Fix migration guide mappings for i2o/o2i_ECPublicKey
[openssl.git] / crypto / modes / cfb128.c
1 /*
2  * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include <string.h>
11 #include <openssl/crypto.h>
12 #include "crypto/modes.h"
13
14 #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
15 typedef size_t size_t_aX __attribute((__aligned__(1)));
16 #else
17 typedef size_t size_t_aX;
18 #endif
19
20 /*
21  * The input and output encrypted as though 128bit cfb mode is being used.
22  * The extra state information to record how much of the 128bit block we have
23  * used is contained in *num;
24  */
25 void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
26                            size_t len, const void *key,
27                            unsigned char ivec[16], int *num,
28                            int enc, block128_f block)
29 {
30     unsigned int n;
31     size_t l = 0;
32
33     if (*num < 0) {
34         /* There is no good way to signal an error return from here */
35         *num = -1;
36         return;
37     }
38     n = *num;
39
40     if (enc) {
41 #if !defined(OPENSSL_SMALL_FOOTPRINT)
42         if (16 % sizeof(size_t) == 0) { /* always true actually */
43             do {
44                 while (n && len) {
45                     *(out++) = ivec[n] ^= *(in++);
46                     --len;
47                     n = (n + 1) % 16;
48                 }
49 # if defined(STRICT_ALIGNMENT)
50                 if (((size_t)in | (size_t)out | (size_t)ivec) %
51                     sizeof(size_t) != 0)
52                     break;
53 # endif
54                 while (len >= 16) {
55                     (*block) (ivec, ivec, key);
56                     for (; n < 16; n += sizeof(size_t)) {
57                         *(size_t_aX *)(out + n) =
58                             *(size_t_aX *)(ivec + n)
59                                 ^= *(size_t_aX *)(in + n);
60                     }
61                     len -= 16;
62                     out += 16;
63                     in += 16;
64                     n = 0;
65                 }
66                 if (len) {
67                     (*block) (ivec, ivec, key);
68                     while (len--) {
69                         out[n] = ivec[n] ^= in[n];
70                         ++n;
71                     }
72                 }
73                 *num = n;
74                 return;
75             } while (0);
76         }
77         /* the rest would be commonly eliminated by x86* compiler */
78 #endif
79         while (l < len) {
80             if (n == 0) {
81                 (*block) (ivec, ivec, key);
82             }
83             out[l] = ivec[n] ^= in[l];
84             ++l;
85             n = (n + 1) % 16;
86         }
87         *num = n;
88     } else {
89 #if !defined(OPENSSL_SMALL_FOOTPRINT)
90         if (16 % sizeof(size_t) == 0) { /* always true actually */
91             do {
92                 while (n && len) {
93                     unsigned char c;
94                     *(out++) = ivec[n] ^ (c = *(in++));
95                     ivec[n] = c;
96                     --len;
97                     n = (n + 1) % 16;
98                 }
99 # if defined(STRICT_ALIGNMENT)
100                 if (((size_t)in | (size_t)out | (size_t)ivec) %
101                     sizeof(size_t) != 0)
102                     break;
103 # endif
104                 while (len >= 16) {
105                     (*block) (ivec, ivec, key);
106                     for (; n < 16; n += sizeof(size_t)) {
107                         size_t t = *(size_t_aX *)(in + n);
108                         *(size_t_aX *)(out + n)
109                             = *(size_t_aX *)(ivec + n) ^ t;
110                         *(size_t_aX *)(ivec + n) = t;
111                     }
112                     len -= 16;
113                     out += 16;
114                     in += 16;
115                     n = 0;
116                 }
117                 if (len) {
118                     (*block) (ivec, ivec, key);
119                     while (len--) {
120                         unsigned char c;
121                         out[n] = ivec[n] ^ (c = in[n]);
122                         ivec[n] = c;
123                         ++n;
124                     }
125                 }
126                 *num = n;
127                 return;
128             } while (0);
129         }
130         /* the rest would be commonly eliminated by x86* compiler */
131 #endif
132         while (l < len) {
133             unsigned char c;
134             if (n == 0) {
135                 (*block) (ivec, ivec, key);
136             }
137             out[l] = ivec[n] ^ (c = in[l]);
138             ivec[n] = c;
139             ++l;
140             n = (n + 1) % 16;
141         }
142         *num = n;
143     }
144 }
145
146 /*
147  * This expects a single block of size nbits for both in and out. Note that
148  * it corrupts any extra bits in the last byte of out
149  */
150 static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
151                                int nbits, const void *key,
152                                unsigned char ivec[16], int enc,
153                                block128_f block)
154 {
155     int n, rem, num;
156     unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
157                                      * use) one byte off the end */
158
159     if (nbits <= 0 || nbits > 128)
160         return;
161
162     /* fill in the first half of the new IV with the current IV */
163     memcpy(ovec, ivec, 16);
164     /* construct the new IV */
165     (*block) (ivec, ivec, key);
166     num = (nbits + 7) / 8;
167     if (enc)                    /* encrypt the input */
168         for (n = 0; n < num; ++n)
169             out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
170     else                        /* decrypt the input */
171         for (n = 0; n < num; ++n)
172             out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
173     /* shift ovec left... */
174     rem = nbits % 8;
175     num = nbits / 8;
176     if (rem == 0)
177         memcpy(ivec, ovec + num, 16);
178     else
179         for (n = 0; n < 16; ++n)
180             ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);
181
182     /* it is not necessary to cleanse ovec, since the IV is not secret */
183 }
184
185 /* N.B. This expects the input to be packed, MS bit first */
186 void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
187                              size_t bits, const void *key,
188                              unsigned char ivec[16], int *num,
189                              int enc, block128_f block)
190 {
191     size_t n;
192     unsigned char c[1], d[1];
193
194     for (n = 0; n < bits; ++n) {
195         c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
196         cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
197         out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |
198             ((d[0] & 0x80) >> (unsigned int)(n % 8));
199     }
200 }
201
202 void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
203                              size_t length, const void *key,
204                              unsigned char ivec[16], int *num,
205                              int enc, block128_f block)
206 {
207     size_t n;
208
209     for (n = 0; n < length; ++n)
210         cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
211 }