Use fewer primes for the trial division
[openssl.git] / crypto / bn / bn_x931p.c
1 /*
2  * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include <stdio.h>
11 #include <openssl/bn.h>
12 #include "bn_local.h"
13
14 /* X9.31 routines for prime derivation */
15
16 /*
17  * X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
18  * q1, q2) from a parameter Xpi by checking successive odd integers.
19  */
20
21 static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
22                              BN_GENCB *cb)
23 {
24     int i = 0, is_prime;
25     if (!BN_copy(pi, Xpi))
26         return 0;
27     if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
28         return 0;
29     for (;;) {
30         i++;
31         BN_GENCB_call(cb, 0, i);
32         /* NB 27 MR is specified in X9.31 */
33         is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb);
34         if (is_prime < 0)
35             return 0;
36         if (is_prime)
37             break;
38         if (!BN_add_word(pi, 2))
39             return 0;
40     }
41     BN_GENCB_call(cb, 2, i);
42     return 1;
43 }
44
45 /*
46  * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
47  * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
48  * will be returned too: this is needed for testing.
49  */
50
51 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
52                             const BIGNUM *Xp, const BIGNUM *Xp1,
53                             const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
54                             BN_GENCB *cb)
55 {
56     int ret = 0;
57
58     BIGNUM *t, *p1p2, *pm1;
59
60     /* Only even e supported */
61     if (!BN_is_odd(e))
62         return 0;
63
64     BN_CTX_start(ctx);
65     if (p1 == NULL)
66         p1 = BN_CTX_get(ctx);
67
68     if (p2 == NULL)
69         p2 = BN_CTX_get(ctx);
70
71     t = BN_CTX_get(ctx);
72
73     p1p2 = BN_CTX_get(ctx);
74
75     pm1 = BN_CTX_get(ctx);
76
77     if (pm1 == NULL)
78         goto err;
79
80     if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
81         goto err;
82
83     if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
84         goto err;
85
86     if (!BN_mul(p1p2, p1, p2, ctx))
87         goto err;
88
89     /* First set p to value of Rp */
90
91     if (!BN_mod_inverse(p, p2, p1, ctx))
92         goto err;
93
94     if (!BN_mul(p, p, p2, ctx))
95         goto err;
96
97     if (!BN_mod_inverse(t, p1, p2, ctx))
98         goto err;
99
100     if (!BN_mul(t, t, p1, ctx))
101         goto err;
102
103     if (!BN_sub(p, p, t))
104         goto err;
105
106     if (p->neg && !BN_add(p, p, p1p2))
107         goto err;
108
109     /* p now equals Rp */
110
111     if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
112         goto err;
113
114     if (!BN_add(p, p, Xp))
115         goto err;
116
117     /* p now equals Yp0 */
118
119     for (;;) {
120         int i = 1;
121         BN_GENCB_call(cb, 0, i++);
122         if (!BN_copy(pm1, p))
123             goto err;
124         if (!BN_sub_word(pm1, 1))
125             goto err;
126         if (!BN_gcd(t, pm1, e, ctx))
127             goto err;
128         if (BN_is_one(t)) {
129             /*
130              * X9.31 specifies 8 MR and 1 Lucas test or any prime test
131              * offering similar or better guarantees 50 MR is considerably
132              * better.
133              */
134             int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb);
135             if (r < 0)
136                 goto err;
137             if (r)
138                 break;
139         }
140         if (!BN_add(p, p, p1p2))
141             goto err;
142     }
143
144     BN_GENCB_call(cb, 3, 0);
145
146     ret = 1;
147
148  err:
149
150     BN_CTX_end(ctx);
151
152     return ret;
153 }
154
155 /*
156  * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
157  * parameter is sum of number of bits in both.
158  */
159
160 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
161 {
162     BIGNUM *t;
163     int i;
164     /*
165      * Number of bits for each prime is of the form 512+128s for s = 0, 1,
166      * ...
167      */
168     if ((nbits < 1024) || (nbits & 0xff))
169         return 0;
170     nbits >>= 1;
171     /*
172      * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
173      * - 1. By setting the top two bits we ensure that the lower bound is
174      * exceeded.
175      */
176     if (!BN_priv_rand_ex(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, ctx))
177         goto err;
178
179     BN_CTX_start(ctx);
180     t = BN_CTX_get(ctx);
181     if (t == NULL)
182         goto err;
183
184     for (i = 0; i < 1000; i++) {
185         if (!BN_priv_rand_ex(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY,
186                              ctx))
187             goto err;
188
189         /* Check that |Xp - Xq| > 2^(nbits - 100) */
190         if (!BN_sub(t, Xp, Xq))
191             goto err;
192         if (BN_num_bits(t) > (nbits - 100))
193             break;
194     }
195
196     BN_CTX_end(ctx);
197
198     if (i < 1000)
199         return 1;
200
201     return 0;
202
203  err:
204     BN_CTX_end(ctx);
205     return 0;
206 }
207
208 /*
209  * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
210  * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
211  * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
212  * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
213  * previous function and supplied as input.
214  */
215
216 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
217                               BIGNUM *Xp1, BIGNUM *Xp2,
218                               const BIGNUM *Xp,
219                               const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
220 {
221     int ret = 0;
222
223     BN_CTX_start(ctx);
224     if (Xp1 == NULL)
225         Xp1 = BN_CTX_get(ctx);
226     if (Xp2 == NULL)
227         Xp2 = BN_CTX_get(ctx);
228     if (Xp1 == NULL || Xp2 == NULL)
229         goto error;
230
231     if (!BN_priv_rand_ex(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, ctx))
232         goto error;
233     if (!BN_priv_rand_ex(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, ctx))
234         goto error;
235     if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
236         goto error;
237
238     ret = 1;
239
240  error:
241     BN_CTX_end(ctx);
242
243     return ret;
244
245 }