d74c33713a7a32545d40e350f19a6f7e1ff7a872
[openssl.git] / crypto / modes / asm / ghash-x86.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9 #
10 # March, May 2010
11 #
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that it
14 # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
15 # code paths: vanilla x86 and vanilla MMX. Former will be executed on
16 # 486 and Pentium, latter on all others. Performance results are for
17 # streamed GHASH subroutine and are expressed in cycles per processed
18 # byte, less is better:
19 #
20 #               gcc 2.95.3(*)   MMX assembler   x86 assembler
21 #
22 # Pentium       100/112(**)     -               50
23 # PIII          63 /77          14.5            24
24 # P4            96 /122         24.5            84(***)
25 # Opteron       50 /71          14.5            30
26 # Core2         54 /68          10.5            18
27 #
28 # (*)   gcc 3.4.x was observed to generate few percent slower code,
29 #       which is one of reasons why 2.95.3 results were chosen,
30 #       another reason is lack of 3.4.x results for older CPUs;
31 # (**)  second number is result for code compiled with -fPIC flag,
32 #       which is actually more relevant, because assembler code is
33 #       position-independent;
34 # (***) see comment in non-MMX routine for further details;
35 #
36 # To summarize, it's >2-4 times faster than gcc-generated code. To
37 # anchor it to something else SHA1 assembler processes one byte in
38 # 11-13 cycles on contemporary x86 cores. As for choice of MMX in
39 # particular, see comment at the end of the file...
40
41 # May 2010
42 #
43 # Add PCLMULQDQ version performing at 2.13 cycles per processed byte.
44 # The question is how close is it to theoretical limit? The pclmulqdq
45 # instruction latency appears to be 14 cycles and there can't be more
46 # than 2 of them executing at any given time. This means that single
47 # Karatsuba multiplication would take 28 cycles *plus* few cycles for
48 # pre- and post-processing. Then multiplication has to be followed by
49 # modulo-reduction. Given that aggregated reduction method [see
50 # "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
51 # white paper by Intel] allows you to perform reduction only once in
52 # a while we can assume that asymptotic performance can be estimated
53 # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
54 # and Naggr is the aggregation factor.
55 #
56 # Before we proceed to this implementation let's have closer look at
57 # the best-performing code suggested by Intel in their white paper.
58 # By tracing inter-register dependencies Tmod is estimated as ~19
59 # cycles and Naggr is 4, resulting in 2.05 cycles per processed byte.
60 # As implied, this is quite optimistic estimate, because it does not
61 # account for Karatsuba pre- and post-processing, which for a single
62 # multiplication is ~5 cycles. Unfortunately Intel does not provide
63 # performance data for GHASH alone, only for fused GCM mode. But
64 # we can estimate it by subtracting CTR performance result provided
65 # in "AES Instruction Set" white paper: 3.54-1.38=2.16 cycles per
66 # processed byte or 5% off the estimate. It should be noted though
67 # that 3.54 is GCM result for 16KB block size, while 1.38 is CTR for
68 # 1KB block size, meaning that real number is likely to be a bit
69 # further from estimate.
70 #
71 # Moving on to the implementation in question. Tmod is estimated as
72 # ~13 cycles and Naggr is 2, giving asymptotic performance of ...
73 # 2.16. How is it possible that measured performance is better than
74 # optimistic theoretical estimate? There is one thing Intel failed
75 # to recognize. By fusing GHASH with CTR former's performance is
76 # really limited to above (Tmul + Tmod/Naggr) equation. But if GHASH
77 # procedure is detached, the modulo-reduction can be interleaved with
78 # Naggr-1 multiplications and under ideal conditions even disappear
79 # from the equation. So that optimistic theoretical estimate for this
80 # implementation is ... 28/16=1.75, and not 2.16. Well, it's probably
81 # way too optimistic, at least for such small Naggr. I'd argue that
82 # (28+Tproc/Naggr), where Tproc is time required for Karatsuba pre-
83 # and post-processing, is more realistic estimate. In this case it
84 # gives ... 1.91 cycles per processed byte. Or in other words,
85 # depending on how well we can interleave reduction and one of the
86 # two multiplications the performance should be betwen 1.91 and 2.16.
87 # As already mentioned, this implementation processes one byte [out
88 # of 1KB buffer] in 2.13 cycles, while x86_64 counterpart - in 2.07.
89 # x86_64 performance is better, because larger register bank allows
90 # to interleave reduction and multiplication better.
91 #
92 # Does it make sense to increase Naggr? To start with it's virtually
93 # impossible in 32-bit mode, because of limited register bank
94 # capacity. Otherwise improvement has to be weighed agiainst slower
95 # setup, as well as code size and complexity increase. As even
96 # optimistic estimate doesn't promise 30% performance improvement,
97 # there are currently no plans to increase Naggr.
98 #
99 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
100 # providing access to a Westmere-based system on behalf of Intel
101 # Open Source Technology Centre.
102
103 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
104 push(@INC,"${dir}","${dir}../../perlasm");
105 require "x86asm.pl";
106
107 &asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
108
109 $sse2=0;
110 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
111
112 ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
113 $inp  = "edi";
114 $Htbl = "esi";
115 \f
116 $unroll = 0;    # Affects x86 loop. Folded loop performs ~7% worse
117                 # than unrolled, which has to be weighted against
118                 # 2.5x x86-specific code size reduction.
119
120 sub x86_loop {
121     my $off = shift;
122     my $rem = "eax";
123
124         &mov    ($Zhh,&DWP(4,$Htbl,$Zll));
125         &mov    ($Zhl,&DWP(0,$Htbl,$Zll));
126         &mov    ($Zlh,&DWP(12,$Htbl,$Zll));
127         &mov    ($Zll,&DWP(8,$Htbl,$Zll));
128         &xor    ($rem,$rem);    # avoid partial register stalls on PIII
129
130         # shrd practically kills P4, 2.5x deterioration, but P4 has
131         # MMX code-path to execute. shrd runs tad faster [than twice
132         # the shifts, move's and or's] on pre-MMX Pentium (as well as
133         # PIII and Core2), *but* minimizes code size, spares register
134         # and thus allows to fold the loop...
135         if (!$unroll) {
136         my $cnt = $inp;
137         &mov    ($cnt,15);
138         &jmp    (&label("x86_loop"));
139         &set_label("x86_loop",16);
140             for($i=1;$i<=2;$i++) {
141                 &mov    (&LB($rem),&LB($Zll));
142                 &shrd   ($Zll,$Zlh,4);
143                 &and    (&LB($rem),0xf);
144                 &shrd   ($Zlh,$Zhl,4);
145                 &shrd   ($Zhl,$Zhh,4);
146                 &shr    ($Zhh,4);
147                 &xor    ($Zhh,&DWP($off+16,"esp",$rem,4));
148
149                 &mov    (&LB($rem),&BP($off,"esp",$cnt));
150                 if ($i&1) {
151                         &and    (&LB($rem),0xf0);
152                 } else {
153                         &shl    (&LB($rem),4);
154                 }
155
156                 &xor    ($Zll,&DWP(8,$Htbl,$rem));
157                 &xor    ($Zlh,&DWP(12,$Htbl,$rem));
158                 &xor    ($Zhl,&DWP(0,$Htbl,$rem));
159                 &xor    ($Zhh,&DWP(4,$Htbl,$rem));
160
161                 if ($i&1) {
162                         &dec    ($cnt);
163                         &js     (&label("x86_break"));
164                 } else {
165                         &jmp    (&label("x86_loop"));
166                 }
167             }
168         &set_label("x86_break",16);
169         } else {
170             for($i=1;$i<32;$i++) {
171                 &comment($i);
172                 &mov    (&LB($rem),&LB($Zll));
173                 &shrd   ($Zll,$Zlh,4);
174                 &and    (&LB($rem),0xf);
175                 &shrd   ($Zlh,$Zhl,4);
176                 &shrd   ($Zhl,$Zhh,4);
177                 &shr    ($Zhh,4);
178                 &xor    ($Zhh,&DWP($off+16,"esp",$rem,4));
179
180                 if ($i&1) {
181                         &mov    (&LB($rem),&BP($off+15-($i>>1),"esp"));
182                         &and    (&LB($rem),0xf0);
183                 } else {
184                         &mov    (&LB($rem),&BP($off+15-($i>>1),"esp"));
185                         &shl    (&LB($rem),4);
186                 }
187
188                 &xor    ($Zll,&DWP(8,$Htbl,$rem));
189                 &xor    ($Zlh,&DWP(12,$Htbl,$rem));
190                 &xor    ($Zhl,&DWP(0,$Htbl,$rem));
191                 &xor    ($Zhh,&DWP(4,$Htbl,$rem));
192             }
193         }
194         &bswap  ($Zll);
195         &bswap  ($Zlh);
196         &bswap  ($Zhl);
197         if (!$x86only) {
198                 &bswap  ($Zhh);
199         } else {
200                 &mov    ("eax",$Zhh);
201                 &bswap  ("eax");
202                 &mov    ($Zhh,"eax");
203         }
204 }
205
206 if ($unroll) {
207     &function_begin_B("_x86_gmult_4bit_inner");
208         &x86_loop(4);
209         &ret    ();
210     &function_end_B("_x86_gmult_4bit_inner");
211 }
212
213 sub deposit_rem_4bit {
214     my $bias = shift;
215
216         &mov    (&DWP($bias+0, "esp"),0x0000<<16);
217         &mov    (&DWP($bias+4, "esp"),0x1C20<<16);
218         &mov    (&DWP($bias+8, "esp"),0x3840<<16);
219         &mov    (&DWP($bias+12,"esp"),0x2460<<16);
220         &mov    (&DWP($bias+16,"esp"),0x7080<<16);
221         &mov    (&DWP($bias+20,"esp"),0x6CA0<<16);
222         &mov    (&DWP($bias+24,"esp"),0x48C0<<16);
223         &mov    (&DWP($bias+28,"esp"),0x54E0<<16);
224         &mov    (&DWP($bias+32,"esp"),0xE100<<16);
225         &mov    (&DWP($bias+36,"esp"),0xFD20<<16);
226         &mov    (&DWP($bias+40,"esp"),0xD940<<16);
227         &mov    (&DWP($bias+44,"esp"),0xC560<<16);
228         &mov    (&DWP($bias+48,"esp"),0x9180<<16);
229         &mov    (&DWP($bias+52,"esp"),0x8DA0<<16);
230         &mov    (&DWP($bias+56,"esp"),0xA9C0<<16);
231         &mov    (&DWP($bias+60,"esp"),0xB5E0<<16);
232 }
233 \f
234 $suffix = $x86only ? "" : "_x86";
235
236 &function_begin("gcm_gmult_4bit".$suffix);
237         &stack_push(16+4+1);                    # +1 for stack alignment
238         &mov    ($inp,&wparam(0));              # load Xi
239         &mov    ($Htbl,&wparam(1));             # load Htable
240
241         &mov    ($Zhh,&DWP(0,$inp));            # load Xi[16]
242         &mov    ($Zhl,&DWP(4,$inp));
243         &mov    ($Zlh,&DWP(8,$inp));
244         &mov    ($Zll,&DWP(12,$inp));
245
246         &deposit_rem_4bit(16);
247
248         &mov    (&DWP(0,"esp"),$Zhh);           # copy Xi[16] on stack
249         &mov    (&DWP(4,"esp"),$Zhl);
250         &mov    (&DWP(8,"esp"),$Zlh);
251         &mov    (&DWP(12,"esp"),$Zll);
252         &shr    ($Zll,20);
253         &and    ($Zll,0xf0);
254
255         if ($unroll) {
256                 &call   ("_x86_gmult_4bit_inner");
257         } else {
258                 &x86_loop(0);
259                 &mov    ($inp,&wparam(0));
260         }
261
262         &mov    (&DWP(12,$inp),$Zll);
263         &mov    (&DWP(8,$inp),$Zlh);
264         &mov    (&DWP(4,$inp),$Zhl);
265         &mov    (&DWP(0,$inp),$Zhh);
266         &stack_pop(16+4+1);
267 &function_end("gcm_gmult_4bit".$suffix);
268
269 &function_begin("gcm_ghash_4bit".$suffix);
270         &stack_push(16+4+1);                    # +1 for 64-bit alignment
271         &mov    ($Zll,&wparam(0));              # load Xi
272         &mov    ($Htbl,&wparam(1));             # load Htable
273         &mov    ($inp,&wparam(2));              # load in
274         &mov    ("ecx",&wparam(3));             # load len
275         &add    ("ecx",$inp);
276         &mov    (&wparam(3),"ecx");
277
278         &mov    ($Zhh,&DWP(0,$Zll));            # load Xi[16]
279         &mov    ($Zhl,&DWP(4,$Zll));
280         &mov    ($Zlh,&DWP(8,$Zll));
281         &mov    ($Zll,&DWP(12,$Zll));
282
283         &deposit_rem_4bit(16);
284
285     &set_label("x86_outer_loop",16);
286         &xor    ($Zll,&DWP(12,$inp));           # xor with input
287         &xor    ($Zlh,&DWP(8,$inp));
288         &xor    ($Zhl,&DWP(4,$inp));
289         &xor    ($Zhh,&DWP(0,$inp));
290         &mov    (&DWP(12,"esp"),$Zll);          # dump it on stack
291         &mov    (&DWP(8,"esp"),$Zlh);
292         &mov    (&DWP(4,"esp"),$Zhl);
293         &mov    (&DWP(0,"esp"),$Zhh);
294
295         &shr    ($Zll,20);
296         &and    ($Zll,0xf0);
297
298         if ($unroll) {
299                 &call   ("_x86_gmult_4bit_inner");
300         } else {
301                 &x86_loop(0);
302                 &mov    ($inp,&wparam(2));
303         }
304         &lea    ($inp,&DWP(16,$inp));
305         &cmp    ($inp,&wparam(3));
306         &mov    (&wparam(2),$inp)       if (!$unroll);
307         &jb     (&label("x86_outer_loop"));
308
309         &mov    ($inp,&wparam(0));      # load Xi
310         &mov    (&DWP(12,$inp),$Zll);
311         &mov    (&DWP(8,$inp),$Zlh);
312         &mov    (&DWP(4,$inp),$Zhl);
313         &mov    (&DWP(0,$inp),$Zhh);
314         &stack_pop(16+4+1);
315 &function_end("gcm_ghash_4bit".$suffix);
316 \f
317 if (!$x86only) {{{
318
319 &static_label("rem_4bit");
320
321 &function_begin_B("_mmx_gmult_4bit_inner");
322 # MMX version performs 3.5 times better on P4 (see comment in non-MMX
323 # routine for further details), 100% better on Opteron, ~70% better
324 # on Core2 and PIII... In other words effort is considered to be well
325 # spent... Since initial release the loop was unrolled in order to
326 # "liberate" register previously used as loop counter. Instead it's
327 # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
328 # The path involves move of Z.lo from MMX to integer register,
329 # effective address calculation and finally merge of value to Z.hi.
330 # Reference to rem_4bit is scheduled so late that I had to >>4
331 # rem_4bit elements. This resulted in 20-45% procent improvement
332 # on contemporary Âµ-archs.
333 {
334     my $cnt;
335     my $rem_4bit = "eax";
336     my @rem = ($Zhh,$Zll);
337     my $nhi = $Zhl;
338     my $nlo = $Zlh;
339
340     my ($Zlo,$Zhi) = ("mm0","mm1");
341     my $tmp = "mm2";
342
343         &xor    ($nlo,$nlo);    # avoid partial register stalls on PIII
344         &mov    ($nhi,$Zll);
345         &mov    (&LB($nlo),&LB($nhi));
346         &shl    (&LB($nlo),4);
347         &and    ($nhi,0xf0);
348         &movq   ($Zlo,&QWP(8,$Htbl,$nlo));
349         &movq   ($Zhi,&QWP(0,$Htbl,$nlo));
350         &movd   ($rem[0],$Zlo);
351
352         for ($cnt=28;$cnt>=-2;$cnt--) {
353             my $odd = $cnt&1;
354             my $nix = $odd ? $nlo : $nhi;
355
356                 &shl    (&LB($nlo),4)                   if ($odd);
357                 &psrlq  ($Zlo,4);
358                 &movq   ($tmp,$Zhi);
359                 &psrlq  ($Zhi,4);
360                 &pxor   ($Zlo,&QWP(8,$Htbl,$nix));
361                 &mov    (&LB($nlo),&BP($cnt/2,$inp))    if (!$odd && $cnt>=0);
362                 &psllq  ($tmp,60);
363                 &and    ($nhi,0xf0)                     if ($odd);
364                 &pxor   ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
365                 &and    ($rem[0],0xf);
366                 &pxor   ($Zhi,&QWP(0,$Htbl,$nix));
367                 &mov    ($nhi,$nlo)                     if (!$odd && $cnt>=0);
368                 &movd   ($rem[1],$Zlo);
369                 &pxor   ($Zlo,$tmp);
370
371                 push    (@rem,shift(@rem));             # "rotate" registers
372         }
373
374         &mov    ($inp,&DWP(4,$rem_4bit,$rem[1],8));     # last rem_4bit[rem]
375
376         &psrlq  ($Zlo,32);      # lower part of Zlo is already there
377         &movd   ($Zhl,$Zhi);
378         &psrlq  ($Zhi,32);
379         &movd   ($Zlh,$Zlo);
380         &movd   ($Zhh,$Zhi);
381         &shl    ($inp,4);       # compensate for rem_4bit[i] being >>4
382
383         &bswap  ($Zll);
384         &bswap  ($Zhl);
385         &bswap  ($Zlh);
386         &xor    ($Zhh,$inp);
387         &bswap  ($Zhh);
388
389         &ret    ();
390 }
391 &function_end_B("_mmx_gmult_4bit_inner");
392
393 &function_begin("gcm_gmult_4bit_mmx");
394         &mov    ($inp,&wparam(0));      # load Xi
395         &mov    ($Htbl,&wparam(1));     # load Htable
396
397         &call   (&label("pic_point"));
398         &set_label("pic_point");
399         &blindpop("eax");
400         &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
401
402         &movz   ($Zll,&BP(15,$inp));
403
404         &call   ("_mmx_gmult_4bit_inner");
405
406         &mov    ($inp,&wparam(0));      # load Xi
407         &emms   ();
408         &mov    (&DWP(12,$inp),$Zll);
409         &mov    (&DWP(4,$inp),$Zhl);
410         &mov    (&DWP(8,$inp),$Zlh);
411         &mov    (&DWP(0,$inp),$Zhh);
412 &function_end("gcm_gmult_4bit_mmx");
413 \f
414 # Streamed version performs 20% better on P4, 7% on Opteron,
415 # 10% on Core2 and PIII...
416 &function_begin("gcm_ghash_4bit_mmx");
417         &mov    ($Zhh,&wparam(0));      # load Xi
418         &mov    ($Htbl,&wparam(1));     # load Htable
419         &mov    ($inp,&wparam(2));      # load in
420         &mov    ($Zlh,&wparam(3));      # load len
421
422         &call   (&label("pic_point"));
423         &set_label("pic_point");
424         &blindpop("eax");
425         &lea    ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
426
427         &add    ($Zlh,$inp);
428         &mov    (&wparam(3),$Zlh);      # len to point at the end of input
429         &stack_push(4+1);               # +1 for stack alignment
430
431         &mov    ($Zll,&DWP(12,$Zhh));   # load Xi[16]
432         &mov    ($Zhl,&DWP(4,$Zhh));
433         &mov    ($Zlh,&DWP(8,$Zhh));
434         &mov    ($Zhh,&DWP(0,$Zhh));
435         &jmp    (&label("mmx_outer_loop"));
436
437     &set_label("mmx_outer_loop",16);
438         &xor    ($Zll,&DWP(12,$inp));
439         &xor    ($Zhl,&DWP(4,$inp));
440         &xor    ($Zlh,&DWP(8,$inp));
441         &xor    ($Zhh,&DWP(0,$inp));
442         &mov    (&wparam(2),$inp);
443         &mov    (&DWP(12,"esp"),$Zll);
444         &mov    (&DWP(4,"esp"),$Zhl);
445         &mov    (&DWP(8,"esp"),$Zlh);
446         &mov    (&DWP(0,"esp"),$Zhh);
447
448         &mov    ($inp,"esp");
449         &shr    ($Zll,24);
450
451         &call   ("_mmx_gmult_4bit_inner");
452
453         &mov    ($inp,&wparam(2));
454         &lea    ($inp,&DWP(16,$inp));
455         &cmp    ($inp,&wparam(3));
456         &jb     (&label("mmx_outer_loop"));
457
458         &mov    ($inp,&wparam(0));      # load Xi
459         &emms   ();
460         &mov    (&DWP(12,$inp),$Zll);
461         &mov    (&DWP(4,$inp),$Zhl);
462         &mov    (&DWP(8,$inp),$Zlh);
463         &mov    (&DWP(0,$inp),$Zhh);
464
465         &stack_pop(4+1);
466 &function_end("gcm_ghash_4bit_mmx");
467 \f
468 if ($sse2) {{
469 ######################################################################
470 # PCLMULQDQ version.
471
472 $Xip="eax";
473 $Htbl="edx";
474 $const="ecx";
475 $inp="esi";
476 $len="ebx";
477
478 ($Xi,$Xhi)=("xmm0","xmm1");     $Hkey="xmm2";
479 ($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
480 ($Xn,$Xhn)=("xmm6","xmm7");
481
482 &static_label("bswap");
483
484 sub clmul64x64_T2 {     # minimal "register" pressure
485 my ($Xhi,$Xi,$Hkey)=@_;
486
487         &movdqa         ($Xhi,$Xi);             #
488         &pshufd         ($T1,$Xi,0b01001110);
489         &pshufd         ($T2,$Hkey,0b01001110);
490         &pxor           ($T1,$Xi);              #
491         &pxor           ($T2,$Hkey);
492
493         &pclmulqdq      ($Xi,$Hkey,0x00);       #######
494         &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
495         &pclmulqdq      ($T1,$T2,0x00);         #######
496         &pxor           ($T1,$Xi);              #
497         &pxor           ($T1,$Xhi);             #
498
499         &movdqa         ($T2,$T1);              #
500         &psrldq         ($T1,8);
501         &pslldq         ($T2,8);                #
502         &pxor           ($Xhi,$T1);
503         &pxor           ($Xi,$T2);              #
504 }
505
506 sub clmul64x64_T3 {
507 # Even though this subroutine offers visually better ILP, it
508 # was empirically found to be a tad slower than above version.
509 # At least in gcm_ghash_clmul context. But it's just as well,
510 # because loop modulo-scheduling is possible only thanks to
511 # minimized "register" pressure...
512 my ($Xhi,$Xi,$Hkey)=@_;
513
514         &movdqa         ($T1,$Xi);              #
515         &movdqa         ($Xhi,$Xi);
516         &pclmulqdq      ($Xi,$Hkey,0x00);       #######
517         &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
518         &pshufd         ($T2,$T1,0b01001110);   #
519         &pshufd         ($T3,$Hkey,0b01001110);
520         &pxor           ($T2,$T1);              #
521         &pxor           ($T3,$Hkey);
522         &pclmulqdq      ($T2,$T3,0x00);         #######
523         &pxor           ($T2,$Xi);              #
524         &pxor           ($T2,$Xhi);             #
525
526         &movdqa         ($T3,$T2);              #
527         &psrldq         ($T2,8);
528         &pslldq         ($T3,8);                #
529         &pxor           ($Xhi,$T2);
530         &pxor           ($Xi,$T3);              #
531 }
532 \f
533 if (1) {                # Algorithm 9 with <<1 twist.
534                         # Reduction is shorter and uses only two
535                         # temporary registers, which makes it better
536                         # candidate for interleaving with 64x64
537                         # multiplication. Pre-modulo-scheduled loop
538                         # was found to be ~20% faster than Algorithm 5
539                         # below. Algorithm 9 was therefore chosen for
540                         # further optimization...
541
542 sub reduction_alg9 {    # 17/13 times faster than Intel version
543 my ($Xhi,$Xi) = @_;
544
545         # 1st phase
546         &movdqa         ($T1,$Xi)               #
547         &psllq          ($Xi,1);
548         &pxor           ($Xi,$T1);              #
549         &psllq          ($Xi,5);                #
550         &pxor           ($Xi,$T1);              #
551         &psllq          ($Xi,57);               #
552         &movdqa         ($T2,$Xi);              #
553         &pslldq         ($Xi,8);
554         &psrldq         ($T2,8);                #
555         &pxor           ($Xi,$T1);
556         &pxor           ($Xhi,$T2);             #
557
558         # 2nd phase
559         &movdqa         ($T2,$Xi);
560         &psrlq          ($Xi,5);
561         &pxor           ($Xi,$T2);              #
562         &psrlq          ($Xi,1);                #
563         &pxor           ($Xi,$T2);              #
564         &pxor           ($T2,$Xhi);
565         &psrlq          ($Xi,1);                #
566         &pxor           ($Xi,$T2);              #
567 }
568
569 &function_begin_B("gcm_init_clmul");
570         &mov            ($Htbl,&wparam(0));
571         &mov            ($Xip,&wparam(1));
572
573         &call           (&label("pic"));
574 &set_label("pic");
575         &blindpop       ($const);
576         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
577
578         &movdqu         ($Hkey,&QWP(0,$Xip));
579         &pshufd         ($Hkey,$Hkey,0b01001110);# dword swap
580
581         # <<1 twist
582         &pshufd         ($T2,$Hkey,0b11111111); # broadcast uppermost dword
583         &movdqa         ($T1,$Hkey);
584         &psllq          ($Hkey,1);
585         &pxor           ($T3,$T3);              #
586         &psrlq          ($T1,63);
587         &pcmpgtd        ($T3,$T2);              # broadcast carry bit
588         &pslldq         ($T1,8);
589         &por            ($Hkey,$T1);            # H<<=1
590
591         # magic reduction
592         &pand           ($T3,&QWP(16,$const));  # 0x1c2_polynomial
593         &pxor           ($Hkey,$T3);            # if(carry) H^=0x1c2_polynomial
594
595         # calculate H^2
596         &movdqa         ($Xi,$Hkey);
597         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
598         &reduction_alg9 ($Xhi,$Xi);
599
600         &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
601         &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
602
603         &ret            ();
604 &function_end_B("gcm_init_clmul");
605
606 &function_begin_B("gcm_gmult_clmul");
607         &mov            ($Xip,&wparam(0));
608         &mov            ($Htbl,&wparam(1));
609
610         &call           (&label("pic"));
611 &set_label("pic");
612         &blindpop       ($const);
613         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
614
615         &movdqu         ($Xi,&QWP(0,$Xip));
616         &movdqa         ($T3,&QWP(0,$const));
617         &movdqu         ($Hkey,&QWP(0,$Htbl));
618         &pshufb         ($Xi,$T3);
619
620         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
621         &reduction_alg9 ($Xhi,$Xi);
622
623         &pshufb         ($Xi,$T3);
624         &movdqu         (&QWP(0,$Xip),$Xi);
625
626         &ret    ();
627 &function_end_B("gcm_gmult_clmul");
628
629 &function_begin("gcm_ghash_clmul");
630         &mov            ($Xip,&wparam(0));
631         &mov            ($Htbl,&wparam(1));
632         &mov            ($inp,&wparam(2));
633         &mov            ($len,&wparam(3));
634
635         &call           (&label("pic"));
636 &set_label("pic");
637         &blindpop       ($const);
638         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
639
640         &movdqu         ($Xi,&QWP(0,$Xip));
641         &movdqa         ($T3,&QWP(0,$const));
642         &movdqu         ($Hkey,&QWP(0,$Htbl));
643         &pshufb         ($Xi,$T3);
644
645         &sub            ($len,0x10);
646         &jz             (&label("odd_tail"));
647
648         #######
649         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
650         #       [(H*Ii+1) + (H*Xi+1)] mod P =
651         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
652         #
653         &movdqu         ($T1,&QWP(0,$inp));     # Ii
654         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
655         &pshufb         ($T1,$T3);
656         &pshufb         ($Xn,$T3);
657         &pxor           ($Xi,$T1);              # Ii+Xi
658
659         &clmul64x64_T2  ($Xhn,$Xn,$Hkey);       # H*Ii+1
660         &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
661
662         &lea            ($inp,&DWP(32,$inp));   # i+=2
663         &sub            ($len,0x20);
664         &jbe            (&label("even_tail"));
665
666 &set_label("mod_loop");
667         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
668         &movdqu         ($T1,&QWP(0,$inp));     # Ii
669         &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
670
671         &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
672         &pxor           ($Xhi,$Xhn);
673
674         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
675         &pshufb         ($T1,$T3);
676         &pshufb         ($Xn,$T3);
677
678         &movdqa         ($T3,$Xn);              #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
679         &movdqa         ($Xhn,$Xn);
680          &pxor          ($Xhi,$T1);             # "Ii+Xi", consume early
681
682           &movdqa       ($T1,$Xi)               #&reduction_alg9($Xhi,$Xi); 1st phase
683           &psllq        ($Xi,1);
684           &pxor         ($Xi,$T1);              #
685           &psllq        ($Xi,5);                #
686           &pxor         ($Xi,$T1);              #
687         &pclmulqdq      ($Xn,$Hkey,0x00);       #######
688           &psllq        ($Xi,57);               #
689           &movdqa       ($T2,$Xi);              #
690           &pslldq       ($Xi,8);
691           &psrldq       ($T2,8);                #       
692           &pxor         ($Xi,$T1);
693         &pshufd         ($T1,$T3,0b01001110);
694           &pxor         ($Xhi,$T2);             #
695         &pxor           ($T1,$T3);
696         &pshufd         ($T3,$Hkey,0b01001110);
697         &pxor           ($T3,$Hkey);            #
698
699         &pclmulqdq      ($Xhn,$Hkey,0x11);      #######
700           &movdqa       ($T2,$Xi);              # 2nd phase
701           &psrlq        ($Xi,5);
702           &pxor         ($Xi,$T2);              #
703           &psrlq        ($Xi,1);                #
704           &pxor         ($Xi,$T2);              #
705           &pxor         ($T2,$Xhi);
706           &psrlq        ($Xi,1);                #
707           &pxor         ($Xi,$T2);              #
708
709         &pclmulqdq      ($T1,$T3,0x00);         #######
710         &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
711         &pxor           ($T1,$Xn);              #
712         &pxor           ($T1,$Xhn);             #
713
714         &movdqa         ($T3,$T1);              #
715         &psrldq         ($T1,8);
716         &pslldq         ($T3,8);                #
717         &pxor           ($Xhn,$T1);
718         &pxor           ($Xn,$T3);              #
719         &movdqa         ($T3,&QWP(0,$const));
720
721         &lea            ($inp,&DWP(32,$inp));
722         &sub            ($len,0x20);
723         &ja             (&label("mod_loop"));
724
725 &set_label("even_tail");
726         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
727
728         &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
729         &pxor           ($Xhi,$Xhn);
730
731         &reduction_alg9 ($Xhi,$Xi);
732
733         &test           ($len,$len);
734         &jnz            (&label("done"));
735
736         &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
737 &set_label("odd_tail");
738         &movdqu         ($T1,&QWP(0,$inp));     # Ii
739         &pshufb         ($T1,$T3);
740         &pxor           ($Xi,$T1);              # Ii+Xi
741
742         &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
743         &reduction_alg9 ($Xhi,$Xi);
744
745 &set_label("done");
746         &pshufb         ($Xi,$T3);
747         &movdqu         (&QWP(0,$Xip),$Xi);
748 &function_end("gcm_ghash_clmul");
749 \f
750 } else {                # Algorith 5. Kept for reference purposes.
751
752 sub reduction_alg5 {    # 19/16 times faster than Intel version
753 my ($Xhi,$Xi)=@_;
754
755         # <<1
756         &movdqa         ($T1,$Xi);              #
757         &movdqa         ($T2,$Xhi);
758         &pslld          ($Xi,1);
759         &pslld          ($Xhi,1);               #
760         &psrld          ($T1,31);
761         &psrld          ($T2,31);               #
762         &movdqa         ($T3,$T1);
763         &pslldq         ($T1,4);
764         &psrldq         ($T3,12);               #
765         &pslldq         ($T2,4);
766         &por            ($Xhi,$T3);             #
767         &por            ($Xi,$T1);
768         &por            ($Xhi,$T2);             #
769
770         # 1st phase
771         &movdqa         ($T1,$Xi);
772         &movdqa         ($T2,$Xi);
773         &movdqa         ($T3,$Xi);              #
774         &pslld          ($T1,31);
775         &pslld          ($T2,30);
776         &pslld          ($Xi,25);               #
777         &pxor           ($T1,$T2);
778         &pxor           ($T1,$Xi);              #
779         &movdqa         ($T2,$T1);              #
780         &pslldq         ($T1,12);
781         &psrldq         ($T2,4);                #
782         &pxor           ($T3,$T1);
783
784         # 2nd phase
785         &pxor           ($Xhi,$T3);             #
786         &movdqa         ($Xi,$T3);
787         &movdqa         ($T1,$T3);
788         &psrld          ($Xi,1);                #
789         &psrld          ($T1,2);
790         &psrld          ($T3,7);                #
791         &pxor           ($Xi,$T1);
792         &pxor           ($Xhi,$T2);
793         &pxor           ($Xi,$T3);              #
794         &pxor           ($Xi,$Xhi);             #
795 }
796
797 &function_begin_B("gcm_init_clmul");
798         &mov            ($Htbl,&wparam(0));
799         &mov            ($Xip,&wparam(1));
800
801         &call           (&label("pic"));
802 &set_label("pic");
803         &blindpop       ($const);
804         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
805
806         &movdqu         ($Hkey,&QWP(0,$Xip));
807         &pshufd         ($Hkey,$Hkey,0b01001110);# dword swap
808
809         # calculate H^2
810         &movdqa         ($Xi,$Hkey);
811         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);
812         &reduction_alg5 ($Xhi,$Xi);
813
814         &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
815         &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
816
817         &ret            ();
818 &function_end_B("gcm_init_clmul");
819
820 &function_begin_B("gcm_gmult_clmul");
821         &mov            ($Xip,&wparam(0));
822         &mov            ($Htbl,&wparam(1));
823
824         &call           (&label("pic"));
825 &set_label("pic");
826         &blindpop       ($const);
827         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
828
829         &movdqu         ($Xi,&QWP(0,$Xip));
830         &movdqa         ($Xn,&QWP(0,$const));
831         &movdqu         ($Hkey,&QWP(0,$Htbl));
832         &pshufb         ($Xi,$Xn);
833
834         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);
835         &reduction_alg5 ($Xhi,$Xi);
836
837         &pshufb         ($Xi,$Xn);
838         &movdqu         (&QWP(0,$Xip),$Xi);
839
840         &ret    ();
841 &function_end_B("gcm_gmult_clmul");
842
843 &function_begin("gcm_ghash_clmul");
844         &mov            ($Xip,&wparam(0));
845         &mov            ($Htbl,&wparam(1));
846         &mov            ($inp,&wparam(2));
847         &mov            ($len,&wparam(3));
848
849         &call           (&label("pic"));
850 &set_label("pic");
851         &blindpop       ($const);
852         &lea            ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
853
854         &movdqu         ($Xi,&QWP(0,$Xip));
855         &movdqa         ($T3,&QWP(0,$const));
856         &movdqu         ($Hkey,&QWP(0,$Htbl));
857         &pshufb         ($Xi,$T3);
858
859         &sub            ($len,0x10);
860         &jz             (&label("odd_tail"));
861
862         #######
863         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
864         #       [(H*Ii+1) + (H*Xi+1)] mod P =
865         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
866         #
867         &movdqu         ($T1,&QWP(0,$inp));     # Ii
868         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
869         &pshufb         ($T1,$T3);
870         &pshufb         ($Xn,$T3);
871         &pxor           ($Xi,$T1);              # Ii+Xi
872
873         &clmul64x64_T3  ($Xhn,$Xn,$Hkey);       # H*Ii+1
874         &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
875
876         &sub            ($len,0x20);
877         &lea            ($inp,&DWP(32,$inp));   # i+=2
878         &jbe            (&label("even_tail"));
879
880 &set_label("mod_loop");
881         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
882         &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
883
884         &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
885         &pxor           ($Xhi,$Xhn);
886
887         &reduction_alg5 ($Xhi,$Xi);
888
889         #######
890         &movdqa         ($T3,&QWP(0,$const));
891         &movdqu         ($T1,&QWP(0,$inp));     # Ii
892         &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
893         &pshufb         ($T1,$T3);
894         &pshufb         ($Xn,$T3);
895         &pxor           ($Xi,$T1);              # Ii+Xi
896
897         &clmul64x64_T3  ($Xhn,$Xn,$Hkey);       # H*Ii+1
898         &movdqu         ($Hkey,&QWP(16,$Htbl)); # load H^2
899
900         &sub            ($len,0x20);
901         &lea            ($inp,&DWP(32,$inp));
902         &ja             (&label("mod_loop"));
903
904 &set_label("even_tail");
905         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
906
907         &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
908         &pxor           ($Xhi,$Xhn);
909
910         &reduction_alg5 ($Xhi,$Xi);
911
912         &movdqa         ($T3,&QWP(0,$const));
913         &test           ($len,$len);
914         &jnz            (&label("done"));
915
916         &movdqu         ($Hkey,&QWP(0,$Htbl));  # load H
917 &set_label("odd_tail");
918         &movdqu         ($T1,&QWP(0,$inp));     # Ii
919         &pshufb         ($T1,$T3);
920         &pxor           ($Xi,$T1);              # Ii+Xi
921
922         &clmul64x64_T3  ($Xhi,$Xi,$Hkey);       # H*(Ii+Xi)
923         &reduction_alg5 ($Xhi,$Xi);
924
925         &movdqa         ($T3,&QWP(0,$const));
926 &set_label("done");
927         &pshufb         ($Xi,$T3);
928         &movdqu         (&QWP(0,$Xip),$Xi);
929 &function_end("gcm_ghash_clmul");
930
931 }
932 \f
933 &set_label("bswap",64);
934         &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
935         &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
936 }}      # $sse2
937
938 &set_label("rem_4bit",64);
939         &data_word(0,0x0000<<12,0,0x1C20<<12,0,0x3840<<12,0,0x2460<<12);
940         &data_word(0,0x7080<<12,0,0x6CA0<<12,0,0x48C0<<12,0,0x54E0<<12);
941         &data_word(0,0xE100<<12,0,0xFD20<<12,0,0xD940<<12,0,0xC560<<12);
942         &data_word(0,0x9180<<12,0,0x8DA0<<12,0,0xA9C0<<12,0,0xB5E0<<12);
943 }}}     # !$x86only
944
945 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
946 &asm_finish();
947
948 # A question was risen about choice of vanilla MMX. Or rather why wasn't
949 # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
950 # CPUs such as PIII, "4-bit" MMX version was observed to provide better
951 # performance than *corresponding* SSE2 one even on contemporary CPUs.
952 # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
953 # implementation featuring full range of lookup-table sizes, but with
954 # per-invocation lookup table setup. Latter means that table size is
955 # chosen depending on how much data is to be hashed in every given call,
956 # more data - larger table. Best reported result for Core2 is ~4 cycles
957 # per processed byte out of 64KB block. Recall that this number accounts
958 # even for 64KB table setup overhead. As discussed in gcm128.c we choose
959 # to be more conservative in respect to lookup table sizes, but how
960 # do the results compare? As per table in the beginning, minimalistic
961 # MMX version delivers ~11 cycles on same platform. As also discussed in
962 # gcm128.c, next in line "8-bit Shoup's" method should deliver twice the
963 # performance of "4-bit" one. It should be also be noted that in SSE2
964 # case improvement can be "super-linear," i.e. more than twice, mostly
965 # because >>8 maps to single instruction on SSE2 register. This is
966 # unlike "4-bit" case when >>4 maps to same amount of instructions in
967 # both MMX and SSE2 cases. Bottom line is that switch to SSE2 is
968 # considered to be justifiable only in case we choose to implement
969 # "8-bit" method...