2810115c2ba5e868e97b0ee86e6495c4b20e195b
[openssl.git] / crypto / bn / bn_mul.c
1 /* crypto/bn/bn_mul.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  * 
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  * 
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  * 
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from 
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  * 
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  * 
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68
69 #if defined(NO_ASM) || !defined(i386)
70 /* Here follows specialised variants of bn_add_words() and
71    bn_sub_words().  They have the property performing operations on
72    arrays of different sizes.  The sizes of those arrays is expressed through
73    cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74    which is the delta between the two lengths, calculated as len(a)-len(b).
75    All lengths are the number of BN_ULONGs...  For the operations that require
76    a result array as parameter, it must have the length cl+abs(dl).
77    These functions should probably end up in bn_asm.c as soon as there are
78    assembler counterparts for the systems that use assembler files.  */
79
80 BN_ULONG bn_sub_part_words(BN_ULONG *r,
81         const BN_ULONG *a, const BN_ULONG *b,
82         int cl, int dl)
83         {
84         BN_ULONG c, t;
85
86         assert(cl >= 0);
87         c = bn_sub_words(r, a, b, cl);
88
89         if (dl == 0)
90                 return c;
91
92         r += cl;
93         a += cl;
94         b += cl;
95
96         if (dl < 0)
97                 {
98 #ifdef BN_COUNT
99                 fprintf(stderr, "  bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
100 #endif
101                 for (;;)
102                         {
103                         t = b[0];
104                         r[0] = (0-t-c)&BN_MASK2;
105                         if (t != 0) c=1;
106                         if (++dl >= 0) break;
107
108                         t = b[1];
109                         r[1] = (0-t-c)&BN_MASK2;
110                         if (t != 0) c=1;
111                         if (++dl >= 0) break;
112
113                         t = b[2];
114                         r[2] = (0-t-c)&BN_MASK2;
115                         if (t != 0) c=1;
116                         if (++dl >= 0) break;
117
118                         t = b[3];
119                         r[3] = (0-t-c)&BN_MASK2;
120                         if (t != 0) c=1;
121                         if (++dl >= 0) break;
122
123                         b += 4;
124                         r += 4;
125                         }
126                 }
127         else
128                 {
129                 int save_dl = dl;
130 #ifdef BN_COUNT
131                 fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
132 #endif
133                 while(c)
134                         {
135                         t = a[0];
136                         r[0] = (t-c)&BN_MASK2;
137                         if (t != 0) c=0;
138                         if (--dl <= 0) break;
139
140                         t = a[1];
141                         r[1] = (t-c)&BN_MASK2;
142                         if (t != 0) c=0;
143                         if (--dl <= 0) break;
144
145                         t = a[2];
146                         r[2] = (t-c)&BN_MASK2;
147                         if (t != 0) c=0;
148                         if (--dl <= 0) break;
149
150                         t = a[3];
151                         r[3] = (t-c)&BN_MASK2;
152                         if (t != 0) c=0;
153                         if (--dl <= 0) break;
154
155                         save_dl = dl;
156                         a += 4;
157                         r += 4;
158                         }
159                 if (dl > 0)
160                         {
161 #ifdef BN_COUNT
162                         fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
163 #endif
164                         if (save_dl > dl)
165                                 {
166                                 switch (save_dl - dl)
167                                         {
168                                 case 1:
169                                         r[1] = a[1];
170                                         if (--dl <= 0) break;
171                                 case 2:
172                                         r[2] = a[2];
173                                         if (--dl <= 0) break;
174                                 case 3:
175                                         r[3] = a[3];
176                                         if (--dl <= 0) break;
177                                         }
178                                 a += 4;
179                                 r += 4;
180                                 }
181                         }
182                 if (dl > 0)
183                         {
184 #ifdef BN_COUNT
185                         fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
186 #endif
187                         for(;;)
188                                 {
189                                 r[0] = a[0];
190                                 if (--dl <= 0) break;
191                                 r[1] = a[1];
192                                 if (--dl <= 0) break;
193                                 r[2] = a[2];
194                                 if (--dl <= 0) break;
195                                 r[3] = a[3];
196                                 if (--dl <= 0) break;
197
198                                 a += 4;
199                                 r += 4;
200                                 }
201                         }
202                 }
203         return c;
204         }
205 #endif
206
207 BN_ULONG bn_add_part_words(BN_ULONG *r,
208         const BN_ULONG *a, const BN_ULONG *b,
209         int cl, int dl)
210         {
211         BN_ULONG c, l, t;
212
213         assert(cl >= 0);
214         c = bn_add_words(r, a, b, cl);
215
216         if (dl == 0)
217                 return c;
218
219         r += cl;
220         a += cl;
221         b += cl;
222
223         if (dl < 0)
224                 {
225                 int save_dl = dl;
226 #ifdef BN_COUNT
227                 fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
228 #endif
229                 while (c)
230                         {
231                         l=(c+b[0])&BN_MASK2;
232                         c=(l < c);
233                         r[0]=l;
234                         if (++dl >= 0) break;
235
236                         l=(c+b[1])&BN_MASK2;
237                         c=(l < c);
238                         r[1]=l;
239                         if (++dl >= 0) break;
240
241                         l=(c+b[2])&BN_MASK2;
242                         c=(l < c);
243                         r[2]=l;
244                         if (++dl >= 0) break;
245
246                         l=(c+b[3])&BN_MASK2;
247                         c=(l < c);
248                         r[3]=l;
249                         if (++dl >= 0) break;
250
251                         save_dl = dl;
252                         b+=4;
253                         r+=4;
254                         }
255                 if (dl < 0)
256                         {
257 #ifdef BN_COUNT
258                         fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
259 #endif
260                         if (save_dl < dl)
261                                 {
262                                 switch (dl - save_dl)
263                                         {
264                                 case 1:
265                                         r[1] = b[1];
266                                         if (++dl >= 0) break;
267                                 case 2:
268                                         r[2] = b[2];
269                                         if (++dl >= 0) break;
270                                 case 3:
271                                         r[3] = b[3];
272                                         if (++dl >= 0) break;
273                                         }
274                                 b += 4;
275                                 r += 4;
276                                 }
277                         }
278                 if (dl < 0)
279                         {
280 #ifdef BN_COUNT
281                         fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
282 #endif
283                         for(;;)
284                                 {
285                                 r[0] = b[0];
286                                 if (++dl >= 0) break;
287                                 r[1] = b[1];
288                                 if (++dl >= 0) break;
289                                 r[2] = b[2];
290                                 if (++dl >= 0) break;
291                                 r[3] = b[3];
292                                 if (++dl >= 0) break;
293
294                                 b += 4;
295                                 r += 4;
296                                 }
297                         }
298                 }
299         else
300                 {
301                 int save_dl = dl;
302 #ifdef BN_COUNT
303                 fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
304 #endif
305                 while (c)
306                         {
307                         t=(a[0]+c)&BN_MASK2;
308                         c=(t < c);
309                         r[0]=t;
310                         if (--dl <= 0) break;
311
312                         t=(a[1]+c)&BN_MASK2;
313                         c=(t < c);
314                         r[1]=t;
315                         if (--dl <= 0) break;
316
317                         t=(a[2]+c)&BN_MASK2;
318                         c=(t < c);
319                         r[2]=t;
320                         if (--dl <= 0) break;
321
322                         t=(a[3]+c)&BN_MASK2;
323                         c=(t < c);
324                         r[3]=t;
325                         if (--dl <= 0) break;
326
327                         save_dl = dl;
328                         a+=4;
329                         r+=4;
330                         }
331 #ifdef BN_COUNT
332                 fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
333 #endif
334                 if (dl > 0)
335                         {
336                         if (save_dl > dl)
337                                 {
338                                 switch (save_dl - dl)
339                                         {
340                                 case 1:
341                                         r[1] = a[1];
342                                         if (--dl <= 0) break;
343                                 case 2:
344                                         r[2] = a[2];
345                                         if (--dl <= 0) break;
346                                 case 3:
347                                         r[3] = a[3];
348                                         if (--dl <= 0) break;
349                                         }
350                                 a += 4;
351                                 r += 4;
352                                 }
353                         }
354                 if (dl > 0)
355                         {
356 #ifdef BN_COUNT
357                         fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
358 #endif
359                         for(;;)
360                                 {
361                                 r[0] = a[0];
362                                 if (--dl <= 0) break;
363                                 r[1] = a[1];
364                                 if (--dl <= 0) break;
365                                 r[2] = a[2];
366                                 if (--dl <= 0) break;
367                                 r[3] = a[3];
368                                 if (--dl <= 0) break;
369
370                                 a += 4;
371                                 r += 4;
372                                 }
373                         }
374                 }
375         return c;
376         }
377
378 #ifdef BN_RECURSION
379 /* Karatsuba recursive multiplication algorithm
380  * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
381
382 /* r is 2*n2 words in size,
383  * a and b are both n2 words in size.
384  * n2 must be a power of 2.
385  * We multiply and return the result.
386  * t must be 2*n2 words in size
387  * We calculate
388  * a[0]*b[0]
389  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
390  * a[1]*b[1]
391  */
392 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
393         int dna, int dnb, BN_ULONG *t)
394         {
395         int n=n2/2,c1,c2;
396         int tna=n+dna, tnb=n+dnb;
397         unsigned int neg,zero;
398         BN_ULONG ln,lo,*p;
399
400 # ifdef BN_COUNT
401         fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
402 # endif
403 # ifdef BN_MUL_COMBA
404 #  if 0
405         if (n2 == 4)
406                 {
407                 bn_mul_comba4(r,a,b);
408                 return;
409                 }
410 #  endif
411         if (n2 == 8)
412                 {
413                 bn_mul_comba8(r,a,b);
414                 return; 
415                 }
416 # endif /* BN_MUL_COMBA */
417         if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
418                 {
419                 /* This should not happen */
420                 bn_mul_normal(r,a,n2,b,n2);
421                 return;
422                 }
423         /* r=(a[0]-a[1])*(b[1]-b[0]) */
424         c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
425         c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
426         zero=neg=0;
427         switch (c1*3+c2)
428                 {
429         case -4:
430                 bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
431                 bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
432                 break;
433         case -3:
434                 zero=1;
435                 break;
436         case -2:
437                 bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
438                 bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
439                 neg=1;
440                 break;
441         case -1:
442         case 0:
443         case 1:
444                 zero=1;
445                 break;
446         case 2:
447                 bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
448                 bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
449                 neg=1;
450                 break;
451         case 3:
452                 zero=1;
453                 break;
454         case 4:
455                 bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
456                 bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
457                 break;
458                 }
459
460 # ifdef BN_MUL_COMBA
461         if (n == 4)
462                 {
463                 if (!zero)
464                         bn_mul_comba4(&(t[n2]),t,&(t[n]));
465                 else
466                         memset(&(t[n2]),0,8*sizeof(BN_ULONG));
467                 
468                 bn_mul_comba4(r,a,b);
469                 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
470                 }
471         else if (n == 8)
472                 {
473                 if (!zero)
474                         bn_mul_comba8(&(t[n2]),t,&(t[n]));
475                 else
476                         memset(&(t[n2]),0,16*sizeof(BN_ULONG));
477                 
478                 bn_mul_comba8(r,a,b);
479                 bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
480                 }
481         else
482 # endif /* BN_MUL_COMBA */
483                 {
484                 p= &(t[n2*2]);
485                 if (!zero)
486                         bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
487                 else
488                         memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
489                 bn_mul_recursive(r,a,b,n,0,0,p);
490                 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
491                 }
492
493         /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
494          * r[10] holds (a[0]*b[0])
495          * r[32] holds (b[1]*b[1])
496          */
497
498         c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
499
500         if (neg) /* if t[32] is negative */
501                 {
502                 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
503                 }
504         else
505                 {
506                 /* Might have a carry */
507                 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
508                 }
509
510         /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
511          * r[10] holds (a[0]*b[0])
512          * r[32] holds (b[1]*b[1])
513          * c1 holds the carry bits
514          */
515         c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
516         if (c1)
517                 {
518                 p= &(r[n+n2]);
519                 lo= *p;
520                 ln=(lo+c1)&BN_MASK2;
521                 *p=ln;
522
523                 /* The overflow will stop before we over write
524                  * words we should not overwrite */
525                 if (ln < (BN_ULONG)c1)
526                         {
527                         do      {
528                                 p++;
529                                 lo= *p;
530                                 ln=(lo+1)&BN_MASK2;
531                                 *p=ln;
532                                 } while (ln == 0);
533                         }
534                 }
535         }
536
537 /* n+tn is the word length
538  * t needs to be n*4 is size, as does r */
539 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
540              int tna, int tnb, BN_ULONG *t)
541         {
542         int i,j,n2=n*2;
543         unsigned int c1,c2,neg,zero;
544         BN_ULONG ln,lo,*p;
545
546 # ifdef BN_COUNT
547         fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
548                 tna, n, tnb, n);
549 # endif
550         if (n < 8)
551                 {
552                 bn_mul_normal(r,a,n+tna,b,n+tnb);
553                 return;
554                 }
555
556         /* r=(a[0]-a[1])*(b[1]-b[0]) */
557         c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
558         c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
559         zero=neg=0;
560         switch (c1*3+c2)
561                 {
562         case -4:
563                 bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
564                 bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
565                 break;
566         case -3:
567                 zero=1;
568                 /* break; */
569         case -2:
570                 bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
571                 bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
572                 neg=1;
573                 break;
574         case -1:
575         case 0:
576         case 1:
577                 zero=1;
578                 /* break; */
579         case 2:
580                 bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
581                 bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
582                 neg=1;
583                 break;
584         case 3:
585                 zero=1;
586                 /* break; */
587         case 4:
588                 bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
589                 bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
590                 break;
591                 }
592                 /* The zero case isn't yet implemented here. The speedup
593                    would probably be negligible. */
594 # if 0
595         if (n == 4)
596                 {
597                 bn_mul_comba4(&(t[n2]),t,&(t[n]));
598                 bn_mul_comba4(r,a,b);
599                 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
600                 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
601                 }
602         else
603 # endif
604         if (n == 8)
605                 {
606                 bn_mul_comba8(&(t[n2]),t,&(t[n]));
607                 bn_mul_comba8(r,a,b);
608                 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
609                 memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
610                 }
611         else
612                 {
613                 p= &(t[n2*2]);
614                 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
615                 bn_mul_recursive(r,a,b,n,0,0,p);
616                 i=n/2;
617                 /* If there is only a bottom half to the number,
618                  * just do it */
619                 if (tna > tnb)
620                         j = tna - i;
621                 else
622                         j = tnb - i;
623                 if (j == 0)
624                         {
625                         bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
626                                 i,tna-i,tnb-i,p);
627                         memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
628                         }
629                 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
630                                 {
631                                 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
632                                         i,tna-i,tnb-i,p);
633                                 memset(&(r[n2+tna+tnb]),0,
634                                         sizeof(BN_ULONG)*(n2-tna-tnb));
635                                 }
636                 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
637                         {
638                         memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
639                         if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
640                                 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
641                                 {
642                                 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
643                                 }
644                         else
645                                 {
646                                 for (;;)
647                                         {
648                                         i/=2;
649                                         if (i < tna && i < tnb)
650                                                 {
651                                                 bn_mul_part_recursive(&(r[n2]),
652                                                         &(a[n]),&(b[n]),
653                                                         i,tna-i,tnb-i,p);
654                                                 break;
655                                                 }
656                                         else if (i <= tna && i <= tnb)
657                                                 {
658                                                 bn_mul_recursive(&(r[n2]),
659                                                         &(a[n]),&(b[n]),
660                                                         i,tna-i,tnb-i,p);
661                                                 break;
662                                                 }
663                                         }
664                                 }
665                         }
666                 }
667
668         /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
669          * r[10] holds (a[0]*b[0])
670          * r[32] holds (b[1]*b[1])
671          */
672
673         c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
674
675         if (neg) /* if t[32] is negative */
676                 {
677                 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
678                 }
679         else
680                 {
681                 /* Might have a carry */
682                 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
683                 }
684
685         /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
686          * r[10] holds (a[0]*b[0])
687          * r[32] holds (b[1]*b[1])
688          * c1 holds the carry bits
689          */
690         c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
691         if (c1)
692                 {
693                 p= &(r[n+n2]);
694                 lo= *p;
695                 ln=(lo+c1)&BN_MASK2;
696                 *p=ln;
697
698                 /* The overflow will stop before we over write
699                  * words we should not overwrite */
700                 if (ln < c1)
701                         {
702                         do      {
703                                 p++;
704                                 lo= *p;
705                                 ln=(lo+1)&BN_MASK2;
706                                 *p=ln;
707                                 } while (ln == 0);
708                         }
709                 }
710         }
711
712 /* a and b must be the same size, which is n2.
713  * r needs to be n2 words and t needs to be n2*2
714  */
715 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
716              BN_ULONG *t)
717         {
718         int n=n2/2;
719
720 # ifdef BN_COUNT
721         fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
722 # endif
723
724         bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
725         if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
726                 {
727                 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
728                 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
729                 bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
730                 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
731                 }
732         else
733                 {
734                 bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
735                 bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
736                 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
737                 bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
738                 }
739         }
740
741 /* a and b must be the same size, which is n2.
742  * r needs to be n2 words and t needs to be n2*2
743  * l is the low words of the output.
744  * t needs to be n2*3
745  */
746 void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
747              BN_ULONG *t)
748         {
749         int i,n;
750         int c1,c2;
751         int neg,oneg,zero;
752         BN_ULONG ll,lc,*lp,*mp;
753
754 # ifdef BN_COUNT
755         fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
756 # endif
757         n=n2/2;
758
759         /* Calculate (al-ah)*(bh-bl) */
760         neg=zero=0;
761         c1=bn_cmp_words(&(a[0]),&(a[n]),n);
762         c2=bn_cmp_words(&(b[n]),&(b[0]),n);
763         switch (c1*3+c2)
764                 {
765         case -4:
766                 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
767                 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
768                 break;
769         case -3:
770                 zero=1;
771                 break;
772         case -2:
773                 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
774                 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
775                 neg=1;
776                 break;
777         case -1:
778         case 0:
779         case 1:
780                 zero=1;
781                 break;
782         case 2:
783                 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
784                 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
785                 neg=1;
786                 break;
787         case 3:
788                 zero=1;
789                 break;
790         case 4:
791                 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
792                 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
793                 break;
794                 }
795                 
796         oneg=neg;
797         /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
798         /* r[10] = (a[1]*b[1]) */
799 # ifdef BN_MUL_COMBA
800         if (n == 8)
801                 {
802                 bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
803                 bn_mul_comba8(r,&(a[n]),&(b[n]));
804                 }
805         else
806 # endif
807                 {
808                 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
809                 bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
810                 }
811
812         /* s0 == low(al*bl)
813          * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
814          * We know s0 and s1 so the only unknown is high(al*bl)
815          * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
816          * high(al*bl) == s1 - (r[0]+l[0]+t[0])
817          */
818         if (l != NULL)
819                 {
820                 lp= &(t[n2+n]);
821                 c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
822                 }
823         else
824                 {
825                 c1=0;
826                 lp= &(r[0]);
827                 }
828
829         if (neg)
830                 neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
831         else
832                 {
833                 bn_add_words(&(t[n2]),lp,&(t[0]),n);
834                 neg=0;
835                 }
836
837         if (l != NULL)
838                 {
839                 bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
840                 }
841         else
842                 {
843                 lp= &(t[n2+n]);
844                 mp= &(t[n2]);
845                 for (i=0; i<n; i++)
846                         lp[i]=((~mp[i])+1)&BN_MASK2;
847                 }
848
849         /* s[0] = low(al*bl)
850          * t[3] = high(al*bl)
851          * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
852          * r[10] = (a[1]*b[1])
853          */
854         /* R[10] = al*bl
855          * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
856          * R[32] = ah*bh
857          */
858         /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
859          * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
860          * R[3]=r[1]+(carry/borrow)
861          */
862         if (l != NULL)
863                 {
864                 lp= &(t[n2]);
865                 c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
866                 }
867         else
868                 {
869                 lp= &(t[n2+n]);
870                 c1=0;
871                 }
872         c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
873         if (oneg)
874                 c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
875         else
876                 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
877
878         c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
879         c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
880         if (oneg)
881                 c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
882         else
883                 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
884         
885         if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
886                 {
887                 i=0;
888                 if (c1 > 0)
889                         {
890                         lc=c1;
891                         do      {
892                                 ll=(r[i]+lc)&BN_MASK2;
893                                 r[i++]=ll;
894                                 lc=(lc > ll);
895                                 } while (lc);
896                         }
897                 else
898                         {
899                         lc= -c1;
900                         do      {
901                                 ll=r[i];
902                                 r[i++]=(ll-lc)&BN_MASK2;
903                                 lc=(lc > ll);
904                                 } while (lc);
905                         }
906                 }
907         if (c2 != 0) /* Add starting at r[1] */
908                 {
909                 i=n;
910                 if (c2 > 0)
911                         {
912                         lc=c2;
913                         do      {
914                                 ll=(r[i]+lc)&BN_MASK2;
915                                 r[i++]=ll;
916                                 lc=(lc > ll);
917                                 } while (lc);
918                         }
919                 else
920                         {
921                         lc= -c2;
922                         do      {
923                                 ll=r[i];
924                                 r[i++]=(ll-lc)&BN_MASK2;
925                                 lc=(lc > ll);
926                                 } while (lc);
927                         }
928                 }
929         }
930 #endif /* BN_RECURSION */
931
932 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
933         {
934         int ret=0;
935         int top,al,bl;
936         BIGNUM *rr;
937 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
938         int i;
939 #endif
940 #ifdef BN_RECURSION
941         BIGNUM *t;
942         int j,k;
943 #endif
944
945 #ifdef BN_COUNT
946         fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
947 #endif
948
949         bn_check_top(a);
950         bn_check_top(b);
951         bn_check_top(r);
952
953         al=a->top;
954         bl=b->top;
955
956         if ((al == 0) || (bl == 0))
957                 {
958                 BN_zero(r);
959                 return(1);
960                 }
961         top=al+bl;
962
963         BN_CTX_start(ctx);
964         if ((r == a) || (r == b))
965                 {
966                 if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
967                 }
968         else
969                 rr = r;
970         rr->neg=a->neg^b->neg;
971
972 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
973         i = al-bl;
974 #endif
975 #ifdef BN_MUL_COMBA
976         if (i == 0)
977                 {
978 # if 0
979                 if (al == 4)
980                         {
981                         if (bn_wexpand(rr,8) == NULL) goto err;
982                         rr->top=8;
983                         bn_mul_comba4(rr->d,a->d,b->d);
984                         goto end;
985                         }
986 # endif
987                 if (al == 8)
988                         {
989                         if (bn_wexpand(rr,16) == NULL) goto err;
990                         rr->top=16;
991                         bn_mul_comba8(rr->d,a->d,b->d);
992                         goto end;
993                         }
994                 }
995 #endif /* BN_MUL_COMBA */
996 #ifdef BN_RECURSION
997         if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
998                 {
999                 if (i >= -1 && i <= 1)
1000                         {
1001                         int sav_j =0;
1002                         /* Find out the power of two lower or equal
1003                            to the longest of the two numbers */
1004                         if (i >= 0)
1005                                 {
1006                                 j = BN_num_bits_word((BN_ULONG)al);
1007                                 }
1008                         if (i == -1)
1009                                 {
1010                                 j = BN_num_bits_word((BN_ULONG)bl);
1011                                 }
1012                         sav_j = j;
1013                         j = 1<<(j-1);
1014                         assert(j <= al || j <= bl);
1015                         k = j+j;
1016                         t = BN_CTX_get(ctx);
1017                         if (al > j || bl > j)
1018                                 {
1019                                 bn_wexpand(t,k*4);
1020                                 bn_wexpand(rr,k*4);
1021                                 bn_mul_part_recursive(rr->d,a->d,b->d,
1022                                         j,al-j,bl-j,t->d);
1023                                 }
1024                         else    /* al <= j || bl <= j */
1025                                 {
1026                                 bn_wexpand(t,k*2);
1027                                 bn_wexpand(rr,k*2);
1028                                 bn_mul_recursive(rr->d,a->d,b->d,
1029                                         j,al-j,bl-j,t->d);
1030                                 }
1031                         rr->top=top;
1032                         goto end;
1033                         }
1034 #if 0
1035                 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1036                         {
1037                         BIGNUM *tmp_bn = (BIGNUM *)b;
1038                         bn_wexpand(tmp_bn,al);
1039                         tmp_bn->d[bl]=0;
1040                         bl++;
1041                         i--;
1042                         }
1043                 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
1044                         {
1045                         BIGNUM *tmp_bn = (BIGNUM *)a;
1046                         bn_wexpand(tmp_bn,bl);
1047                         tmp_bn->d[al]=0;
1048                         al++;
1049                         i++;
1050                         }
1051                 if (i == 0)
1052                         {
1053                         /* symmetric and > 4 */
1054                         /* 16 or larger */
1055                         j=BN_num_bits_word((BN_ULONG)al);
1056                         j=1<<(j-1);
1057                         k=j+j;
1058                         t = BN_CTX_get(ctx);
1059                         if (al == j) /* exact multiple */
1060                                 {
1061                                 bn_wexpand(t,k*2);
1062                                 bn_wexpand(rr,k*2);
1063                                 bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
1064                                 }
1065                         else
1066                                 {
1067                                 bn_wexpand(t,k*4);
1068                                 bn_wexpand(rr,k*4);
1069                                 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
1070                                 }
1071                         rr->top=top;
1072                         goto end;
1073                         }
1074 #endif
1075                 }
1076 #endif /* BN_RECURSION */
1077         if (bn_wexpand(rr,top) == NULL) goto err;
1078         rr->top=top;
1079         bn_mul_normal(rr->d,a->d,al,b->d,bl);
1080
1081 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1082 end:
1083 #endif
1084         bn_fix_top(rr);
1085         if (r != rr) BN_copy(r,rr);
1086         ret=1;
1087 err:
1088         BN_CTX_end(ctx);
1089         return(ret);
1090         }
1091
1092 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1093         {
1094         BN_ULONG *rr;
1095
1096 #ifdef BN_COUNT
1097         fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
1098 #endif
1099
1100         if (na < nb)
1101                 {
1102                 int itmp;
1103                 BN_ULONG *ltmp;
1104
1105                 itmp=na; na=nb; nb=itmp;
1106                 ltmp=a;   a=b;   b=ltmp;
1107
1108                 }
1109         rr= &(r[na]);
1110         rr[0]=bn_mul_words(r,a,na,b[0]);
1111
1112         for (;;)
1113                 {
1114                 if (--nb <= 0) return;
1115                 rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
1116                 if (--nb <= 0) return;
1117                 rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
1118                 if (--nb <= 0) return;
1119                 rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
1120                 if (--nb <= 0) return;
1121                 rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
1122                 rr+=4;
1123                 r+=4;
1124                 b+=4;
1125                 }
1126         }
1127
1128 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1129         {
1130 #ifdef BN_COUNT
1131         fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
1132 #endif
1133         bn_mul_words(r,a,n,b[0]);
1134
1135         for (;;)
1136                 {
1137                 if (--n <= 0) return;
1138                 bn_mul_add_words(&(r[1]),a,n,b[1]);
1139                 if (--n <= 0) return;
1140                 bn_mul_add_words(&(r[2]),a,n,b[2]);
1141                 if (--n <= 0) return;
1142                 bn_mul_add_words(&(r[3]),a,n,b[3]);
1143                 if (--n <= 0) return;
1144                 bn_mul_add_words(&(r[4]),a,n,b[4]);
1145                 r+=4;
1146                 b+=4;
1147                 }
1148         }