3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
9 # SHA512_Transform_SSE2.
11 # As the name suggests, this is an IA-32 SSE2 implementation of
12 # SHA512_Transform. Motivating factor for the undertaken effort was that
13 # SHA512 was observed to *consistently* perform *significantly* poorer
14 # than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit
15 # platforms on the other hand SHA512 tend to outperform SHA256 [~50%
16 # seem to be common improvement factor]. All this is perfectly natural,
17 # as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially
18 # a 64-bit instruction set? Is it rich enough to implement SHA512?
19 # If answer was "no," then you wouldn't have been reading this...
21 # Throughput performance in MBps (larger is better):
23 # 2.4GHz P4 1.4GHz AMD32 1.4GHz AMD64(*)
24 # SHA256/gcc(*) 54 43 59
26 # SHA512/sse2 54(**) 55(**)
30 # (*) AMD64 and SHA256 numbers are presented mostly for amusement or
32 # (**) I.e. it gives ~2-3x speed-up if compared with compiler generated
33 # code. One can argue that hand-coded *non*-SSE2 implementation
34 # would perform better than compiler generated one as well, and
35 # that comparison is therefore not exactly fair. Well, as SHA512
36 # puts enormous pressure on IA-32 GP register bank, I reckon that
37 # hand-coded version wouldn't perform significantly better than
38 # one compiled with icc, ~20% perhaps... So that this code would
39 # still outperform it with distinguishing marginal. But feel free
40 # to prove me wrong:-)
41 # <appro@fy.chalmers.se>
42 push(@INC,"perlasm","../../perlasm");
45 &asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386");
47 $K512="esi"; # K512[80] table, found at the end...
48 #$W512="esp"; # $W512 is not just W512[16]: it comprises *two* copies
49 # of W512[16] and a copy of A-H variables...
50 $W512_SZ=8*(16+16+8); # see above...
51 #$Kidx="ebx"; # index in K512 table, advances from 0 to 80...
52 $Widx="edx"; # index in W512, wraps around at 16...
53 $data="edi"; # 16 qwords of input data...
55 $E="mm1"; # F-H are allocated dynamically...
56 $Aoff=256+0; # A-H offsets relative to $W512...
66 { local ($kidx,$widx)=@_;
68 # One can argue that one could reorder instructions for better
69 # performance. Well, I tried and it doesn't seem to make any
70 # noticeable difference. Modern out-of-order execution cores
71 # reorder instructions to their liking in either case and they
72 # apparently do decent job. So we can keep the code more
73 # readable/regular/comprehensible:-)
75 # I adhere to 64-bit %mmX registers in order to avoid/not care
76 # about #GP exceptions on misaligned 128-bit access, most
77 # notably in paddq with memory operand. Not to mention that
78 # SSE2 intructions operating on %mmX can be scheduled every
79 # cycle [and not every second one if operating on %xmmN].
81 &movq ("mm4",&QWP($Foff,$W512)); # load f
82 &movq ("mm5",&QWP($Goff,$W512)); # load g
83 &movq ("mm6",&QWP($Hoff,$W512)); # load h
84 &movq (&QWP($Foff,$W512),$E); # f = e
85 &movq (&QWP($Goff,$W512),"mm4"); # g = f
86 &movq (&QWP($Hoff,$W512),"mm5"); # h = g
88 &movq ("mm2",$E); # %mm2 is sliding right
89 &movq ("mm3",$E); # %mm3 is sliding left
92 &movq ("mm7","mm2"); # %mm7 is T1
101 &pxor ("mm7","mm3"); # T1=Sigma1_512(e)
103 &pxor ("mm4","mm5"); # f^=g
104 &pand ("mm4",$E); # f&=e
105 &pxor ("mm4","mm5"); # f^=g
106 &paddq ("mm7","mm4"); # T1+=Ch(e,f,g)
108 &movq ("mm2",&QWP($Boff,$W512)); # load b
109 &movq ("mm3",&QWP($Coff,$W512)); # load c
110 &movq ($E,&QWP($Doff,$W512)); # e = d
111 &movq (&QWP($Boff,$W512),$A); # b = a
112 &movq (&QWP($Coff,$W512),"mm2"); # c = b
113 &movq (&QWP($Doff,$W512),"mm3"); # d = c
115 &paddq ("mm7","mm6"); # T1+=h
116 &paddq ("mm7",&QWP(0,$K512,$kidx,8)); # T1+=K512[i]
117 &paddq ("mm7",&QWP(0,$W512,$widx,8)); # T1+=W512[i]
118 &paddq ($E,"mm7"); # e += T1
120 &movq ("mm4",$A); # %mm4 is sliding right
121 &movq ("mm5",$A); # %mm5 is sliding left
124 &movq ("mm6","mm4"); # %mm6 is T2
133 &pxor ("mm6","mm5"); # T2=Sigma0_512(a)
135 &movq ("mm4","mm2"); # %mm4=b
136 &pand ("mm2",$A); # b&=a
137 &pand ("mm4","mm3"); # %mm4&=c
138 &pand ("mm3",$A); # c&=a
139 &pxor ("mm4","mm2"); # %mm4^=b&a
140 &pxor ("mm4","mm3"); # %mm4^=c&a
141 &paddq ("mm6","mm4"); # T2+=Maj(a,b,c)
143 &movq ($A,"mm7"); # a=T1
144 &paddq ($A,"mm6"); # a+=T2
147 $func="sha512_block_sse2";
149 &function_begin_B($func);
150 if (0) {# Caller is expected to check if it's appropriate to
151 # call this routine. Below 3 lines are retained for
152 # debugging purposes...
153 &picmeup("eax","OPENSSL_ia32cap");
154 &bt (&DWP(0,"eax"),26);
155 &jnc ("SHA512_Transform");
164 &mov ($Widx,&DWP(8,"ebp")); # A-H state, 1st arg
165 &mov ($data,&DWP(12,"ebp")); # input data, 2nd arg
166 &call (&label("pic_point")); # make it PIC!
167 &set_label("pic_point");
169 &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
171 $W512 = "esp"; # start using %esp as W512
172 &sub ($W512,$W512_SZ);
173 &and ($W512,-16); # ensure 128-bit alignment
175 # make private copy of A-H
176 # v assume the worst and stick to unaligned load
177 &movdqu ("xmm0",&QWP(0,$Widx));
178 &movdqu ("xmm1",&QWP(16,$Widx));
179 &movdqu ("xmm2",&QWP(32,$Widx));
180 &movdqu ("xmm3",&QWP(48,$Widx));
183 &set_label("_chunk_loop");
185 &movdqa (&QWP($Aoff,$W512),"xmm0"); # a,b
186 &movdqa (&QWP($Coff,$W512),"xmm1"); # c,d
187 &movdqa (&QWP($Eoff,$W512),"xmm2"); # e,f
188 &movdqa (&QWP($Goff,$W512),"xmm3"); # g,h
192 &movdq2q($A,"xmm0"); # load a
193 &movdq2q($E,"xmm2"); # load e
195 # Why aren't loops unrolled? It makes sense to unroll if
196 # execution time for loop body is comparable with branch
197 # penalties and/or if whole data-set resides in register bank.
198 # Neither is case here... Well, it would be possible to
199 # eliminate few store operations, but it would hardly affect
200 # so to say stop-watch performance, as there is a lot of
201 # available memory slots to fill. It will only relieve some
202 # pressure off memory bus...
205 &set_label("_1st_loop"); # 0-15
206 # flip input stream byte order...
207 &mov ("eax",&DWP(0,$data,$Widx,8));
208 &mov ("ebx",&DWP(4,$data,$Widx,8));
211 &mov (&DWP(0,$W512,$Widx,8),"ebx"); # W512[i]
212 &mov (&DWP(4,$W512,$Widx,8),"eax");
213 &mov (&DWP(128+0,$W512,$Widx,8),"ebx"); # copy of W512[i]
214 &mov (&DWP(128+4,$W512,$Widx,8),"eax");
216 &SHA2_ROUND($Widx,$Widx); &inc($Widx);
219 &jl (&label("_1st_loop"));
221 $Kidx = "ebx"; # start using %ebx as Kidx
225 &set_label("_2nd_loop"); # 16-79
228 # 128-bit fragment! I update W512[i] and W512[i+1] in
229 # parallel:-) Note that I refer to W512[(i&0xf)+N] and not to
230 # W512[(i+N)&0xf]! This is exactly what I maintain the second
231 # copy of W512[16] for...
232 &movdqu ("xmm0",&QWP(8*1,$W512,$Widx,8)); # s0=W512[i+1]
233 &movdqa ("xmm2","xmm0"); # %xmm2 is sliding right
234 &movdqa ("xmm3","xmm0"); # %xmm3 is sliding left
237 &movdqa ("xmm0","xmm2");
238 &pxor ("xmm0","xmm3");
241 &pxor ("xmm0","xmm2");
242 &pxor ("xmm0","xmm3");
244 &pxor ("xmm0","xmm2"); # s0 = sigma0_512(s0);
246 &movdqa ("xmm1",&QWP(8*14,$W512,$Widx,8)); # s1=W512[i+14]
247 &movdqa ("xmm4","xmm1"); # %xmm4 is sliding right
248 &movdqa ("xmm5","xmm1"); # %xmm5 is sliding left
251 &movdqa ("xmm1","xmm4");
252 &pxor ("xmm1","xmm5");
255 &pxor ("xmm1","xmm4");
256 &pxor ("xmm1","xmm5");
258 &pxor ("xmm1","xmm4"); # s1 = sigma1_512(s1);
260 # + have to explictly load W512[i+9] as it's not 128-bit
261 # v aligned and paddq would throw an exception...
262 &movdqu ("xmm6",&QWP(8*9,$W512,$Widx,8));
263 &paddq ("xmm0","xmm1"); # s0 += s1
264 &paddq ("xmm0","xmm6"); # s0 += W512[i+9]
265 &paddq ("xmm0",&QWP(0,$W512,$Widx,8)); # s0 += W512[i]
267 &movdqa (&QWP(0,$W512,$Widx,8),"xmm0"); # W512[i] = s0
268 &movdqa (&QWP(16*8,$W512,$Widx,8),"xmm0"); # copy of W512[i]
270 # as the above fragment was 128-bit, we "owe" 2 rounds...
271 &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
272 &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
275 &jl (&label("_2nd_loop"));
278 &mov ($Widx,&DWP(8,"ebp")); # A-H state, 1st arg
279 &movq (&QWP($Aoff,$W512),$A); # write out a
280 &movq (&QWP($Eoff,$W512),$E); # write out e
281 &movdqu ("xmm0",&QWP(0,$Widx));
282 &movdqu ("xmm1",&QWP(16,$Widx));
283 &movdqu ("xmm2",&QWP(32,$Widx));
284 &movdqu ("xmm3",&QWP(48,$Widx));
285 &paddq ("xmm0",&QWP($Aoff,$W512)); # 128-bit additions...
286 &paddq ("xmm1",&QWP($Coff,$W512));
287 &paddq ("xmm2",&QWP($Eoff,$W512));
288 &paddq ("xmm3",&QWP($Goff,$W512));
289 &movdqu (&QWP(0,$Widx),"xmm0");
290 &movdqu (&QWP(16,$Widx),"xmm1");
291 &movdqu (&QWP(32,$Widx),"xmm2");
292 &movdqu (&QWP(48,$Widx),"xmm3");
294 &add ($data,16*8); # advance input data pointer
295 &dec (&DWP(16,"ebp")); # decrement 3rd arg
296 &jnz (&label("_chunk_loop"));
299 &emms (); # required for at least ELF and Win32 ABIs
300 &mov ("edi",&DWP(-12,"ebp"));
301 &mov ("esi",&DWP(-8,"ebp"));
302 &mov ("ebx",&DWP(-4,"ebp"));
307 &set_label("K512"); # Yes! I keep it in the code segment!
308 &data_word(0xd728ae22,0x428a2f98); # u64
309 &data_word(0x23ef65cd,0x71374491); # u64
310 &data_word(0xec4d3b2f,0xb5c0fbcf); # u64
311 &data_word(0x8189dbbc,0xe9b5dba5); # u64
312 &data_word(0xf348b538,0x3956c25b); # u64
313 &data_word(0xb605d019,0x59f111f1); # u64
314 &data_word(0xaf194f9b,0x923f82a4); # u64
315 &data_word(0xda6d8118,0xab1c5ed5); # u64
316 &data_word(0xa3030242,0xd807aa98); # u64
317 &data_word(0x45706fbe,0x12835b01); # u64
318 &data_word(0x4ee4b28c,0x243185be); # u64
319 &data_word(0xd5ffb4e2,0x550c7dc3); # u64
320 &data_word(0xf27b896f,0x72be5d74); # u64
321 &data_word(0x3b1696b1,0x80deb1fe); # u64
322 &data_word(0x25c71235,0x9bdc06a7); # u64
323 &data_word(0xcf692694,0xc19bf174); # u64
324 &data_word(0x9ef14ad2,0xe49b69c1); # u64
325 &data_word(0x384f25e3,0xefbe4786); # u64
326 &data_word(0x8b8cd5b5,0x0fc19dc6); # u64
327 &data_word(0x77ac9c65,0x240ca1cc); # u64
328 &data_word(0x592b0275,0x2de92c6f); # u64
329 &data_word(0x6ea6e483,0x4a7484aa); # u64
330 &data_word(0xbd41fbd4,0x5cb0a9dc); # u64
331 &data_word(0x831153b5,0x76f988da); # u64
332 &data_word(0xee66dfab,0x983e5152); # u64
333 &data_word(0x2db43210,0xa831c66d); # u64
334 &data_word(0x98fb213f,0xb00327c8); # u64
335 &data_word(0xbeef0ee4,0xbf597fc7); # u64
336 &data_word(0x3da88fc2,0xc6e00bf3); # u64
337 &data_word(0x930aa725,0xd5a79147); # u64
338 &data_word(0xe003826f,0x06ca6351); # u64
339 &data_word(0x0a0e6e70,0x14292967); # u64
340 &data_word(0x46d22ffc,0x27b70a85); # u64
341 &data_word(0x5c26c926,0x2e1b2138); # u64
342 &data_word(0x5ac42aed,0x4d2c6dfc); # u64
343 &data_word(0x9d95b3df,0x53380d13); # u64
344 &data_word(0x8baf63de,0x650a7354); # u64
345 &data_word(0x3c77b2a8,0x766a0abb); # u64
346 &data_word(0x47edaee6,0x81c2c92e); # u64
347 &data_word(0x1482353b,0x92722c85); # u64
348 &data_word(0x4cf10364,0xa2bfe8a1); # u64
349 &data_word(0xbc423001,0xa81a664b); # u64
350 &data_word(0xd0f89791,0xc24b8b70); # u64
351 &data_word(0x0654be30,0xc76c51a3); # u64
352 &data_word(0xd6ef5218,0xd192e819); # u64
353 &data_word(0x5565a910,0xd6990624); # u64
354 &data_word(0x5771202a,0xf40e3585); # u64
355 &data_word(0x32bbd1b8,0x106aa070); # u64
356 &data_word(0xb8d2d0c8,0x19a4c116); # u64
357 &data_word(0x5141ab53,0x1e376c08); # u64
358 &data_word(0xdf8eeb99,0x2748774c); # u64
359 &data_word(0xe19b48a8,0x34b0bcb5); # u64
360 &data_word(0xc5c95a63,0x391c0cb3); # u64
361 &data_word(0xe3418acb,0x4ed8aa4a); # u64
362 &data_word(0x7763e373,0x5b9cca4f); # u64
363 &data_word(0xd6b2b8a3,0x682e6ff3); # u64
364 &data_word(0x5defb2fc,0x748f82ee); # u64
365 &data_word(0x43172f60,0x78a5636f); # u64
366 &data_word(0xa1f0ab72,0x84c87814); # u64
367 &data_word(0x1a6439ec,0x8cc70208); # u64
368 &data_word(0x23631e28,0x90befffa); # u64
369 &data_word(0xde82bde9,0xa4506ceb); # u64
370 &data_word(0xb2c67915,0xbef9a3f7); # u64
371 &data_word(0xe372532b,0xc67178f2); # u64
372 &data_word(0xea26619c,0xca273ece); # u64
373 &data_word(0x21c0c207,0xd186b8c7); # u64
374 &data_word(0xcde0eb1e,0xeada7dd6); # u64
375 &data_word(0xee6ed178,0xf57d4f7f); # u64
376 &data_word(0x72176fba,0x06f067aa); # u64
377 &data_word(0xa2c898a6,0x0a637dc5); # u64
378 &data_word(0xbef90dae,0x113f9804); # u64
379 &data_word(0x131c471b,0x1b710b35); # u64
380 &data_word(0x23047d84,0x28db77f5); # u64
381 &data_word(0x40c72493,0x32caab7b); # u64
382 &data_word(0x15c9bebc,0x3c9ebe0a); # u64
383 &data_word(0x9c100d4c,0x431d67c4); # u64
384 &data_word(0xcb3e42b6,0x4cc5d4be); # u64
385 &data_word(0xfc657e2a,0x597f299c); # u64
386 &data_word(0x3ad6faec,0x5fcb6fab); # u64
387 &data_word(0x4a475817,0x6c44198c); # u64
389 &function_end_B($func);