sha/asm/sha512-armv8.pl: adapt for kernel use.
[openssl.git] / crypto / sha / asm / sha512-armv8.pl
1 #! /usr/bin/env perl
2 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the OpenSSL license (the "License").  You may not use
5 # this file except in compliance with the License.  You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 # ====================================================================
10 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11 # project. The module is, however, dual licensed under OpenSSL and
12 # CRYPTOGAMS licenses depending on where you obtain it. For further
13 # details see http://www.openssl.org/~appro/cryptogams/.
14 #
15 # Permission to use under GPLv2 terms is granted.
16 # ====================================================================
17 #
18 # SHA256/512 for ARMv8.
19 #
20 # Performance in cycles per processed byte and improvement coefficient
21 # over code generated with "default" compiler:
22 #
23 #               SHA256-hw       SHA256(*)       SHA512
24 # Apple A7      1.97            10.5 (+33%)     6.73 (-1%(**))
25 # Cortex-A53    2.38            15.5 (+115%)    10.0 (+150%(***))
26 # Cortex-A57    2.31            11.6 (+86%)     7.51 (+260%(***))
27 # Denver        2.01            10.5 (+26%)     6.70 (+8%)
28 # X-Gene                        20.0 (+100%)    12.8 (+300%(***))
29 # Mongoose      2.36            13.0 (+50%)     8.36 (+33%)
30 #
31 # (*)   Software SHA256 results are of lesser relevance, presented
32 #       mostly for informational purposes.
33 # (**)  The result is a trade-off: it's possible to improve it by
34 #       10% (or by 1 cycle per round), but at the cost of 20% loss
35 #       on Cortex-A53 (or by 4 cycles per round).
36 # (***) Super-impressive coefficients over gcc-generated code are
37 #       indication of some compiler "pathology", most notably code
38 #       generated with -mgeneral-regs-only is significanty faster
39 #       and the gap is only 40-90%.
40
41 $output=pop;
42 $flavour=pop;
43
44 if ($flavour && $flavour ne "void") {
45     $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
46     ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
47     ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
48     die "can't locate arm-xlate.pl";
49
50     open OUT,"| \"$^X\" $xlate $flavour $output";
51     *STDOUT=*OUT;
52 } else {
53     open STDOUT,">$output";
54 }
55
56 if ($output =~ /512/) {
57         $BITS=512;
58         $SZ=8;
59         @Sigma0=(28,34,39);
60         @Sigma1=(14,18,41);
61         @sigma0=(1,  8, 7);
62         @sigma1=(19,61, 6);
63         $rounds=80;
64         $reg_t="x";
65 } else {
66         $BITS=256;
67         $SZ=4;
68         @Sigma0=( 2,13,22);
69         @Sigma1=( 6,11,25);
70         @sigma0=( 7,18, 3);
71         @sigma1=(17,19,10);
72         $rounds=64;
73         $reg_t="w";
74 }
75
76 $func="sha${BITS}_block_data_order";
77
78 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
79
80 @X=map("$reg_t$_",(3..15,0..2));
81 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
82 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
83
84 sub BODY_00_xx {
85 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
86 my $j=($i+1)&15;
87 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
88    $T0=@X[$i+3] if ($i<11);
89
90 $code.=<<___    if ($i<16);
91 #ifndef __ARMEB__
92         rev     @X[$i],@X[$i]                   // $i
93 #endif
94 ___
95 $code.=<<___    if ($i<13 && ($i&1));
96         ldp     @X[$i+1],@X[$i+2],[$inp],#2*$SZ
97 ___
98 $code.=<<___    if ($i==13);
99         ldp     @X[14],@X[15],[$inp]
100 ___
101 $code.=<<___    if ($i>=14);
102         ldr     @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
103 ___
104 $code.=<<___    if ($i>0 && $i<16);
105         add     $a,$a,$t1                       // h+=Sigma0(a)
106 ___
107 $code.=<<___    if ($i>=11);
108         str     @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
109 ___
110 # While ARMv8 specifies merged rotate-n-logical operation such as
111 # 'eor x,y,z,ror#n', it was found to negatively affect performance
112 # on Apple A7. The reason seems to be that it requires even 'y' to
113 # be available earlier. This means that such merged instruction is
114 # not necessarily best choice on critical path... On the other hand
115 # Cortex-A5x handles merged instructions much better than disjoint
116 # rotate and logical... See (**) footnote above.
117 $code.=<<___    if ($i<15);
118         ror     $t0,$e,#$Sigma1[0]
119         add     $h,$h,$t2                       // h+=K[i]
120         eor     $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
121         and     $t1,$f,$e
122         bic     $t2,$g,$e
123         add     $h,$h,@X[$i&15]                 // h+=X[i]
124         orr     $t1,$t1,$t2                     // Ch(e,f,g)
125         eor     $t2,$a,$b                       // a^b, b^c in next round
126         eor     $t0,$t0,$T0,ror#$Sigma1[1]      // Sigma1(e)
127         ror     $T0,$a,#$Sigma0[0]
128         add     $h,$h,$t1                       // h+=Ch(e,f,g)
129         eor     $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
130         add     $h,$h,$t0                       // h+=Sigma1(e)
131         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
132         add     $d,$d,$h                        // d+=h
133         eor     $t3,$t3,$b                      // Maj(a,b,c)
134         eor     $t1,$T0,$t1,ror#$Sigma0[1]      // Sigma0(a)
135         add     $h,$h,$t3                       // h+=Maj(a,b,c)
136         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
137         //add   $h,$h,$t1                       // h+=Sigma0(a)
138 ___
139 $code.=<<___    if ($i>=15);
140         ror     $t0,$e,#$Sigma1[0]
141         add     $h,$h,$t2                       // h+=K[i]
142         ror     $T1,@X[($j+1)&15],#$sigma0[0]
143         and     $t1,$f,$e
144         ror     $T2,@X[($j+14)&15],#$sigma1[0]
145         bic     $t2,$g,$e
146         ror     $T0,$a,#$Sigma0[0]
147         add     $h,$h,@X[$i&15]                 // h+=X[i]
148         eor     $t0,$t0,$e,ror#$Sigma1[1]
149         eor     $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
150         orr     $t1,$t1,$t2                     // Ch(e,f,g)
151         eor     $t2,$a,$b                       // a^b, b^c in next round
152         eor     $t0,$t0,$e,ror#$Sigma1[2]       // Sigma1(e)
153         eor     $T0,$T0,$a,ror#$Sigma0[1]
154         add     $h,$h,$t1                       // h+=Ch(e,f,g)
155         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
156         eor     $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
157         eor     $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]    // sigma0(X[i+1])
158         add     $h,$h,$t0                       // h+=Sigma1(e)
159         eor     $t3,$t3,$b                      // Maj(a,b,c)
160         eor     $t1,$T0,$a,ror#$Sigma0[2]       // Sigma0(a)
161         eor     $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]   // sigma1(X[i+14])
162         add     @X[$j],@X[$j],@X[($j+9)&15]
163         add     $d,$d,$h                        // d+=h
164         add     $h,$h,$t3                       // h+=Maj(a,b,c)
165         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
166         add     @X[$j],@X[$j],$T1
167         add     $h,$h,$t1                       // h+=Sigma0(a)
168         add     @X[$j],@X[$j],$T2
169 ___
170         ($t2,$t3)=($t3,$t2);
171 }
172
173 $code.=<<___;
174 #ifndef __KERNEL__
175 # include "arm_arch.h"
176 #endif
177
178 .text
179
180 .extern OPENSSL_armcap_P
181 .globl  $func
182 .type   $func,%function
183 .align  6
184 $func:
185 ___
186 $code.=<<___    if ($SZ==4);
187 #ifndef __KERNEL__
188 # ifdef __ILP32__
189         ldrsw   x16,.LOPENSSL_armcap_P
190 # else
191         ldr     x16,.LOPENSSL_armcap_P
192 # endif
193         adr     x17,.LOPENSSL_armcap_P
194         add     x16,x16,x17
195         ldr     w16,[x16]
196         tst     w16,#ARMV8_SHA256
197         b.ne    .Lv8_entry
198 #endif
199 ___
200 $code.=<<___;
201         stp     x29,x30,[sp,#-128]!
202         add     x29,sp,#0
203
204         stp     x19,x20,[sp,#16]
205         stp     x21,x22,[sp,#32]
206         stp     x23,x24,[sp,#48]
207         stp     x25,x26,[sp,#64]
208         stp     x27,x28,[sp,#80]
209         sub     sp,sp,#4*$SZ
210
211         ldp     $A,$B,[$ctx]                            // load context
212         ldp     $C,$D,[$ctx,#2*$SZ]
213         ldp     $E,$F,[$ctx,#4*$SZ]
214         add     $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
215         ldp     $G,$H,[$ctx,#6*$SZ]
216         adr     $Ktbl,.LK$BITS
217         stp     $ctx,$num,[x29,#96]
218
219 .Loop:
220         ldp     @X[0],@X[1],[$inp],#2*$SZ
221         ldr     $t2,[$Ktbl],#$SZ                        // *K++
222         eor     $t3,$B,$C                               // magic seed
223         str     $inp,[x29,#112]
224 ___
225 for ($i=0;$i<16;$i++)   { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
226 $code.=".Loop_16_xx:\n";
227 for (;$i<32;$i++)       { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
228 $code.=<<___;
229         cbnz    $t2,.Loop_16_xx
230
231         ldp     $ctx,$num,[x29,#96]
232         ldr     $inp,[x29,#112]
233         sub     $Ktbl,$Ktbl,#`$SZ*($rounds+1)`          // rewind
234
235         ldp     @X[0],@X[1],[$ctx]
236         ldp     @X[2],@X[3],[$ctx,#2*$SZ]
237         add     $inp,$inp,#14*$SZ                       // advance input pointer
238         ldp     @X[4],@X[5],[$ctx,#4*$SZ]
239         add     $A,$A,@X[0]
240         ldp     @X[6],@X[7],[$ctx,#6*$SZ]
241         add     $B,$B,@X[1]
242         add     $C,$C,@X[2]
243         add     $D,$D,@X[3]
244         stp     $A,$B,[$ctx]
245         add     $E,$E,@X[4]
246         add     $F,$F,@X[5]
247         stp     $C,$D,[$ctx,#2*$SZ]
248         add     $G,$G,@X[6]
249         add     $H,$H,@X[7]
250         cmp     $inp,$num
251         stp     $E,$F,[$ctx,#4*$SZ]
252         stp     $G,$H,[$ctx,#6*$SZ]
253         b.ne    .Loop
254
255         ldp     x19,x20,[x29,#16]
256         add     sp,sp,#4*$SZ
257         ldp     x21,x22,[x29,#32]
258         ldp     x23,x24,[x29,#48]
259         ldp     x25,x26,[x29,#64]
260         ldp     x27,x28,[x29,#80]
261         ldp     x29,x30,[sp],#128
262         ret
263 .size   $func,.-$func
264
265 .align  6
266 .type   .LK$BITS,%object
267 .LK$BITS:
268 ___
269 $code.=<<___ if ($SZ==8);
270         .quad   0x428a2f98d728ae22,0x7137449123ef65cd
271         .quad   0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
272         .quad   0x3956c25bf348b538,0x59f111f1b605d019
273         .quad   0x923f82a4af194f9b,0xab1c5ed5da6d8118
274         .quad   0xd807aa98a3030242,0x12835b0145706fbe
275         .quad   0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
276         .quad   0x72be5d74f27b896f,0x80deb1fe3b1696b1
277         .quad   0x9bdc06a725c71235,0xc19bf174cf692694
278         .quad   0xe49b69c19ef14ad2,0xefbe4786384f25e3
279         .quad   0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
280         .quad   0x2de92c6f592b0275,0x4a7484aa6ea6e483
281         .quad   0x5cb0a9dcbd41fbd4,0x76f988da831153b5
282         .quad   0x983e5152ee66dfab,0xa831c66d2db43210
283         .quad   0xb00327c898fb213f,0xbf597fc7beef0ee4
284         .quad   0xc6e00bf33da88fc2,0xd5a79147930aa725
285         .quad   0x06ca6351e003826f,0x142929670a0e6e70
286         .quad   0x27b70a8546d22ffc,0x2e1b21385c26c926
287         .quad   0x4d2c6dfc5ac42aed,0x53380d139d95b3df
288         .quad   0x650a73548baf63de,0x766a0abb3c77b2a8
289         .quad   0x81c2c92e47edaee6,0x92722c851482353b
290         .quad   0xa2bfe8a14cf10364,0xa81a664bbc423001
291         .quad   0xc24b8b70d0f89791,0xc76c51a30654be30
292         .quad   0xd192e819d6ef5218,0xd69906245565a910
293         .quad   0xf40e35855771202a,0x106aa07032bbd1b8
294         .quad   0x19a4c116b8d2d0c8,0x1e376c085141ab53
295         .quad   0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
296         .quad   0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
297         .quad   0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
298         .quad   0x748f82ee5defb2fc,0x78a5636f43172f60
299         .quad   0x84c87814a1f0ab72,0x8cc702081a6439ec
300         .quad   0x90befffa23631e28,0xa4506cebde82bde9
301         .quad   0xbef9a3f7b2c67915,0xc67178f2e372532b
302         .quad   0xca273eceea26619c,0xd186b8c721c0c207
303         .quad   0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
304         .quad   0x06f067aa72176fba,0x0a637dc5a2c898a6
305         .quad   0x113f9804bef90dae,0x1b710b35131c471b
306         .quad   0x28db77f523047d84,0x32caab7b40c72493
307         .quad   0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
308         .quad   0x4cc5d4becb3e42b6,0x597f299cfc657e2a
309         .quad   0x5fcb6fab3ad6faec,0x6c44198c4a475817
310         .quad   0       // terminator
311 ___
312 $code.=<<___ if ($SZ==4);
313         .long   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
314         .long   0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
315         .long   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
316         .long   0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
317         .long   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
318         .long   0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
319         .long   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
320         .long   0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
321         .long   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
322         .long   0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
323         .long   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
324         .long   0xd192e819,0xd6990624,0xf40e3585,0x106aa070
325         .long   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
326         .long   0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
327         .long   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
328         .long   0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
329         .long   0       //terminator
330 ___
331 $code.=<<___;
332 .size   .LK$BITS,.-.LK$BITS
333 #ifndef __KERNEL__
334 .align  3
335 .LOPENSSL_armcap_P:
336 # ifdef __ILP32__
337         .long   OPENSSL_armcap_P-.
338 # else
339         .quad   OPENSSL_armcap_P-.
340 # endif
341 #endif
342 .asciz  "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
343 .align  2
344 ___
345
346 if ($SZ==4) {
347 my $Ktbl="x3";
348
349 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
350 my @MSG=map("v$_.16b",(4..7));
351 my ($W0,$W1)=("v16.4s","v17.4s");
352 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
353
354 $code.=<<___;
355 #ifndef __KERNEL__
356 .type   sha256_block_armv8,%function
357 .align  6
358 sha256_block_armv8:
359 .Lv8_entry:
360         stp             x29,x30,[sp,#-16]!
361         add             x29,sp,#0
362
363         ld1.32          {$ABCD,$EFGH},[$ctx]
364         adr             $Ktbl,.LK256
365
366 .Loop_hw:
367         ld1             {@MSG[0]-@MSG[3]},[$inp],#64
368         sub             $num,$num,#1
369         ld1.32          {$W0},[$Ktbl],#16
370         rev32           @MSG[0],@MSG[0]
371         rev32           @MSG[1],@MSG[1]
372         rev32           @MSG[2],@MSG[2]
373         rev32           @MSG[3],@MSG[3]
374         orr             $ABCD_SAVE,$ABCD,$ABCD          // offload
375         orr             $EFGH_SAVE,$EFGH,$EFGH
376 ___
377 for($i=0;$i<12;$i++) {
378 $code.=<<___;
379         ld1.32          {$W1},[$Ktbl],#16
380         add.i32         $W0,$W0,@MSG[0]
381         sha256su0       @MSG[0],@MSG[1]
382         orr             $abcd,$ABCD,$ABCD
383         sha256h         $ABCD,$EFGH,$W0
384         sha256h2        $EFGH,$abcd,$W0
385         sha256su1       @MSG[0],@MSG[2],@MSG[3]
386 ___
387         ($W0,$W1)=($W1,$W0);    push(@MSG,shift(@MSG));
388 }
389 $code.=<<___;
390         ld1.32          {$W1},[$Ktbl],#16
391         add.i32         $W0,$W0,@MSG[0]
392         orr             $abcd,$ABCD,$ABCD
393         sha256h         $ABCD,$EFGH,$W0
394         sha256h2        $EFGH,$abcd,$W0
395
396         ld1.32          {$W0},[$Ktbl],#16
397         add.i32         $W1,$W1,@MSG[1]
398         orr             $abcd,$ABCD,$ABCD
399         sha256h         $ABCD,$EFGH,$W1
400         sha256h2        $EFGH,$abcd,$W1
401
402         ld1.32          {$W1},[$Ktbl]
403         add.i32         $W0,$W0,@MSG[2]
404         sub             $Ktbl,$Ktbl,#$rounds*$SZ-16     // rewind
405         orr             $abcd,$ABCD,$ABCD
406         sha256h         $ABCD,$EFGH,$W0
407         sha256h2        $EFGH,$abcd,$W0
408
409         add.i32         $W1,$W1,@MSG[3]
410         orr             $abcd,$ABCD,$ABCD
411         sha256h         $ABCD,$EFGH,$W1
412         sha256h2        $EFGH,$abcd,$W1
413
414         add.i32         $ABCD,$ABCD,$ABCD_SAVE
415         add.i32         $EFGH,$EFGH,$EFGH_SAVE
416
417         cbnz            $num,.Loop_hw
418
419         st1.32          {$ABCD,$EFGH},[$ctx]
420
421         ldr             x29,[sp],#16
422         ret
423 .size   sha256_block_armv8,.-sha256_block_armv8
424 #endif
425 ___
426 }
427
428 $code.=<<___;
429 #ifndef __KERNEL__
430 .comm   OPENSSL_armcap_P,4,4
431 #endif
432 ___
433
434 {   my  %opcode = (
435         "sha256h"       => 0x5e004000,  "sha256h2"      => 0x5e005000,
436         "sha256su0"     => 0x5e282800,  "sha256su1"     => 0x5e006000   );
437
438     sub unsha256 {
439         my ($mnemonic,$arg)=@_;
440
441         $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
442         &&
443         sprintf ".inst\t0x%08x\t//%s %s",
444                         $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
445                         $mnemonic,$arg;
446     }
447 }
448
449 open SELF,$0;
450 while(<SELF>) {
451         next if (/^#!/);
452         last if (!s/^#/\/\// and !/^$/);
453         print;
454 }
455 close SELF;
456
457 foreach(split("\n",$code)) {
458
459         s/\`([^\`]*)\`/eval($1)/geo;
460
461         s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo;
462
463         s/\.\w?32\b//o          and s/\.16b/\.4s/go;
464         m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go;
465
466         print $_,"\n";
467 }
468
469 close STDOUT;