_common.h"
119
120 static const SHA_LONG K256[64] = {
121         0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
122         0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
123         0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
124         0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
125         0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
126         0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
127         0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
128         0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
129         0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
130         0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
131         0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
132         0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
133         0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
134         0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
135         0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
136         0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
137
138 /*
139  * FIPS specification refers to right rotations, while our ROTATE macro
140  * is left one. This is why you might notice that rotation coefficients
141  * differ from those observed in FIPS document by 32-N...
142  */
143 #define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
144 #define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
145 #define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
146 #define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
147
148 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
149 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
150
151 #ifdef OPENSSL_SMALL_FOOTPRINT
152
153 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
154         {
155         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
156         SHA_LONG        X[16];
157         int i;
158         const unsigned char *data=in;
159
160                         while (num--) {
161
162         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
163         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
164
165         if (host)
166                 {
167                 const SHA_LONG *W=(const SHA_LONG *)data;
168
169                 for (i=0;i<16;i++)
170                         {
171                         T1 = X[i] = W[i];
172                         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
173                         T2 = Sigma0(a) + Maj(a,b,c);
174                         h = g;  g = f;  f = e;  e = d + T1;
175                         d = c;  c = b;  b = a;  a = T1 + T2;
176                         }
177                 }
178         else
179                 {
180                 SHA_LONG l;
181
182                 for (i=0;i<16;i++)
183                         {
184                         HOST_c2l(data,l); T1 = X[i] = l;
185                         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
186                         T2 = Sigma0(a) + Maj(a,b,c);
187                         h = g;  g = f;  f = e;  e = d + T1;
188                         d = c;  c = b;  b = a;  a = T1 + T2;
189                         }
190                 }
191
192         for (;i<64;i++)
193                 {
194                 s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
195                 s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
196
197                 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
198                 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
199                 T2 = Sigma0(a) + Maj(a,b,c);
200                 h = g;  g = f;  f = e;  e = d + T1;
201                 d = c;  c = b;  b = a;  a = T1 + T2;
202                 }
203
204         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
205         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
206
207                         data += SHA256_CBLOCK;
208                         }
209 }
210
211 #else
212
213 #define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
214         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
215         h = Sigma0(a) + Maj(a,b,c);                     \
216         d += T1;        h += T1;                } while (0)
217
218 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
219         s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
220         s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
221         T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
222         ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
223
224 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
225         {
226         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
227         SHA_LONG        X[16];
228         int i;
229         const unsigned char *data=in;
230
231                         while (num--) {
232
233         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
234         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
235
236         if (host)
237                 {
238                 const SHA_LONG *W=(const SHA_LONG *)data;
239
240                 T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
241                 T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
242                 T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
243                 T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
244                 T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
245                 T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
246                 T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
247                 T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
248                 T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
249                 T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
250                 T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
251                 T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
252                 T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
253                 T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
254                 T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
255                 T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
256                 }
257         else
258                 {
259                 SHA_LONG l;
260
261                 HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
262                 HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
263                 HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
264                 HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
265                 HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
266                 HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
267                 HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
268                 HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
269                 HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
270                 HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
271                 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
272                 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
273                 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
274                 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
275                 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
276                 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
277                 }
278
279         for (i=16;i<64;i+=8)
280                 {
281                 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
282                 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
283                 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
284                 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
285                 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
286                 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
287                 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
288                 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
289                 }
290
291         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
292         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
293
294                         data += SHA256_CBLOCK;
295                         }
296         }
297
298 #endif
299
300 /*
301  * Idea is to trade couple of cycles for some space. On IA-32 we save
302  * about 4K in "big footprint" case. In "small footprint" case any gain
303  * is appreciated:-)
304  */
305 void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
306 {   sha256_block (ctx,in,num,1);   }
307
308 void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
309 {   sha256_block (ctx,in,num,0);   }