1 /* crypto/ec/ecp_nistp256.c */
3 * Written by Adam Langley (Google) for the OpenSSL project
5 /* Copyright 2011 Google Inc.
7 * Licensed under the Apache License, Version 2.0 (the "License");
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
12 * http://www.apache.org/licenses/LICENSE-2.0
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS,
16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
22 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
24 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26 * work which got its smarts from Daniel J. Bernstein's work on the same.
29 #include <openssl/opensslconf.h>
30 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
34 # include <openssl/err.h>
37 # if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
38 /* even with gcc, the typedef won't work for 32-bit platforms */
39 typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
41 typedef __int128_t int128_t;
43 # error "Need GCC 3.1 or later to define type uint128_t"
52 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
53 * can serialise an element of this field into 32 bytes. We call this an
57 typedef u8 felem_bytearray[32];
60 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
61 * values are big-endian.
63 static const felem_bytearray nistp256_curve_params[5] = {
64 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
65 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
66 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
67 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
68 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
69 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
70 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
71 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
72 {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
73 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
74 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
75 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
76 {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
77 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
78 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
79 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
80 {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
81 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
82 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
83 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
87 * The representation of field elements.
88 * ------------------------------------
90 * We represent field elements with either four 128-bit values, eight 128-bit
91 * values, or four 64-bit values. The field element represented is:
92 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
94 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
96 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
97 * apart, but are 128-bits wide, the most significant bits of each limb overlap
98 * with the least significant bits of the next.
100 * A field element with four limbs is an 'felem'. One with eight limbs is a
103 * A field element with four, 64-bit values is called a 'smallfelem'. Small
104 * values are used as intermediate values before multiplication.
109 typedef uint128_t limb;
110 typedef limb felem[NLIMBS];
111 typedef limb longfelem[NLIMBS * 2];
112 typedef u64 smallfelem[NLIMBS];
114 /* This is the value of the prime as four 64-bit words, little-endian. */
115 static const u64 kPrime[4] =
116 { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
117 static const u64 bottom63bits = 0x7ffffffffffffffful;
120 * bin32_to_felem takes a little-endian byte array and converts it into felem
121 * form. This assumes that the CPU is little-endian.
123 static void bin32_to_felem(felem out, const u8 in[32])
125 out[0] = *((u64 *)&in[0]);
126 out[1] = *((u64 *)&in[8]);
127 out[2] = *((u64 *)&in[16]);
128 out[3] = *((u64 *)&in[24]);
132 * smallfelem_to_bin32 takes a smallfelem and serialises into a little
133 * endian, 32 byte array. This assumes that the CPU is little-endian.
135 static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
137 *((u64 *)&out[0]) = in[0];
138 *((u64 *)&out[8]) = in[1];
139 *((u64 *)&out[16]) = in[2];
140 *((u64 *)&out[24]) = in[3];
143 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
144 static void flip_endian(u8 *out, const u8 *in, unsigned len)
147 for (i = 0; i < len; ++i)
148 out[i] = in[len - 1 - i];
151 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
152 static int BN_to_felem(felem out, const BIGNUM *bn)
154 felem_bytearray b_in;
155 felem_bytearray b_out;
158 /* BN_bn2bin eats leading zeroes */
159 memset(b_out, 0, sizeof(b_out));
160 num_bytes = BN_num_bytes(bn);
161 if (num_bytes > sizeof b_out) {
162 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
165 if (BN_is_negative(bn)) {
166 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
169 num_bytes = BN_bn2bin(bn, b_in);
170 flip_endian(b_out, b_in, num_bytes);
171 bin32_to_felem(out, b_out);
175 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
176 static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
178 felem_bytearray b_in, b_out;
179 smallfelem_to_bin32(b_in, in);
180 flip_endian(b_out, b_in, sizeof b_out);
181 return BN_bin2bn(b_out, sizeof b_out, out);
189 static void smallfelem_one(smallfelem out)
197 static void smallfelem_assign(smallfelem out, const smallfelem in)
205 static void felem_assign(felem out, const felem in)
213 /* felem_sum sets out = out + in. */
214 static void felem_sum(felem out, const felem in)
222 /* felem_small_sum sets out = out + in. */
223 static void felem_small_sum(felem out, const smallfelem in)
231 /* felem_scalar sets out = out * scalar */
232 static void felem_scalar(felem out, const u64 scalar)
240 /* longfelem_scalar sets out = out * scalar */
241 static void longfelem_scalar(longfelem out, const u64 scalar)
253 # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
254 # define two105 (((limb)1) << 105)
255 # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
257 /* zero105 is 0 mod p */
258 static const felem zero105 =
259 { two105m41m9, two105, two105m41p9, two105m41p9 };
262 * smallfelem_neg sets |out| to |-small|
264 * out[i] < out[i] + 2^105
266 static void smallfelem_neg(felem out, const smallfelem small)
268 /* In order to prevent underflow, we subtract from 0 mod p. */
269 out[0] = zero105[0] - small[0];
270 out[1] = zero105[1] - small[1];
271 out[2] = zero105[2] - small[2];
272 out[3] = zero105[3] - small[3];
276 * felem_diff subtracts |in| from |out|
280 * out[i] < out[i] + 2^105
282 static void felem_diff(felem out, const felem in)
285 * In order to prevent underflow, we add 0 mod p before subtracting.
287 out[0] += zero105[0];
288 out[1] += zero105[1];
289 out[2] += zero105[2];
290 out[3] += zero105[3];
298 # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
299 # define two107 (((limb)1) << 107)
300 # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
302 /* zero107 is 0 mod p */
303 static const felem zero107 =
304 { two107m43m11, two107, two107m43p11, two107m43p11 };
307 * An alternative felem_diff for larger inputs |in|
308 * felem_diff_zero107 subtracts |in| from |out|
312 * out[i] < out[i] + 2^107
314 static void felem_diff_zero107(felem out, const felem in)
317 * In order to prevent underflow, we add 0 mod p before subtracting.
319 out[0] += zero107[0];
320 out[1] += zero107[1];
321 out[2] += zero107[2];
322 out[3] += zero107[3];
331 * longfelem_diff subtracts |in| from |out|
335 * out[i] < out[i] + 2^70 + 2^40
337 static void longfelem_diff(longfelem out, const longfelem in)
339 static const limb two70m8p6 =
340 (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
341 static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
342 static const limb two70 = (((limb) 1) << 70);
343 static const limb two70m40m38p6 =
344 (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
346 static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
348 /* add 0 mod p to avoid underflow */
352 out[3] += two70m40m38p6;
358 /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
369 # define two64m0 (((limb)1) << 64) - 1
370 # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
371 # define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
372 # define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
374 /* zero110 is 0 mod p */
375 static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
378 * felem_shrink converts an felem into a smallfelem. The result isn't quite
379 * minimal as the value may be greater than p.
386 static void felem_shrink(smallfelem out, const felem in)
391 static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
394 tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
397 tmp[2] = zero110[2] + (u64)in[2];
398 tmp[0] = zero110[0] + in[0];
399 tmp[1] = zero110[1] + in[1];
400 /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
403 * We perform two partial reductions where we eliminate the high-word of
404 * tmp[3]. We don't update the other words till the end.
406 a = tmp[3] >> 64; /* a < 2^46 */
407 tmp[3] = (u64)tmp[3];
409 tmp[3] += ((limb) a) << 32;
413 a = tmp[3] >> 64; /* a < 2^15 */
414 b += a; /* b < 2^46 + 2^15 < 2^47 */
415 tmp[3] = (u64)tmp[3];
417 tmp[3] += ((limb) a) << 32;
418 /* tmp[3] < 2^64 + 2^47 */
421 * This adjusts the other two words to complete the two partial
425 tmp[1] -= (((limb) b) << 32);
428 * In order to make space in tmp[3] for the carry from 2 -> 3, we
429 * conditionally subtract kPrime if tmp[3] is large enough.
432 /* As tmp[3] < 2^65, high is either 1 or 0 */
437 * all ones if the high word of tmp[3] is 1
438 * all zeros if the high word of tmp[3] if 0 */
443 * all ones if the MSB of low is 1
444 * all zeros if the MSB of low if 0 */
447 /* if low was greater than kPrime3Test then the MSB is zero */
452 * all ones if low was > kPrime3Test
453 * all zeros if low was <= kPrime3Test */
454 mask = (mask & low) | high;
455 tmp[0] -= mask & kPrime[0];
456 tmp[1] -= mask & kPrime[1];
457 /* kPrime[2] is zero, so omitted */
458 tmp[3] -= mask & kPrime[3];
459 /* tmp[3] < 2**64 - 2**32 + 1 */
461 tmp[1] += ((u64)(tmp[0] >> 64));
462 tmp[0] = (u64)tmp[0];
463 tmp[2] += ((u64)(tmp[1] >> 64));
464 tmp[1] = (u64)tmp[1];
465 tmp[3] += ((u64)(tmp[2] >> 64));
466 tmp[2] = (u64)tmp[2];
475 /* smallfelem_expand converts a smallfelem to an felem */
476 static void smallfelem_expand(felem out, const smallfelem in)
485 * smallfelem_square sets |out| = |small|^2
489 * out[i] < 7 * 2^64 < 2^67
491 static void smallfelem_square(longfelem out, const smallfelem small)
496 a = ((uint128_t) small[0]) * small[0];
502 a = ((uint128_t) small[0]) * small[1];
509 a = ((uint128_t) small[0]) * small[2];
516 a = ((uint128_t) small[0]) * small[3];
522 a = ((uint128_t) small[1]) * small[2];
529 a = ((uint128_t) small[1]) * small[1];
535 a = ((uint128_t) small[1]) * small[3];
542 a = ((uint128_t) small[2]) * small[3];
550 a = ((uint128_t) small[2]) * small[2];
556 a = ((uint128_t) small[3]) * small[3];
564 * felem_square sets |out| = |in|^2
568 * out[i] < 7 * 2^64 < 2^67
570 static void felem_square(longfelem out, const felem in)
573 felem_shrink(small, in);
574 smallfelem_square(out, small);
578 * smallfelem_mul sets |out| = |small1| * |small2|
583 * out[i] < 7 * 2^64 < 2^67
585 static void smallfelem_mul(longfelem out, const smallfelem small1,
586 const smallfelem small2)
591 a = ((uint128_t) small1[0]) * small2[0];
597 a = ((uint128_t) small1[0]) * small2[1];
603 a = ((uint128_t) small1[1]) * small2[0];
609 a = ((uint128_t) small1[0]) * small2[2];
615 a = ((uint128_t) small1[1]) * small2[1];
621 a = ((uint128_t) small1[2]) * small2[0];
627 a = ((uint128_t) small1[0]) * small2[3];
633 a = ((uint128_t) small1[1]) * small2[2];
639 a = ((uint128_t) small1[2]) * small2[1];
645 a = ((uint128_t) small1[3]) * small2[0];
651 a = ((uint128_t) small1[1]) * small2[3];
657 a = ((uint128_t) small1[2]) * small2[2];
663 a = ((uint128_t) small1[3]) * small2[1];
669 a = ((uint128_t) small1[2]) * small2[3];
675 a = ((uint128_t) small1[3]) * small2[2];
681 a = ((uint128_t) small1[3]) * small2[3];
689 * felem_mul sets |out| = |in1| * |in2|
694 * out[i] < 7 * 2^64 < 2^67
696 static void felem_mul(longfelem out, const felem in1, const felem in2)
698 smallfelem small1, small2;
699 felem_shrink(small1, in1);
700 felem_shrink(small2, in2);
701 smallfelem_mul(out, small1, small2);
705 * felem_small_mul sets |out| = |small1| * |in2|
710 * out[i] < 7 * 2^64 < 2^67
712 static void felem_small_mul(longfelem out, const smallfelem small1,
716 felem_shrink(small2, in2);
717 smallfelem_mul(out, small1, small2);
720 # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
721 # define two100 (((limb)1) << 100)
722 # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
723 /* zero100 is 0 mod p */
724 static const felem zero100 =
725 { two100m36m4, two100, two100m36p4, two100m36p4 };
728 * Internal function for the different flavours of felem_reduce.
729 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
731 * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
732 * out[1] >= in[7] + 2^32*in[4]
733 * out[2] >= in[5] + 2^32*in[5]
734 * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
736 * out[0] <= out[0] + in[4] + 2^32*in[5]
737 * out[1] <= out[1] + in[5] + 2^33*in[6]
738 * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
739 * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
741 static void felem_reduce_(felem out, const longfelem in)
744 /* combine common terms from below */
745 c = in[4] + (in[5] << 32);
753 /* the remaining terms */
754 /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
755 out[1] -= (in[4] << 32);
756 out[3] += (in[4] << 32);
758 /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
759 out[2] -= (in[5] << 32);
761 /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
763 out[0] -= (in[6] << 32);
764 out[1] += (in[6] << 33);
765 out[2] += (in[6] * 2);
766 out[3] -= (in[6] << 32);
768 /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
770 out[0] -= (in[7] << 32);
771 out[2] += (in[7] << 33);
772 out[3] += (in[7] * 3);
776 * felem_reduce converts a longfelem into an felem.
777 * To be called directly after felem_square or felem_mul.
779 * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
780 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
784 static void felem_reduce(felem out, const longfelem in)
786 out[0] = zero100[0] + in[0];
787 out[1] = zero100[1] + in[1];
788 out[2] = zero100[2] + in[2];
789 out[3] = zero100[3] + in[3];
791 felem_reduce_(out, in);
794 * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
795 * out[1] > 2^100 - 2^64 - 7*2^96 > 0
796 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
797 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
799 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
800 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
801 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
802 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
807 * felem_reduce_zero105 converts a larger longfelem into an felem.
813 static void felem_reduce_zero105(felem out, const longfelem in)
815 out[0] = zero105[0] + in[0];
816 out[1] = zero105[1] + in[1];
817 out[2] = zero105[2] + in[2];
818 out[3] = zero105[3] + in[3];
820 felem_reduce_(out, in);
823 * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
824 * out[1] > 2^105 - 2^71 - 2^103 > 0
825 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
826 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
828 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
829 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
830 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
831 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
836 * subtract_u64 sets *result = *result - v and *carry to one if the
837 * subtraction underflowed.
839 static void subtract_u64(u64 *result, u64 *carry, u64 v)
841 uint128_t r = *result;
843 *carry = (r >> 64) & 1;
848 * felem_contract converts |in| to its unique, minimal representation. On
849 * entry: in[i] < 2^109
851 static void felem_contract(smallfelem out, const felem in)
854 u64 all_equal_so_far = 0, result = 0, carry;
856 felem_shrink(out, in);
857 /* small is minimal except that the value might be > p */
861 * We are doing a constant time test if out >= kPrime. We need to compare
862 * each u64, from most-significant to least significant. For each one, if
863 * all words so far have been equal (m is all ones) then a non-equal
864 * result is the answer. Otherwise we continue.
866 for (i = 3; i < 4; i--) {
868 uint128_t a = ((uint128_t) kPrime[i]) - out[i];
870 * if out[i] > kPrime[i] then a will underflow and the high 64-bits
873 result |= all_equal_so_far & ((u64)(a >> 64));
876 * if kPrime[i] == out[i] then |equal| will be all zeros and the
877 * decrement will make it all ones.
879 equal = kPrime[i] ^ out[i];
881 equal &= equal << 32;
882 equal &= equal << 16;
887 equal = ((s64) equal) >> 63;
889 all_equal_so_far &= equal;
893 * if all_equal_so_far is still all ones then the two values are equal
894 * and so out >= kPrime is true.
896 result |= all_equal_so_far;
898 /* if out >= kPrime then we subtract kPrime. */
899 subtract_u64(&out[0], &carry, result & kPrime[0]);
900 subtract_u64(&out[1], &carry, carry);
901 subtract_u64(&out[2], &carry, carry);
902 subtract_u64(&out[3], &carry, carry);
904 subtract_u64(&out[1], &carry, result & kPrime[1]);
905 subtract_u64(&out[2], &carry, carry);
906 subtract_u64(&out[3], &carry, carry);
908 subtract_u64(&out[2], &carry, result & kPrime[2]);
909 subtract_u64(&out[3], &carry, carry);
911 subtract_u64(&out[3], &carry, result & kPrime[3]);
914 static void smallfelem_square_contract(smallfelem out, const smallfelem in)
919 smallfelem_square(longtmp, in);
920 felem_reduce(tmp, longtmp);
921 felem_contract(out, tmp);
924 static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
925 const smallfelem in2)
930 smallfelem_mul(longtmp, in1, in2);
931 felem_reduce(tmp, longtmp);
932 felem_contract(out, tmp);
936 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
941 static limb smallfelem_is_zero(const smallfelem small)
946 u64 is_zero = small[0] | small[1] | small[2] | small[3];
948 is_zero &= is_zero << 32;
949 is_zero &= is_zero << 16;
950 is_zero &= is_zero << 8;
951 is_zero &= is_zero << 4;
952 is_zero &= is_zero << 2;
953 is_zero &= is_zero << 1;
954 is_zero = ((s64) is_zero) >> 63;
956 is_p = (small[0] ^ kPrime[0]) |
957 (small[1] ^ kPrime[1]) |
958 (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
966 is_p = ((s64) is_p) >> 63;
971 result |= ((limb) is_zero) << 64;
975 static int smallfelem_is_zero_int(const smallfelem small)
977 return (int)(smallfelem_is_zero(small) & ((limb) 1));
981 * felem_inv calculates |out| = |in|^{-1}
983 * Based on Fermat's Little Theorem:
985 * a^{p-1} = 1 (mod p)
986 * a^{p-2} = a^{-1} (mod p)
988 static void felem_inv(felem out, const felem in)
991 /* each e_I will hold |in|^{2^I - 1} */
992 felem e2, e4, e8, e16, e32, e64;
996 felem_square(tmp, in);
997 felem_reduce(ftmp, tmp); /* 2^1 */
998 felem_mul(tmp, in, ftmp);
999 felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
1000 felem_assign(e2, ftmp);
1001 felem_square(tmp, ftmp);
1002 felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
1003 felem_square(tmp, ftmp);
1004 felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
1005 felem_mul(tmp, ftmp, e2);
1006 felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
1007 felem_assign(e4, ftmp);
1008 felem_square(tmp, ftmp);
1009 felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
1010 felem_square(tmp, ftmp);
1011 felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
1012 felem_square(tmp, ftmp);
1013 felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
1014 felem_square(tmp, ftmp);
1015 felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
1016 felem_mul(tmp, ftmp, e4);
1017 felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
1018 felem_assign(e8, ftmp);
1019 for (i = 0; i < 8; i++) {
1020 felem_square(tmp, ftmp);
1021 felem_reduce(ftmp, tmp);
1023 felem_mul(tmp, ftmp, e8);
1024 felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
1025 felem_assign(e16, ftmp);
1026 for (i = 0; i < 16; i++) {
1027 felem_square(tmp, ftmp);
1028 felem_reduce(ftmp, tmp);
1030 felem_mul(tmp, ftmp, e16);
1031 felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
1032 felem_assign(e32, ftmp);
1033 for (i = 0; i < 32; i++) {
1034 felem_square(tmp, ftmp);
1035 felem_reduce(ftmp, tmp);
1037 felem_assign(e64, ftmp);
1038 felem_mul(tmp, ftmp, in);
1039 felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
1040 for (i = 0; i < 192; i++) {
1041 felem_square(tmp, ftmp);
1042 felem_reduce(ftmp, tmp);
1043 } /* 2^256 - 2^224 + 2^192 */
1045 felem_mul(tmp, e64, e32);
1046 felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
1047 for (i = 0; i < 16; i++) {
1048 felem_square(tmp, ftmp2);
1049 felem_reduce(ftmp2, tmp);
1051 felem_mul(tmp, ftmp2, e16);
1052 felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
1053 for (i = 0; i < 8; i++) {
1054 felem_square(tmp, ftmp2);
1055 felem_reduce(ftmp2, tmp);
1057 felem_mul(tmp, ftmp2, e8);
1058 felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
1059 for (i = 0; i < 4; i++) {
1060 felem_square(tmp, ftmp2);
1061 felem_reduce(ftmp2, tmp);
1063 felem_mul(tmp, ftmp2, e4);
1064 felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
1065 felem_square(tmp, ftmp2);
1066 felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
1067 felem_square(tmp, ftmp2);
1068 felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
1069 felem_mul(tmp, ftmp2, e2);
1070 felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
1071 felem_square(tmp, ftmp2);
1072 felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
1073 felem_square(tmp, ftmp2);
1074 felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
1075 felem_mul(tmp, ftmp2, in);
1076 felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
1078 felem_mul(tmp, ftmp2, ftmp);
1079 felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1082 static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1086 smallfelem_expand(tmp, in);
1087 felem_inv(tmp, tmp);
1088 felem_contract(out, tmp);
1095 * Building on top of the field operations we have the operations on the
1096 * elliptic curve group itself. Points on the curve are represented in Jacobian
1101 * point_double calculates 2*(x_in, y_in, z_in)
1103 * The method is taken from:
1104 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1106 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1107 * while x_out == y_in is not (maybe this works, but it's not tested).
1110 point_double(felem x_out, felem y_out, felem z_out,
1111 const felem x_in, const felem y_in, const felem z_in)
1113 longfelem tmp, tmp2;
1114 felem delta, gamma, beta, alpha, ftmp, ftmp2;
1115 smallfelem small1, small2;
1117 felem_assign(ftmp, x_in);
1118 /* ftmp[i] < 2^106 */
1119 felem_assign(ftmp2, x_in);
1120 /* ftmp2[i] < 2^106 */
1123 felem_square(tmp, z_in);
1124 felem_reduce(delta, tmp);
1125 /* delta[i] < 2^101 */
1128 felem_square(tmp, y_in);
1129 felem_reduce(gamma, tmp);
1130 /* gamma[i] < 2^101 */
1131 felem_shrink(small1, gamma);
1133 /* beta = x*gamma */
1134 felem_small_mul(tmp, small1, x_in);
1135 felem_reduce(beta, tmp);
1136 /* beta[i] < 2^101 */
1138 /* alpha = 3*(x-delta)*(x+delta) */
1139 felem_diff(ftmp, delta);
1140 /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1141 felem_sum(ftmp2, delta);
1142 /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1143 felem_scalar(ftmp2, 3);
1144 /* ftmp2[i] < 3 * 2^107 < 2^109 */
1145 felem_mul(tmp, ftmp, ftmp2);
1146 felem_reduce(alpha, tmp);
1147 /* alpha[i] < 2^101 */
1148 felem_shrink(small2, alpha);
1150 /* x' = alpha^2 - 8*beta */
1151 smallfelem_square(tmp, small2);
1152 felem_reduce(x_out, tmp);
1153 felem_assign(ftmp, beta);
1154 felem_scalar(ftmp, 8);
1155 /* ftmp[i] < 8 * 2^101 = 2^104 */
1156 felem_diff(x_out, ftmp);
1157 /* x_out[i] < 2^105 + 2^101 < 2^106 */
1159 /* z' = (y + z)^2 - gamma - delta */
1160 felem_sum(delta, gamma);
1161 /* delta[i] < 2^101 + 2^101 = 2^102 */
1162 felem_assign(ftmp, y_in);
1163 felem_sum(ftmp, z_in);
1164 /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1165 felem_square(tmp, ftmp);
1166 felem_reduce(z_out, tmp);
1167 felem_diff(z_out, delta);
1168 /* z_out[i] < 2^105 + 2^101 < 2^106 */
1170 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1171 felem_scalar(beta, 4);
1172 /* beta[i] < 4 * 2^101 = 2^103 */
1173 felem_diff_zero107(beta, x_out);
1174 /* beta[i] < 2^107 + 2^103 < 2^108 */
1175 felem_small_mul(tmp, small2, beta);
1176 /* tmp[i] < 7 * 2^64 < 2^67 */
1177 smallfelem_square(tmp2, small1);
1178 /* tmp2[i] < 7 * 2^64 */
1179 longfelem_scalar(tmp2, 8);
1180 /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1181 longfelem_diff(tmp, tmp2);
1182 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1183 felem_reduce_zero105(y_out, tmp);
1184 /* y_out[i] < 2^106 */
1188 * point_double_small is the same as point_double, except that it operates on
1192 point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1193 const smallfelem x_in, const smallfelem y_in,
1194 const smallfelem z_in)
1196 felem felem_x_out, felem_y_out, felem_z_out;
1197 felem felem_x_in, felem_y_in, felem_z_in;
1199 smallfelem_expand(felem_x_in, x_in);
1200 smallfelem_expand(felem_y_in, y_in);
1201 smallfelem_expand(felem_z_in, z_in);
1202 point_double(felem_x_out, felem_y_out, felem_z_out,
1203 felem_x_in, felem_y_in, felem_z_in);
1204 felem_shrink(x_out, felem_x_out);
1205 felem_shrink(y_out, felem_y_out);
1206 felem_shrink(z_out, felem_z_out);
1209 /* copy_conditional copies in to out iff mask is all ones. */
1210 static void copy_conditional(felem out, const felem in, limb mask)
1213 for (i = 0; i < NLIMBS; ++i) {
1214 const limb tmp = mask & (in[i] ^ out[i]);
1219 /* copy_small_conditional copies in to out iff mask is all ones. */
1220 static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1223 const u64 mask64 = mask;
1224 for (i = 0; i < NLIMBS; ++i) {
1225 out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1230 * point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1232 * The method is taken from:
1233 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1234 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1236 * This function includes a branch for checking whether the two input points
1237 * are equal, (while not equal to the point at infinity). This case never
1238 * happens during single point multiplication, so there is no timing leak for
1239 * ECDH or ECDSA signing.
1241 static void point_add(felem x3, felem y3, felem z3,
1242 const felem x1, const felem y1, const felem z1,
1243 const int mixed, const smallfelem x2,
1244 const smallfelem y2, const smallfelem z2)
1246 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1247 longfelem tmp, tmp2;
1248 smallfelem small1, small2, small3, small4, small5;
1249 limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1251 felem_shrink(small3, z1);
1253 z1_is_zero = smallfelem_is_zero(small3);
1254 z2_is_zero = smallfelem_is_zero(z2);
1256 /* ftmp = z1z1 = z1**2 */
1257 smallfelem_square(tmp, small3);
1258 felem_reduce(ftmp, tmp);
1259 /* ftmp[i] < 2^101 */
1260 felem_shrink(small1, ftmp);
1263 /* ftmp2 = z2z2 = z2**2 */
1264 smallfelem_square(tmp, z2);
1265 felem_reduce(ftmp2, tmp);
1266 /* ftmp2[i] < 2^101 */
1267 felem_shrink(small2, ftmp2);
1269 felem_shrink(small5, x1);
1271 /* u1 = ftmp3 = x1*z2z2 */
1272 smallfelem_mul(tmp, small5, small2);
1273 felem_reduce(ftmp3, tmp);
1274 /* ftmp3[i] < 2^101 */
1276 /* ftmp5 = z1 + z2 */
1277 felem_assign(ftmp5, z1);
1278 felem_small_sum(ftmp5, z2);
1279 /* ftmp5[i] < 2^107 */
1281 /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1282 felem_square(tmp, ftmp5);
1283 felem_reduce(ftmp5, tmp);
1284 /* ftmp2 = z2z2 + z1z1 */
1285 felem_sum(ftmp2, ftmp);
1286 /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1287 felem_diff(ftmp5, ftmp2);
1288 /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1290 /* ftmp2 = z2 * z2z2 */
1291 smallfelem_mul(tmp, small2, z2);
1292 felem_reduce(ftmp2, tmp);
1294 /* s1 = ftmp2 = y1 * z2**3 */
1295 felem_mul(tmp, y1, ftmp2);
1296 felem_reduce(ftmp6, tmp);
1297 /* ftmp6[i] < 2^101 */
1300 * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1303 /* u1 = ftmp3 = x1*z2z2 */
1304 felem_assign(ftmp3, x1);
1305 /* ftmp3[i] < 2^106 */
1308 felem_assign(ftmp5, z1);
1309 felem_scalar(ftmp5, 2);
1310 /* ftmp5[i] < 2*2^106 = 2^107 */
1312 /* s1 = ftmp2 = y1 * z2**3 */
1313 felem_assign(ftmp6, y1);
1314 /* ftmp6[i] < 2^106 */
1318 smallfelem_mul(tmp, x2, small1);
1319 felem_reduce(ftmp4, tmp);
1321 /* h = ftmp4 = u2 - u1 */
1322 felem_diff_zero107(ftmp4, ftmp3);
1323 /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1324 felem_shrink(small4, ftmp4);
1326 x_equal = smallfelem_is_zero(small4);
1328 /* z_out = ftmp5 * h */
1329 felem_small_mul(tmp, small4, ftmp5);
1330 felem_reduce(z_out, tmp);
1331 /* z_out[i] < 2^101 */
1333 /* ftmp = z1 * z1z1 */
1334 smallfelem_mul(tmp, small1, small3);
1335 felem_reduce(ftmp, tmp);
1337 /* s2 = tmp = y2 * z1**3 */
1338 felem_small_mul(tmp, y2, ftmp);
1339 felem_reduce(ftmp5, tmp);
1341 /* r = ftmp5 = (s2 - s1)*2 */
1342 felem_diff_zero107(ftmp5, ftmp6);
1343 /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1344 felem_scalar(ftmp5, 2);
1345 /* ftmp5[i] < 2^109 */
1346 felem_shrink(small1, ftmp5);
1347 y_equal = smallfelem_is_zero(small1);
1349 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1350 point_double(x3, y3, z3, x1, y1, z1);
1354 /* I = ftmp = (2h)**2 */
1355 felem_assign(ftmp, ftmp4);
1356 felem_scalar(ftmp, 2);
1357 /* ftmp[i] < 2*2^108 = 2^109 */
1358 felem_square(tmp, ftmp);
1359 felem_reduce(ftmp, tmp);
1361 /* J = ftmp2 = h * I */
1362 felem_mul(tmp, ftmp4, ftmp);
1363 felem_reduce(ftmp2, tmp);
1365 /* V = ftmp4 = U1 * I */
1366 felem_mul(tmp, ftmp3, ftmp);
1367 felem_reduce(ftmp4, tmp);
1369 /* x_out = r**2 - J - 2V */
1370 smallfelem_square(tmp, small1);
1371 felem_reduce(x_out, tmp);
1372 felem_assign(ftmp3, ftmp4);
1373 felem_scalar(ftmp4, 2);
1374 felem_sum(ftmp4, ftmp2);
1375 /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1376 felem_diff(x_out, ftmp4);
1377 /* x_out[i] < 2^105 + 2^101 */
1379 /* y_out = r(V-x_out) - 2 * s1 * J */
1380 felem_diff_zero107(ftmp3, x_out);
1381 /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1382 felem_small_mul(tmp, small1, ftmp3);
1383 felem_mul(tmp2, ftmp6, ftmp2);
1384 longfelem_scalar(tmp2, 2);
1385 /* tmp2[i] < 2*2^67 = 2^68 */
1386 longfelem_diff(tmp, tmp2);
1387 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1388 felem_reduce_zero105(y_out, tmp);
1389 /* y_out[i] < 2^106 */
1391 copy_small_conditional(x_out, x2, z1_is_zero);
1392 copy_conditional(x_out, x1, z2_is_zero);
1393 copy_small_conditional(y_out, y2, z1_is_zero);
1394 copy_conditional(y_out, y1, z2_is_zero);
1395 copy_small_conditional(z_out, z2, z1_is_zero);
1396 copy_conditional(z_out, z1, z2_is_zero);
1397 felem_assign(x3, x_out);
1398 felem_assign(y3, y_out);
1399 felem_assign(z3, z_out);
1403 * point_add_small is the same as point_add, except that it operates on
1406 static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1407 smallfelem x1, smallfelem y1, smallfelem z1,
1408 smallfelem x2, smallfelem y2, smallfelem z2)
1410 felem felem_x3, felem_y3, felem_z3;
1411 felem felem_x1, felem_y1, felem_z1;
1412 smallfelem_expand(felem_x1, x1);
1413 smallfelem_expand(felem_y1, y1);
1414 smallfelem_expand(felem_z1, z1);
1415 point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1417 felem_shrink(x3, felem_x3);
1418 felem_shrink(y3, felem_y3);
1419 felem_shrink(z3, felem_z3);
1423 * Base point pre computation
1424 * --------------------------
1426 * Two different sorts of precomputed tables are used in the following code.
1427 * Each contain various points on the curve, where each point is three field
1428 * elements (x, y, z).
1430 * For the base point table, z is usually 1 (0 for the point at infinity).
1431 * This table has 2 * 16 elements, starting with the following:
1432 * index | bits | point
1433 * ------+---------+------------------------------
1436 * 2 | 0 0 1 0 | 2^64G
1437 * 3 | 0 0 1 1 | (2^64 + 1)G
1438 * 4 | 0 1 0 0 | 2^128G
1439 * 5 | 0 1 0 1 | (2^128 + 1)G
1440 * 6 | 0 1 1 0 | (2^128 + 2^64)G
1441 * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1442 * 8 | 1 0 0 0 | 2^192G
1443 * 9 | 1 0 0 1 | (2^192 + 1)G
1444 * 10 | 1 0 1 0 | (2^192 + 2^64)G
1445 * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1446 * 12 | 1 1 0 0 | (2^192 + 2^128)G
1447 * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1448 * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1449 * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1450 * followed by a copy of this with each element multiplied by 2^32.
1452 * The reason for this is so that we can clock bits into four different
1453 * locations when doing simple scalar multiplies against the base point,
1454 * and then another four locations using the second 16 elements.
1456 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1458 /* gmul is the table of precomputed base points */
1459 static const smallfelem gmul[2][16][3] = {
1463 {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1464 0x6b17d1f2e12c4247},
1465 {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1466 0x4fe342e2fe1a7f9b},
1468 {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1469 0x0fa822bc2811aaa5},
1470 {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1471 0xbff44ae8f5dba80d},
1473 {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1474 0x300a4bbc89d6726f},
1475 {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1476 0x72aac7e0d09b4644},
1478 {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1479 0x447d739beedb5e67},
1480 {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1481 0x2d4825ab834131ee},
1483 {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1484 0xef9519328a9c72ff},
1485 {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1486 0x611e9fc37dbb2c9b},
1488 {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1489 0x550663797b51f5d8},
1490 {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1491 0x157164848aecb851},
1493 {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1494 0xeb5d7745b21141ea},
1495 {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1496 0xeafd72ebdbecc17b},
1498 {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1499 0xa6d39677a7849276},
1500 {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1501 0x674f84749b0b8816},
1503 {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1504 0x4e769e7672c9ddad},
1505 {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1506 0x42b99082de830663},
1508 {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1509 0x78878ef61c6ce04d},
1510 {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1511 0xb6cb3f5d7b72c321},
1513 {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1514 0x0c88bc4d716b1287},
1515 {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1516 0xdd5ddea3f3901dc6},
1518 {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1519 0x68f344af6b317466},
1520 {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1521 0x31b9c405f8540a20},
1523 {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1524 0x4052bf4b6f461db9},
1525 {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1526 0xfecf4d5190b0fc61},
1528 {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1529 0x1eddbae2c802e41a},
1530 {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1531 0x43104d86560ebcfc},
1533 {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1534 0xb48e26b484f7a21c},
1535 {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1536 0xfac015404d4d3dab},
1541 {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1542 0x7fe36b40af22af89},
1543 {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1544 0xe697d45825b63624},
1546 {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1547 0x4a5b506612a677a6},
1548 {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1549 0xeb13461ceac089f1},
1551 {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1552 0x0781b8291c6a220a},
1553 {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1554 0x690cde8df0151593},
1556 {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1557 0x8a535f566ec73617},
1558 {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1559 0x0455c08468b08bd7},
1561 {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1562 0x06bada7ab77f8276},
1563 {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1564 0x5b476dfd0e6cb18a},
1566 {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1567 0x3e29864e8a2ec908},
1568 {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1569 0x239b90ea3dc31e7e},
1571 {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1572 0x820f4dd949f72ff7},
1573 {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1574 0x140406ec783a05ec},
1576 {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1577 0x68f6b8542783dfee},
1578 {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1579 0xcbe1feba92e40ce6},
1581 {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1582 0xd0b2f94d2f420109},
1583 {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1584 0x971459828b0719e5},
1586 {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1587 0x961610004a866aba},
1588 {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1589 0x7acb9fadcee75e44},
1591 {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1592 0x24eb9acca333bf5b},
1593 {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1594 0x69f891c5acd079cc},
1596 {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1597 0xe51f547c5972a107},
1598 {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1599 0x1c309a2b25bb1387},
1601 {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1602 0x20b87b8aa2c4e503},
1603 {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1604 0xf5c6fa49919776be},
1606 {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1607 0x1ed7d1b9332010b9},
1608 {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1609 0x3a2b03f03217257a},
1611 {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1612 0x15fee545c78dd9f6},
1613 {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1614 0x4ab5b6b2b8753f81},
1619 * select_point selects the |idx|th point from a precomputation table and
1622 static void select_point(const u64 idx, unsigned int size,
1623 const smallfelem pre_comp[16][3], smallfelem out[3])
1626 u64 *outlimbs = &out[0][0];
1628 memset(out, 0, sizeof(*out) * 3);
1630 for (i = 0; i < size; i++) {
1631 const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1638 for (j = 0; j < NLIMBS * 3; j++)
1639 outlimbs[j] |= inlimbs[j] & mask;
1643 /* get_bit returns the |i|th bit in |in| */
1644 static char get_bit(const felem_bytearray in, int i)
1646 if ((i < 0) || (i >= 256))
1648 return (in[i >> 3] >> (i & 7)) & 1;
1652 * Interleaved point multiplication using precomputed point multiples: The
1653 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1654 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1655 * generator, using certain (large) precomputed multiples in g_pre_comp.
1656 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1658 static void batch_mul(felem x_out, felem y_out, felem z_out,
1659 const felem_bytearray scalars[],
1660 const unsigned num_points, const u8 *g_scalar,
1661 const int mixed, const smallfelem pre_comp[][17][3],
1662 const smallfelem g_pre_comp[2][16][3])
1665 unsigned num, gen_mul = (g_scalar != NULL);
1671 /* set nq to the point at infinity */
1672 memset(nq, 0, sizeof(nq));
1675 * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1676 * of the generator (two in each of the last 32 rounds) and additions of
1677 * other points multiples (every 5th round).
1679 skip = 1; /* save two point operations in the first
1681 for (i = (num_points ? 255 : 31); i >= 0; --i) {
1684 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1686 /* add multiples of the generator */
1687 if (gen_mul && (i <= 31)) {
1688 /* first, look 32 bits upwards */
1689 bits = get_bit(g_scalar, i + 224) << 3;
1690 bits |= get_bit(g_scalar, i + 160) << 2;
1691 bits |= get_bit(g_scalar, i + 96) << 1;
1692 bits |= get_bit(g_scalar, i + 32);
1693 /* select the point to add, in constant time */
1694 select_point(bits, 16, g_pre_comp[1], tmp);
1697 /* Arg 1 below is for "mixed" */
1698 point_add(nq[0], nq[1], nq[2],
1699 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1701 smallfelem_expand(nq[0], tmp[0]);
1702 smallfelem_expand(nq[1], tmp[1]);
1703 smallfelem_expand(nq[2], tmp[2]);
1707 /* second, look at the current position */
1708 bits = get_bit(g_scalar, i + 192) << 3;
1709 bits |= get_bit(g_scalar, i + 128) << 2;
1710 bits |= get_bit(g_scalar, i + 64) << 1;
1711 bits |= get_bit(g_scalar, i);
1712 /* select the point to add, in constant time */
1713 select_point(bits, 16, g_pre_comp[0], tmp);
1714 /* Arg 1 below is for "mixed" */
1715 point_add(nq[0], nq[1], nq[2],
1716 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1719 /* do other additions every 5 doublings */
1720 if (num_points && (i % 5 == 0)) {
1721 /* loop over all scalars */
1722 for (num = 0; num < num_points; ++num) {
1723 bits = get_bit(scalars[num], i + 4) << 5;
1724 bits |= get_bit(scalars[num], i + 3) << 4;
1725 bits |= get_bit(scalars[num], i + 2) << 3;
1726 bits |= get_bit(scalars[num], i + 1) << 2;
1727 bits |= get_bit(scalars[num], i) << 1;
1728 bits |= get_bit(scalars[num], i - 1);
1729 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1732 * select the point to add or subtract, in constant time
1734 select_point(digit, 17, pre_comp[num], tmp);
1735 smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1737 copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1738 felem_contract(tmp[1], ftmp);
1741 point_add(nq[0], nq[1], nq[2],
1742 nq[0], nq[1], nq[2],
1743 mixed, tmp[0], tmp[1], tmp[2]);
1745 smallfelem_expand(nq[0], tmp[0]);
1746 smallfelem_expand(nq[1], tmp[1]);
1747 smallfelem_expand(nq[2], tmp[2]);
1753 felem_assign(x_out, nq[0]);
1754 felem_assign(y_out, nq[1]);
1755 felem_assign(z_out, nq[2]);
1758 /* Precomputation for the group generator. */
1759 struct nistp256_pre_comp_st {
1760 smallfelem g_pre_comp[2][16][3];
1764 const EC_METHOD *EC_GFp_nistp256_method(void)
1766 static const EC_METHOD ret = {
1767 EC_FLAGS_DEFAULT_OCT,
1768 NID_X9_62_prime_field,
1769 ec_GFp_nistp256_group_init,
1770 ec_GFp_simple_group_finish,
1771 ec_GFp_simple_group_clear_finish,
1772 ec_GFp_nist_group_copy,
1773 ec_GFp_nistp256_group_set_curve,
1774 ec_GFp_simple_group_get_curve,
1775 ec_GFp_simple_group_get_degree,
1776 ec_GFp_simple_group_check_discriminant,
1777 ec_GFp_simple_point_init,
1778 ec_GFp_simple_point_finish,
1779 ec_GFp_simple_point_clear_finish,
1780 ec_GFp_simple_point_copy,
1781 ec_GFp_simple_point_set_to_infinity,
1782 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1783 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1784 ec_GFp_simple_point_set_affine_coordinates,
1785 ec_GFp_nistp256_point_get_affine_coordinates,
1786 0 /* point_set_compressed_coordinates */ ,
1791 ec_GFp_simple_invert,
1792 ec_GFp_simple_is_at_infinity,
1793 ec_GFp_simple_is_on_curve,
1795 ec_GFp_simple_make_affine,
1796 ec_GFp_simple_points_make_affine,
1797 ec_GFp_nistp256_points_mul,
1798 ec_GFp_nistp256_precompute_mult,
1799 ec_GFp_nistp256_have_precompute_mult,
1800 ec_GFp_nist_field_mul,
1801 ec_GFp_nist_field_sqr,
1803 0 /* field_encode */ ,
1804 0 /* field_decode */ ,
1805 0 /* field_set_to_one */
1811 /******************************************************************************/
1813 * FUNCTIONS TO MANAGE PRECOMPUTATION
1816 static NISTP256_PRE_COMP *nistp256_pre_comp_new()
1818 NISTP256_PRE_COMP *ret = NULL;
1819 ret = OPENSSL_malloc(sizeof(*ret));
1821 ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1824 memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1825 ret->references = 1;
1829 NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1832 CRYPTO_add(&p->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1836 void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1839 || CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP) > 0)
1844 /******************************************************************************/
1846 * OPENSSL EC_METHOD FUNCTIONS
1849 int ec_GFp_nistp256_group_init(EC_GROUP *group)
1852 ret = ec_GFp_simple_group_init(group);
1853 group->a_is_minus3 = 1;
1857 int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1858 const BIGNUM *a, const BIGNUM *b,
1862 BN_CTX *new_ctx = NULL;
1863 BIGNUM *curve_p, *curve_a, *curve_b;
1866 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1869 if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1870 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1871 ((curve_b = BN_CTX_get(ctx)) == NULL))
1873 BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1874 BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1875 BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1876 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1877 ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
1878 EC_R_WRONG_CURVE_PARAMETERS);
1881 group->field_mod_func = BN_nist_mod_256;
1882 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1885 BN_CTX_free(new_ctx);
1890 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1893 int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1894 const EC_POINT *point,
1895 BIGNUM *x, BIGNUM *y,
1898 felem z1, z2, x_in, y_in;
1899 smallfelem x_out, y_out;
1902 if (EC_POINT_is_at_infinity(group, point)) {
1903 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1904 EC_R_POINT_AT_INFINITY);
1907 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1908 (!BN_to_felem(z1, point->Z)))
1911 felem_square(tmp, z2);
1912 felem_reduce(z1, tmp);
1913 felem_mul(tmp, x_in, z1);
1914 felem_reduce(x_in, tmp);
1915 felem_contract(x_out, x_in);
1917 if (!smallfelem_to_BN(x, x_out)) {
1918 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1923 felem_mul(tmp, z1, z2);
1924 felem_reduce(z1, tmp);
1925 felem_mul(tmp, y_in, z1);
1926 felem_reduce(y_in, tmp);
1927 felem_contract(y_out, y_in);
1929 if (!smallfelem_to_BN(y, y_out)) {
1930 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1938 /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1939 static void make_points_affine(size_t num, smallfelem points[][3],
1940 smallfelem tmp_smallfelems[])
1943 * Runs in constant time, unless an input is the point at infinity (which
1944 * normally shouldn't happen).
1946 ec_GFp_nistp_points_make_affine_internal(num,
1950 (void (*)(void *))smallfelem_one,
1951 (int (*)(const void *))
1952 smallfelem_is_zero_int,
1953 (void (*)(void *, const void *))
1955 (void (*)(void *, const void *))
1956 smallfelem_square_contract,
1958 (void *, const void *,
1960 smallfelem_mul_contract,
1961 (void (*)(void *, const void *))
1962 smallfelem_inv_contract,
1963 /* nothing to contract */
1964 (void (*)(void *, const void *))
1969 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1970 * values Result is stored in r (r can equal one of the inputs).
1972 int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
1973 const BIGNUM *scalar, size_t num,
1974 const EC_POINT *points[],
1975 const BIGNUM *scalars[], BN_CTX *ctx)
1980 BN_CTX *new_ctx = NULL;
1981 BIGNUM *x, *y, *z, *tmp_scalar;
1982 felem_bytearray g_secret;
1983 felem_bytearray *secrets = NULL;
1984 smallfelem (*pre_comp)[17][3] = NULL;
1985 smallfelem *tmp_smallfelems = NULL;
1986 felem_bytearray tmp;
1987 unsigned i, num_bytes;
1988 int have_pre_comp = 0;
1989 size_t num_points = num;
1990 smallfelem x_in, y_in, z_in;
1991 felem x_out, y_out, z_out;
1992 NISTP256_PRE_COMP *pre = NULL;
1993 const smallfelem(*g_pre_comp)[16][3] = NULL;
1994 EC_POINT *generator = NULL;
1995 const EC_POINT *p = NULL;
1996 const BIGNUM *p_scalar = NULL;
1999 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2002 if (((x = BN_CTX_get(ctx)) == NULL) ||
2003 ((y = BN_CTX_get(ctx)) == NULL) ||
2004 ((z = BN_CTX_get(ctx)) == NULL) ||
2005 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
2008 if (scalar != NULL) {
2009 pre = group->pre_comp.nistp256;
2011 /* we have precomputation, try to use it */
2012 g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2014 /* try to use the standard precomputation */
2015 g_pre_comp = &gmul[0];
2016 generator = EC_POINT_new(group);
2017 if (generator == NULL)
2019 /* get the generator from precomputation */
2020 if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
2021 !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
2022 !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2023 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2026 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
2030 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2031 /* precomputation matches generator */
2035 * we don't have valid precomputation: treat the generator as a
2040 if (num_points > 0) {
2041 if (num_points >= 3) {
2043 * unless we precompute multiples for just one or two points,
2044 * converting those into affine form is time well spent
2048 secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2049 pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2052 OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2053 if ((secrets == NULL) || (pre_comp == NULL)
2054 || (mixed && (tmp_smallfelems == NULL))) {
2055 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
2060 * we treat NULL scalars as 0, and NULL points as points at infinity,
2061 * i.e., they contribute nothing to the linear combination
2063 memset(secrets, 0, sizeof(*secrets) * num_points);
2064 memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2065 for (i = 0; i < num_points; ++i) {
2068 * we didn't have a valid precomputation, so we pick the
2072 p = EC_GROUP_get0_generator(group);
2075 /* the i^th point */
2078 p_scalar = scalars[i];
2080 if ((p_scalar != NULL) && (p != NULL)) {
2081 /* reduce scalar to 0 <= scalar < 2^256 */
2082 if ((BN_num_bits(p_scalar) > 256)
2083 || (BN_is_negative(p_scalar))) {
2085 * this is an unusual input, and we don't guarantee
2088 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2089 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2092 num_bytes = BN_bn2bin(tmp_scalar, tmp);
2094 num_bytes = BN_bn2bin(p_scalar, tmp);
2095 flip_endian(secrets[i], tmp, num_bytes);
2096 /* precompute multiples */
2097 if ((!BN_to_felem(x_out, p->X)) ||
2098 (!BN_to_felem(y_out, p->Y)) ||
2099 (!BN_to_felem(z_out, p->Z)))
2101 felem_shrink(pre_comp[i][1][0], x_out);
2102 felem_shrink(pre_comp[i][1][1], y_out);
2103 felem_shrink(pre_comp[i][1][2], z_out);
2104 for (j = 2; j <= 16; ++j) {
2106 point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2107 pre_comp[i][j][2], pre_comp[i][1][0],
2108 pre_comp[i][1][1], pre_comp[i][1][2],
2109 pre_comp[i][j - 1][0],
2110 pre_comp[i][j - 1][1],
2111 pre_comp[i][j - 1][2]);
2113 point_double_small(pre_comp[i][j][0],
2116 pre_comp[i][j / 2][0],
2117 pre_comp[i][j / 2][1],
2118 pre_comp[i][j / 2][2]);
2124 make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2127 /* the scalar for the generator */
2128 if ((scalar != NULL) && (have_pre_comp)) {
2129 memset(g_secret, 0, sizeof(g_secret));
2130 /* reduce scalar to 0 <= scalar < 2^256 */
2131 if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2133 * this is an unusual input, and we don't guarantee
2136 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2137 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2140 num_bytes = BN_bn2bin(tmp_scalar, tmp);
2142 num_bytes = BN_bn2bin(scalar, tmp);
2143 flip_endian(g_secret, tmp, num_bytes);
2144 /* do the multiplication with generator precomputation */
2145 batch_mul(x_out, y_out, z_out,
2146 (const felem_bytearray(*))secrets, num_points,
2148 mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2150 /* do the multiplication without generator precomputation */
2151 batch_mul(x_out, y_out, z_out,
2152 (const felem_bytearray(*))secrets, num_points,
2153 NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2154 /* reduce the output to its unique minimal representation */
2155 felem_contract(x_in, x_out);
2156 felem_contract(y_in, y_out);
2157 felem_contract(z_in, z_out);
2158 if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2159 (!smallfelem_to_BN(z, z_in))) {
2160 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2163 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2167 EC_POINT_free(generator);
2168 BN_CTX_free(new_ctx);
2169 OPENSSL_free(secrets);
2170 OPENSSL_free(pre_comp);
2171 OPENSSL_free(tmp_smallfelems);
2175 int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2178 NISTP256_PRE_COMP *pre = NULL;
2180 BN_CTX *new_ctx = NULL;
2182 EC_POINT *generator = NULL;
2183 smallfelem tmp_smallfelems[32];
2184 felem x_tmp, y_tmp, z_tmp;
2186 /* throw away old precomputation */
2187 EC_nistp256_pre_comp_free(group->pre_comp.nistp256);
2189 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2192 if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL))
2194 /* get the generator */
2195 if (group->generator == NULL)
2197 generator = EC_POINT_new(group);
2198 if (generator == NULL)
2200 BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2201 BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2202 if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2204 if ((pre = nistp256_pre_comp_new()) == NULL)
2207 * if the generator is the standard one, use built-in precomputation
2209 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2210 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2214 if ((!BN_to_felem(x_tmp, group->generator->X)) ||
2215 (!BN_to_felem(y_tmp, group->generator->Y)) ||
2216 (!BN_to_felem(z_tmp, group->generator->Z)))
2218 felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2219 felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2220 felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2222 * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2223 * 2^160*G, 2^224*G for the second one
2225 for (i = 1; i <= 8; i <<= 1) {
2226 point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2227 pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2228 pre->g_pre_comp[0][i][1],
2229 pre->g_pre_comp[0][i][2]);
2230 for (j = 0; j < 31; ++j) {
2231 point_double_small(pre->g_pre_comp[1][i][0],
2232 pre->g_pre_comp[1][i][1],
2233 pre->g_pre_comp[1][i][2],
2234 pre->g_pre_comp[1][i][0],
2235 pre->g_pre_comp[1][i][1],
2236 pre->g_pre_comp[1][i][2]);
2240 point_double_small(pre->g_pre_comp[0][2 * i][0],
2241 pre->g_pre_comp[0][2 * i][1],
2242 pre->g_pre_comp[0][2 * i][2],
2243 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2244 pre->g_pre_comp[1][i][2]);
2245 for (j = 0; j < 31; ++j) {
2246 point_double_small(pre->g_pre_comp[0][2 * i][0],
2247 pre->g_pre_comp[0][2 * i][1],
2248 pre->g_pre_comp[0][2 * i][2],
2249 pre->g_pre_comp[0][2 * i][0],
2250 pre->g_pre_comp[0][2 * i][1],
2251 pre->g_pre_comp[0][2 * i][2]);
2254 for (i = 0; i < 2; i++) {
2255 /* g_pre_comp[i][0] is the point at infinity */
2256 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2257 /* the remaining multiples */
2258 /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2259 point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2260 pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2261 pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2262 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2263 pre->g_pre_comp[i][2][2]);
2264 /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2265 point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2266 pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2267 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2268 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2269 pre->g_pre_comp[i][2][2]);
2270 /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2271 point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2272 pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2273 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2274 pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2275 pre->g_pre_comp[i][4][2]);
2277 * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2279 point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2280 pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2281 pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2282 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2283 pre->g_pre_comp[i][2][2]);
2284 for (j = 1; j < 8; ++j) {
2285 /* odd multiples: add G resp. 2^32*G */
2286 point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2287 pre->g_pre_comp[i][2 * j + 1][1],
2288 pre->g_pre_comp[i][2 * j + 1][2],
2289 pre->g_pre_comp[i][2 * j][0],
2290 pre->g_pre_comp[i][2 * j][1],
2291 pre->g_pre_comp[i][2 * j][2],
2292 pre->g_pre_comp[i][1][0],
2293 pre->g_pre_comp[i][1][1],
2294 pre->g_pre_comp[i][1][2]);
2297 make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2299 SETPRECOMP(group, nistp256, pre);
2305 EC_POINT_free(generator);
2306 BN_CTX_free(new_ctx);
2307 EC_nistp256_pre_comp_free(pre);
2311 int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2313 return HAVEPRECOMP(group, nistp256);
2316 static void *dummy = &dummy;