Following the license change, modify the boilerplates in crypto/bn/
[openssl.git] / crypto / bn / bn_lcl.h
1 /*
2  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #ifndef HEADER_BN_LCL_H
11 # define HEADER_BN_LCL_H
12
13 /*
14  * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15  * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16  * Configure script and needs to support both 32-bit and 64-bit.
17  */
18 # include <openssl/opensslconf.h>
19
20 # if !defined(OPENSSL_SYS_UEFI)
21 #  include "internal/bn_conf.h"
22 # endif
23
24 # include "internal/bn_int.h"
25
26 /*
27  * These preprocessor symbols control various aspects of the bignum headers
28  * and library code. They're not defined by any "normal" configuration, as
29  * they are intended for development and testing purposes. NB: defining all
30  * three can be useful for debugging application code as well as openssl
31  * itself. BN_DEBUG - turn on various debugging alterations to the bignum
32  * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up
33  * mismanagement of bignum internals. You must also define BN_DEBUG.
34  */
35 /* #define BN_DEBUG */
36 /* #define BN_DEBUG_RAND */
37
38 # ifndef OPENSSL_SMALL_FOOTPRINT
39 #  define BN_MUL_COMBA
40 #  define BN_SQR_COMBA
41 #  define BN_RECURSION
42 # endif
43
44 /*
45  * This next option uses the C libraries (2 word)/(1 word) function. If it is
46  * not defined, I use my C version (which is slower). The reason for this
47  * flag is that when the particular C compiler library routine is used, and
48  * the library is linked with a different compiler, the library is missing.
49  * This mostly happens when the library is built with gcc and then linked
50  * using normal cc.  This would be a common occurrence because gcc normally
51  * produces code that is 2 times faster than system compilers for the big
52  * number stuff. For machines with only one compiler (or shared libraries),
53  * this should be on.  Again this in only really a problem on machines using
54  * "long long's", are 32bit, and are not using my assembler code.
55  */
56 # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
57     defined(OPENSSL_SYS_WIN32) || defined(linux)
58 #  define BN_DIV2W
59 # endif
60
61 /*
62  * 64-bit processor with LP64 ABI
63  */
64 # ifdef SIXTY_FOUR_BIT_LONG
65 #  define BN_ULLONG       unsigned long long
66 #  define BN_BITS4        32
67 #  define BN_MASK2        (0xffffffffffffffffL)
68 #  define BN_MASK2l       (0xffffffffL)
69 #  define BN_MASK2h       (0xffffffff00000000L)
70 #  define BN_MASK2h1      (0xffffffff80000000L)
71 #  define BN_DEC_CONV     (10000000000000000000UL)
72 #  define BN_DEC_NUM      19
73 #  define BN_DEC_FMT1     "%lu"
74 #  define BN_DEC_FMT2     "%019lu"
75 # endif
76
77 /*
78  * 64-bit processor other than LP64 ABI
79  */
80 # ifdef SIXTY_FOUR_BIT
81 #  undef BN_LLONG
82 #  undef BN_ULLONG
83 #  define BN_BITS4        32
84 #  define BN_MASK2        (0xffffffffffffffffLL)
85 #  define BN_MASK2l       (0xffffffffL)
86 #  define BN_MASK2h       (0xffffffff00000000LL)
87 #  define BN_MASK2h1      (0xffffffff80000000LL)
88 #  define BN_DEC_CONV     (10000000000000000000ULL)
89 #  define BN_DEC_NUM      19
90 #  define BN_DEC_FMT1     "%llu"
91 #  define BN_DEC_FMT2     "%019llu"
92 # endif
93
94 # ifdef THIRTY_TWO_BIT
95 #  ifdef BN_LLONG
96 #   if defined(_WIN32) && !defined(__GNUC__)
97 #    define BN_ULLONG     unsigned __int64
98 #   else
99 #    define BN_ULLONG     unsigned long long
100 #   endif
101 #  endif
102 #  define BN_BITS4        16
103 #  define BN_MASK2        (0xffffffffL)
104 #  define BN_MASK2l       (0xffff)
105 #  define BN_MASK2h1      (0xffff8000L)
106 #  define BN_MASK2h       (0xffff0000L)
107 #  define BN_DEC_CONV     (1000000000L)
108 #  define BN_DEC_NUM      9
109 #  define BN_DEC_FMT1     "%u"
110 #  define BN_DEC_FMT2     "%09u"
111 # endif
112
113
114 /*-
115  * Bignum consistency macros
116  * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
117  * bignum data after direct manipulations on the data. There is also an
118  * "internal" macro, bn_check_top(), for verifying that there are no leading
119  * zeroes. Unfortunately, some auditing is required due to the fact that
120  * bn_fix_top() has become an overabused duct-tape because bignum data is
121  * occasionally passed around in an inconsistent state. So the following
122  * changes have been made to sort this out;
123  * - bn_fix_top()s implementation has been moved to bn_correct_top()
124  * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
125  *   bn_check_top() is as before.
126  * - if BN_DEBUG *is* defined;
127  *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
128  *     consistent. (ed: only if BN_DEBUG_RAND is defined)
129  *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
130  * The idea is to have debug builds flag up inconsistent bignums when they
131  * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
132  * the use of bn_fix_top() was appropriate (ie. it follows directly after code
133  * that manipulates the bignum) it is converted to bn_correct_top(), and if it
134  * was not appropriate, we convert it permanently to bn_check_top() and track
135  * down the cause of the bug. Eventually, no internal code should be using the
136  * bn_fix_top() macro. External applications and libraries should try this with
137  * their own code too, both in terms of building against the openssl headers
138  * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
139  * defined. This not only improves external code, it provides more test
140  * coverage for openssl's own code.
141  */
142
143 # ifdef BN_DEBUG
144 /*
145  * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
146  * bn_correct_top, in other words such vectors are permitted to have zeros
147  * in most significant limbs. Such vectors are used internally to achieve
148  * execution time invariance for critical operations with private keys.
149  * It's BN_DEBUG-only flag, because user application is not supposed to
150  * observe it anyway. Moreover, optimizing compiler would actually remove
151  * all operations manipulating the bit in question in non-BN_DEBUG build.
152  */
153 #  define BN_FLG_FIXED_TOP 0x10000
154 #  ifdef BN_DEBUG_RAND
155 #   define bn_pollute(a) \
156         do { \
157             const BIGNUM *_bnum1 = (a); \
158             if (_bnum1->top < _bnum1->dmax) { \
159                 unsigned char _tmp_char; \
160                 /* We cast away const without the compiler knowing, any \
161                  * *genuinely* constant variables that aren't mutable \
162                  * wouldn't be constructed with top!=dmax. */ \
163                 BN_ULONG *_not_const; \
164                 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
165                 RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
166                 memset(_not_const + _bnum1->top, _tmp_char, \
167                        sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
168             } \
169         } while(0)
170 #  else
171 #   define bn_pollute(a)
172 #  endif
173 #  define bn_check_top(a) \
174         do { \
175                 const BIGNUM *_bnum2 = (a); \
176                 if (_bnum2 != NULL) { \
177                         int _top = _bnum2->top; \
178                         (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
179                                   (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
180                                             || _bnum2->d[_top - 1] != 0))); \
181                         bn_pollute(_bnum2); \
182                 } \
183         } while(0)
184
185 #  define bn_fix_top(a)           bn_check_top(a)
186
187 #  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
188 #  define bn_wcheck_size(bn, words) \
189         do { \
190                 const BIGNUM *_bnum2 = (bn); \
191                 assert((words) <= (_bnum2)->dmax && \
192                        (words) >= (_bnum2)->top); \
193                 /* avoid unused variable warning with NDEBUG */ \
194                 (void)(_bnum2); \
195         } while(0)
196
197 # else                          /* !BN_DEBUG */
198
199 #  define BN_FLG_FIXED_TOP 0
200 #  define bn_pollute(a)
201 #  define bn_check_top(a)
202 #  define bn_fix_top(a)           bn_correct_top(a)
203 #  define bn_check_size(bn, bits)
204 #  define bn_wcheck_size(bn, words)
205
206 # endif
207
208 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
209                           BN_ULONG w);
210 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
211 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
212 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
213 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
214                       int num);
215 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
216                       int num);
217
218 struct bignum_st {
219     BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit
220                                  * chunks. */
221     int top;                    /* Index of last used d +1. */
222     /* The next are internal book keeping for bn_expand. */
223     int dmax;                   /* Size of the d array. */
224     int neg;                    /* one if the number is negative */
225     int flags;
226 };
227
228 /* Used for montgomery multiplication */
229 struct bn_mont_ctx_st {
230     int ri;                     /* number of bits in R */
231     BIGNUM RR;                  /* used to convert to montgomery form,
232                                    possibly zero-padded */
233     BIGNUM N;                   /* The modulus */
234     BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
235                                  * stored for bignum algorithm) */
236     BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
237                                  * changed with 0.9.9, was "BN_ULONG n0;"
238                                  * before) */
239     int flags;
240 };
241
242 /*
243  * Used for reciprocal division/mod functions It cannot be shared between
244  * threads
245  */
246 struct bn_recp_ctx_st {
247     BIGNUM N;                   /* the divisor */
248     BIGNUM Nr;                  /* the reciprocal */
249     int num_bits;
250     int shift;
251     int flags;
252 };
253
254 /* Used for slow "generation" functions. */
255 struct bn_gencb_st {
256     unsigned int ver;           /* To handle binary (in)compatibility */
257     void *arg;                  /* callback-specific data */
258     union {
259         /* if (ver==1) - handles old style callbacks */
260         void (*cb_1) (int, int, void *);
261         /* if (ver==2) - new callback style */
262         int (*cb_2) (int, int, BN_GENCB *);
263     } cb;
264 };
265
266 /*-
267  * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
268  *
269  *
270  * For window size 'w' (w >= 2) and a random 'b' bits exponent,
271  * the number of multiplications is a constant plus on average
272  *
273  *    2^(w-1) + (b-w)/(w+1);
274  *
275  * here  2^(w-1)  is for precomputing the table (we actually need
276  * entries only for windows that have the lowest bit set), and
277  * (b-w)/(w+1)  is an approximation for the expected number of
278  * w-bit windows, not counting the first one.
279  *
280  * Thus we should use
281  *
282  *    w >= 6  if        b > 671
283  *     w = 5  if  671 > b > 239
284  *     w = 4  if  239 > b >  79
285  *     w = 3  if   79 > b >  23
286  *    w <= 2  if   23 > b
287  *
288  * (with draws in between).  Very small exponents are often selected
289  * with low Hamming weight, so we use  w = 1  for b <= 23.
290  */
291 # define BN_window_bits_for_exponent_size(b) \
292                 ((b) > 671 ? 6 : \
293                  (b) > 239 ? 5 : \
294                  (b) >  79 ? 4 : \
295                  (b) >  23 ? 3 : 1)
296
297 /*
298  * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
299  * line width of the target processor is at least the following value.
300  */
301 # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
302 # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
303
304 /*
305  * Window sizes optimized for fixed window size modular exponentiation
306  * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
307  * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
308  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
309  * defined for cache line sizes of 32 and 64, cache line sizes where
310  * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
311  * used on processors that have a 128 byte or greater cache line size.
312  */
313 # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
314
315 #  define BN_window_bits_for_ctime_exponent_size(b) \
316                 ((b) > 937 ? 6 : \
317                  (b) > 306 ? 5 : \
318                  (b) >  89 ? 4 : \
319                  (b) >  22 ? 3 : 1)
320 #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
321
322 # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
323
324 #  define BN_window_bits_for_ctime_exponent_size(b) \
325                 ((b) > 306 ? 5 : \
326                  (b) >  89 ? 4 : \
327                  (b) >  22 ? 3 : 1)
328 #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
329
330 # endif
331
332 /* Pentium pro 16,16,16,32,64 */
333 /* Alpha       16,16,16,16.64 */
334 # define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
335 # define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
336 # define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
337 # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
338 # define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
339
340 /*
341  * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
342  * size_t was used to perform integer-only operations on pointers.  This
343  * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
344  * is still only 32 bits.  What's needed in these cases is an integer type
345  * with the same size as a pointer, which size_t is not certain to be. The
346  * only fix here is VMS-specific.
347  */
348 # if defined(OPENSSL_SYS_VMS)
349 #  if __INITIAL_POINTER_SIZE == 64
350 #   define PTR_SIZE_INT long long
351 #  else                         /* __INITIAL_POINTER_SIZE == 64 */
352 #   define PTR_SIZE_INT int
353 #  endif                        /* __INITIAL_POINTER_SIZE == 64 [else] */
354 # elif !defined(PTR_SIZE_INT)   /* defined(OPENSSL_SYS_VMS) */
355 #  define PTR_SIZE_INT size_t
356 # endif                         /* defined(OPENSSL_SYS_VMS) [else] */
357
358 # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
359 /*
360  * BN_UMULT_HIGH section.
361  * If the compiler doesn't support 2*N integer type, then you have to
362  * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
363  * shifts and additions which unavoidably results in severe performance
364  * penalties. Of course provided that the hardware is capable of producing
365  * 2*N result... That's when you normally start considering assembler
366  * implementation. However! It should be pointed out that some CPUs (e.g.,
367  * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
368  * the upper half of the product placing the result into a general
369  * purpose register. Now *if* the compiler supports inline assembler,
370  * then it's not impossible to implement the "bignum" routines (and have
371  * the compiler optimize 'em) exhibiting "native" performance in C. That's
372  * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
373  * support 2*64 integer type, which is also used here.
374  */
375 #  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
376       (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
377 #   define BN_UMULT_HIGH(a,b)          (((__uint128_t)(a)*(b))>>64)
378 #   define BN_UMULT_LOHI(low,high,a,b) ({       \
379         __uint128_t ret=(__uint128_t)(a)*(b);   \
380         (high)=ret>>64; (low)=ret;      })
381 #  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
382 #   if defined(__DECC)
383 #    include <c_asm.h>
384 #    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
385 #   elif defined(__GNUC__) && __GNUC__>=2
386 #    define BN_UMULT_HIGH(a,b)   ({     \
387         register BN_ULONG ret;          \
388         asm ("umulh     %1,%2,%0"       \
389              : "=r"(ret)                \
390              : "r"(a), "r"(b));         \
391         ret;                      })
392 #   endif                       /* compiler */
393 #  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
394 #   if defined(__GNUC__) && __GNUC__>=2
395 #    define BN_UMULT_HIGH(a,b)   ({     \
396         register BN_ULONG ret;          \
397         asm ("mulhdu    %0,%1,%2"       \
398              : "=r"(ret)                \
399              : "r"(a), "r"(b));         \
400         ret;                      })
401 #   endif                       /* compiler */
402 #  elif (defined(__x86_64) || defined(__x86_64__)) && \
403        (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
404 #   if defined(__GNUC__) && __GNUC__>=2
405 #    define BN_UMULT_HIGH(a,b)   ({     \
406         register BN_ULONG ret,discard;  \
407         asm ("mulq      %3"             \
408              : "=a"(discard),"=d"(ret)  \
409              : "a"(a), "g"(b)           \
410              : "cc");                   \
411         ret;                      })
412 #    define BN_UMULT_LOHI(low,high,a,b) \
413         asm ("mulq      %3"             \
414                 : "=a"(low),"=d"(high)  \
415                 : "a"(a),"g"(b)         \
416                 : "cc");
417 #   endif
418 #  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
419 #   if defined(_MSC_VER) && _MSC_VER>=1400
420 unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
421 unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
422                           unsigned __int64 *h);
423 #    pragma intrinsic(__umulh,_umul128)
424 #    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
425 #    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
426 #   endif
427 #  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
428 #   if defined(__GNUC__) && __GNUC__>=2
429 #    define BN_UMULT_HIGH(a,b) ({       \
430         register BN_ULONG ret;          \
431         asm ("dmultu    %1,%2"          \
432              : "=h"(ret)                \
433              : "r"(a), "r"(b) : "l");   \
434         ret;                    })
435 #    define BN_UMULT_LOHI(low,high,a,b) \
436         asm ("dmultu    %2,%3"          \
437              : "=l"(low),"=h"(high)     \
438              : "r"(a), "r"(b));
439 #   endif
440 #  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
441 #   if defined(__GNUC__) && __GNUC__>=2
442 #    define BN_UMULT_HIGH(a,b)   ({     \
443         register BN_ULONG ret;          \
444         asm ("umulh     %0,%1,%2"       \
445              : "=r"(ret)                \
446              : "r"(a), "r"(b));         \
447         ret;                      })
448 #   endif
449 #  endif                        /* cpu */
450 # endif                         /* OPENSSL_NO_ASM */
451
452 # ifdef BN_DEBUG_RAND
453 #  define bn_clear_top2max(a) \
454         { \
455         int      ind = (a)->dmax - (a)->top; \
456         BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
457         for (; ind != 0; ind--) \
458                 *(++ftl) = 0x0; \
459         }
460 # else
461 #  define bn_clear_top2max(a)
462 # endif
463
464 # ifdef BN_LLONG
465 /*******************************************************************
466  * Using the long long type, has to be twice as wide as BN_ULONG...
467  */
468 #  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
469 #  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
470
471 #  define mul_add(r,a,w,c) { \
472         BN_ULLONG t; \
473         t=(BN_ULLONG)w * (a) + (r) + (c); \
474         (r)= Lw(t); \
475         (c)= Hw(t); \
476         }
477
478 #  define mul(r,a,w,c) { \
479         BN_ULLONG t; \
480         t=(BN_ULLONG)w * (a) + (c); \
481         (r)= Lw(t); \
482         (c)= Hw(t); \
483         }
484
485 #  define sqr(r0,r1,a) { \
486         BN_ULLONG t; \
487         t=(BN_ULLONG)(a)*(a); \
488         (r0)=Lw(t); \
489         (r1)=Hw(t); \
490         }
491
492 # elif defined(BN_UMULT_LOHI)
493 #  define mul_add(r,a,w,c) {              \
494         BN_ULONG high,low,ret,tmp=(a);  \
495         ret =  (r);                     \
496         BN_UMULT_LOHI(low,high,w,tmp);  \
497         ret += (c);                     \
498         (c) =  (ret<(c))?1:0;           \
499         (c) += high;                    \
500         ret += low;                     \
501         (c) += (ret<low)?1:0;           \
502         (r) =  ret;                     \
503         }
504
505 #  define mul(r,a,w,c)    {               \
506         BN_ULONG high,low,ret,ta=(a);   \
507         BN_UMULT_LOHI(low,high,w,ta);   \
508         ret =  low + (c);               \
509         (c) =  high;                    \
510         (c) += (ret<low)?1:0;           \
511         (r) =  ret;                     \
512         }
513
514 #  define sqr(r0,r1,a)    {               \
515         BN_ULONG tmp=(a);               \
516         BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
517         }
518
519 # elif defined(BN_UMULT_HIGH)
520 #  define mul_add(r,a,w,c) {              \
521         BN_ULONG high,low,ret,tmp=(a);  \
522         ret =  (r);                     \
523         high=  BN_UMULT_HIGH(w,tmp);    \
524         ret += (c);                     \
525         low =  (w) * tmp;               \
526         (c) =  (ret<(c))?1:0;           \
527         (c) += high;                    \
528         ret += low;                     \
529         (c) += (ret<low)?1:0;           \
530         (r) =  ret;                     \
531         }
532
533 #  define mul(r,a,w,c)    {               \
534         BN_ULONG high,low,ret,ta=(a);   \
535         low =  (w) * ta;                \
536         high=  BN_UMULT_HIGH(w,ta);     \
537         ret =  low + (c);               \
538         (c) =  high;                    \
539         (c) += (ret<low)?1:0;           \
540         (r) =  ret;                     \
541         }
542
543 #  define sqr(r0,r1,a)    {               \
544         BN_ULONG tmp=(a);               \
545         (r0) = tmp * tmp;               \
546         (r1) = BN_UMULT_HIGH(tmp,tmp);  \
547         }
548
549 # else
550 /*************************************************************
551  * No long long type
552  */
553
554 #  define LBITS(a)        ((a)&BN_MASK2l)
555 #  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
556 #  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
557
558 #  define LLBITS(a)       ((a)&BN_MASKl)
559 #  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
560 #  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
561
562 #  define mul64(l,h,bl,bh) \
563         { \
564         BN_ULONG m,m1,lt,ht; \
565  \
566         lt=l; \
567         ht=h; \
568         m =(bh)*(lt); \
569         lt=(bl)*(lt); \
570         m1=(bl)*(ht); \
571         ht =(bh)*(ht); \
572         m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
573         ht+=HBITS(m); \
574         m1=L2HBITS(m); \
575         lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
576         (l)=lt; \
577         (h)=ht; \
578         }
579
580 #  define sqr64(lo,ho,in) \
581         { \
582         BN_ULONG l,h,m; \
583  \
584         h=(in); \
585         l=LBITS(h); \
586         h=HBITS(h); \
587         m =(l)*(h); \
588         l*=l; \
589         h*=h; \
590         h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
591         m =(m&BN_MASK2l)<<(BN_BITS4+1); \
592         l=(l+m)&BN_MASK2; if (l < m) h++; \
593         (lo)=l; \
594         (ho)=h; \
595         }
596
597 #  define mul_add(r,a,bl,bh,c) { \
598         BN_ULONG l,h; \
599  \
600         h= (a); \
601         l=LBITS(h); \
602         h=HBITS(h); \
603         mul64(l,h,(bl),(bh)); \
604  \
605         /* non-multiply part */ \
606         l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
607         (c)=(r); \
608         l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
609         (c)=h&BN_MASK2; \
610         (r)=l; \
611         }
612
613 #  define mul(r,a,bl,bh,c) { \
614         BN_ULONG l,h; \
615  \
616         h= (a); \
617         l=LBITS(h); \
618         h=HBITS(h); \
619         mul64(l,h,(bl),(bh)); \
620  \
621         /* non-multiply part */ \
622         l+=(c); if ((l&BN_MASK2) < (c)) h++; \
623         (c)=h&BN_MASK2; \
624         (r)=l&BN_MASK2; \
625         }
626 # endif                         /* !BN_LLONG */
627
628 void BN_RECP_CTX_init(BN_RECP_CTX *recp);
629 void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
630
631 void bn_init(BIGNUM *a);
632 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
633 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
634 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
635 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
636 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
637 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
638 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
639 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
640 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
641                       int dna, int dnb, BN_ULONG *t);
642 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
643                            int n, int tna, int tnb, BN_ULONG *t);
644 void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
645 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
646 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
647                           BN_ULONG *t);
648 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
649                            int cl, int dl);
650 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
651                 const BN_ULONG *np, const BN_ULONG *n0, int num);
652
653 BIGNUM *int_bn_mod_inverse(BIGNUM *in,
654                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
655                            int *noinv);
656
657 int bn_probable_prime_dh(BIGNUM *rnd, int bits,
658                          const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
659
660 static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
661 {
662     if (bits > (INT_MAX - BN_BITS2 + 1))
663         return NULL;
664
665     if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
666         return a;
667
668     return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
669 }
670
671 #endif