Reduce inputs before the RSAZ code.
[openssl.git] / crypto / bn / bn_exp.c
1 /*
2  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include "internal/cryptlib.h"
11 #include "internal/constant_time_locl.h"
12 #include "bn_lcl.h"
13
14 #include <stdlib.h>
15 #ifdef _WIN32
16 # include <malloc.h>
17 # ifndef alloca
18 #  define alloca _alloca
19 # endif
20 #elif defined(__GNUC__)
21 # ifndef alloca
22 #  define alloca(s) __builtin_alloca((s))
23 # endif
24 #elif defined(__sun)
25 # include <alloca.h>
26 #endif
27
28 #include "rsaz_exp.h"
29
30 #undef SPARC_T4_MONT
31 #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
32 # include "sparc_arch.h"
33 extern unsigned int OPENSSL_sparcv9cap_P[];
34 # define SPARC_T4_MONT
35 #endif
36
37 /* maximum precomputation table size for *variable* sliding windows */
38 #define TABLE_SIZE      32
39
40 /* this one works - simple but works */
41 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
42 {
43     int i, bits, ret = 0;
44     BIGNUM *v, *rr;
45
46     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
47             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
48         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
49         BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
50         return 0;
51     }
52
53     BN_CTX_start(ctx);
54     rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
55     v = BN_CTX_get(ctx);
56     if (rr == NULL || v == NULL)
57         goto err;
58
59     if (BN_copy(v, a) == NULL)
60         goto err;
61     bits = BN_num_bits(p);
62
63     if (BN_is_odd(p)) {
64         if (BN_copy(rr, a) == NULL)
65             goto err;
66     } else {
67         if (!BN_one(rr))
68             goto err;
69     }
70
71     for (i = 1; i < bits; i++) {
72         if (!BN_sqr(v, v, ctx))
73             goto err;
74         if (BN_is_bit_set(p, i)) {
75             if (!BN_mul(rr, rr, v, ctx))
76                 goto err;
77         }
78     }
79     if (r != rr && BN_copy(r, rr) == NULL)
80         goto err;
81
82     ret = 1;
83  err:
84     BN_CTX_end(ctx);
85     bn_check_top(r);
86     return ret;
87 }
88
89 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
90                BN_CTX *ctx)
91 {
92     int ret;
93
94     bn_check_top(a);
95     bn_check_top(p);
96     bn_check_top(m);
97
98     /*-
99      * For even modulus  m = 2^k*m_odd, it might make sense to compute
100      * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
101      * exponentiation for the odd part), using appropriate exponent
102      * reductions, and combine the results using the CRT.
103      *
104      * For now, we use Montgomery only if the modulus is odd; otherwise,
105      * exponentiation using the reciprocal-based quick remaindering
106      * algorithm is used.
107      *
108      * (Timing obtained with expspeed.c [computations  a^p mod m
109      * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
110      * 4096, 8192 bits], compared to the running time of the
111      * standard algorithm:
112      *
113      *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
114      *                     55 .. 77 %  [UltraSparc processor, but
115      *                                  debug-solaris-sparcv8-gcc conf.]
116      *
117      *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
118      *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
119      *
120      * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
121      * at 2048 and more bits, but at 512 and 1024 bits, it was
122      * slower even than the standard algorithm!
123      *
124      * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
125      * should be obtained when the new Montgomery reduction code
126      * has been integrated into OpenSSL.)
127      */
128
129 #define MONT_MUL_MOD
130 #define MONT_EXP_WORD
131 #define RECP_MUL_MOD
132
133 #ifdef MONT_MUL_MOD
134     if (BN_is_odd(m)) {
135 # ifdef MONT_EXP_WORD
136         if (a->top == 1 && !a->neg
137             && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
138             && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
139             && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
140             BN_ULONG A = a->d[0];
141             ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
142         } else
143 # endif
144             ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
145     } else
146 #endif
147 #ifdef RECP_MUL_MOD
148     {
149         ret = BN_mod_exp_recp(r, a, p, m, ctx);
150     }
151 #else
152     {
153         ret = BN_mod_exp_simple(r, a, p, m, ctx);
154     }
155 #endif
156
157     bn_check_top(r);
158     return ret;
159 }
160
161 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
162                     const BIGNUM *m, BN_CTX *ctx)
163 {
164     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
165     int start = 1;
166     BIGNUM *aa;
167     /* Table of variables obtained from 'ctx' */
168     BIGNUM *val[TABLE_SIZE];
169     BN_RECP_CTX recp;
170
171     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
172             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
173             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
174         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
175         BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
176         return 0;
177     }
178
179     bits = BN_num_bits(p);
180     if (bits == 0) {
181         /* x**0 mod 1, or x**0 mod -1 is still zero. */
182         if (BN_abs_is_word(m, 1)) {
183             ret = 1;
184             BN_zero(r);
185         } else {
186             ret = BN_one(r);
187         }
188         return ret;
189     }
190
191     BN_CTX_start(ctx);
192     aa = BN_CTX_get(ctx);
193     val[0] = BN_CTX_get(ctx);
194     if (val[0] == NULL)
195         goto err;
196
197     BN_RECP_CTX_init(&recp);
198     if (m->neg) {
199         /* ignore sign of 'm' */
200         if (!BN_copy(aa, m))
201             goto err;
202         aa->neg = 0;
203         if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
204             goto err;
205     } else {
206         if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
207             goto err;
208     }
209
210     if (!BN_nnmod(val[0], a, m, ctx))
211         goto err;               /* 1 */
212     if (BN_is_zero(val[0])) {
213         BN_zero(r);
214         ret = 1;
215         goto err;
216     }
217
218     window = BN_window_bits_for_exponent_size(bits);
219     if (window > 1) {
220         if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
221             goto err;           /* 2 */
222         j = 1 << (window - 1);
223         for (i = 1; i < j; i++) {
224             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
225                 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
226                 goto err;
227         }
228     }
229
230     start = 1;                  /* This is used to avoid multiplication etc
231                                  * when there is only the value '1' in the
232                                  * buffer. */
233     wvalue = 0;                 /* The 'value' of the window */
234     wstart = bits - 1;          /* The top bit of the window */
235     wend = 0;                   /* The bottom bit of the window */
236
237     if (!BN_one(r))
238         goto err;
239
240     for (;;) {
241         if (BN_is_bit_set(p, wstart) == 0) {
242             if (!start)
243                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
244                     goto err;
245             if (wstart == 0)
246                 break;
247             wstart--;
248             continue;
249         }
250         /*
251          * We now have wstart on a 'set' bit, we now need to work out how bit
252          * a window to do.  To do this we need to scan forward until the last
253          * set bit before the end of the window
254          */
255         j = wstart;
256         wvalue = 1;
257         wend = 0;
258         for (i = 1; i < window; i++) {
259             if (wstart - i < 0)
260                 break;
261             if (BN_is_bit_set(p, wstart - i)) {
262                 wvalue <<= (i - wend);
263                 wvalue |= 1;
264                 wend = i;
265             }
266         }
267
268         /* wend is the size of the current window */
269         j = wend + 1;
270         /* add the 'bytes above' */
271         if (!start)
272             for (i = 0; i < j; i++) {
273                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
274                     goto err;
275             }
276
277         /* wvalue will be an odd number < 2^window */
278         if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
279             goto err;
280
281         /* move the 'window' down further */
282         wstart -= wend + 1;
283         wvalue = 0;
284         start = 0;
285         if (wstart < 0)
286             break;
287     }
288     ret = 1;
289  err:
290     BN_CTX_end(ctx);
291     BN_RECP_CTX_free(&recp);
292     bn_check_top(r);
293     return ret;
294 }
295
296 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
297                     const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
298 {
299     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
300     int start = 1;
301     BIGNUM *d, *r;
302     const BIGNUM *aa;
303     /* Table of variables obtained from 'ctx' */
304     BIGNUM *val[TABLE_SIZE];
305     BN_MONT_CTX *mont = NULL;
306
307     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
308             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
309             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
310         return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
311     }
312
313     bn_check_top(a);
314     bn_check_top(p);
315     bn_check_top(m);
316
317     if (!BN_is_odd(m)) {
318         BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
319         return 0;
320     }
321     bits = BN_num_bits(p);
322     if (bits == 0) {
323         /* x**0 mod 1, or x**0 mod -1 is still zero. */
324         if (BN_abs_is_word(m, 1)) {
325             ret = 1;
326             BN_zero(rr);
327         } else {
328             ret = BN_one(rr);
329         }
330         return ret;
331     }
332
333     BN_CTX_start(ctx);
334     d = BN_CTX_get(ctx);
335     r = BN_CTX_get(ctx);
336     val[0] = BN_CTX_get(ctx);
337     if (val[0] == NULL)
338         goto err;
339
340     /*
341      * If this is not done, things will break in the montgomery part
342      */
343
344     if (in_mont != NULL)
345         mont = in_mont;
346     else {
347         if ((mont = BN_MONT_CTX_new()) == NULL)
348             goto err;
349         if (!BN_MONT_CTX_set(mont, m, ctx))
350             goto err;
351     }
352
353     if (a->neg || BN_ucmp(a, m) >= 0) {
354         if (!BN_nnmod(val[0], a, m, ctx))
355             goto err;
356         aa = val[0];
357     } else
358         aa = a;
359     if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
360         goto err;               /* 1 */
361
362     window = BN_window_bits_for_exponent_size(bits);
363     if (window > 1) {
364         if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
365             goto err;           /* 2 */
366         j = 1 << (window - 1);
367         for (i = 1; i < j; i++) {
368             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
369                 !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
370                 goto err;
371         }
372     }
373
374     start = 1;                  /* This is used to avoid multiplication etc
375                                  * when there is only the value '1' in the
376                                  * buffer. */
377     wvalue = 0;                 /* The 'value' of the window */
378     wstart = bits - 1;          /* The top bit of the window */
379     wend = 0;                   /* The bottom bit of the window */
380
381 #if 1                           /* by Shay Gueron's suggestion */
382     j = m->top;                 /* borrow j */
383     if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
384         if (bn_wexpand(r, j) == NULL)
385             goto err;
386         /* 2^(top*BN_BITS2) - m */
387         r->d[0] = (0 - m->d[0]) & BN_MASK2;
388         for (i = 1; i < j; i++)
389             r->d[i] = (~m->d[i]) & BN_MASK2;
390         r->top = j;
391         r->flags |= BN_FLG_FIXED_TOP;
392     } else
393 #endif
394     if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
395         goto err;
396     for (;;) {
397         if (BN_is_bit_set(p, wstart) == 0) {
398             if (!start) {
399                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
400                     goto err;
401             }
402             if (wstart == 0)
403                 break;
404             wstart--;
405             continue;
406         }
407         /*
408          * We now have wstart on a 'set' bit, we now need to work out how bit
409          * a window to do.  To do this we need to scan forward until the last
410          * set bit before the end of the window
411          */
412         j = wstart;
413         wvalue = 1;
414         wend = 0;
415         for (i = 1; i < window; i++) {
416             if (wstart - i < 0)
417                 break;
418             if (BN_is_bit_set(p, wstart - i)) {
419                 wvalue <<= (i - wend);
420                 wvalue |= 1;
421                 wend = i;
422             }
423         }
424
425         /* wend is the size of the current window */
426         j = wend + 1;
427         /* add the 'bytes above' */
428         if (!start)
429             for (i = 0; i < j; i++) {
430                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
431                     goto err;
432             }
433
434         /* wvalue will be an odd number < 2^window */
435         if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
436             goto err;
437
438         /* move the 'window' down further */
439         wstart -= wend + 1;
440         wvalue = 0;
441         start = 0;
442         if (wstart < 0)
443             break;
444     }
445     /*
446      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
447      * removes padding [if any] and makes return value suitable for public
448      * API consumer.
449      */
450 #if defined(SPARC_T4_MONT)
451     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
452         j = mont->N.top;        /* borrow j */
453         val[0]->d[0] = 1;       /* borrow val[0] */
454         for (i = 1; i < j; i++)
455             val[0]->d[i] = 0;
456         val[0]->top = j;
457         if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
458             goto err;
459     } else
460 #endif
461     if (!BN_from_montgomery(rr, r, mont, ctx))
462         goto err;
463     ret = 1;
464  err:
465     if (in_mont == NULL)
466         BN_MONT_CTX_free(mont);
467     BN_CTX_end(ctx);
468     bn_check_top(rr);
469     return ret;
470 }
471
472 static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
473 {
474     BN_ULONG ret = 0;
475     int wordpos;
476
477     wordpos = bitpos / BN_BITS2;
478     bitpos %= BN_BITS2;
479     if (wordpos >= 0 && wordpos < a->top) {
480         ret = a->d[wordpos] & BN_MASK2;
481         if (bitpos) {
482             ret >>= bitpos;
483             if (++wordpos < a->top)
484                 ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
485         }
486     }
487
488     return ret & BN_MASK2;
489 }
490
491 /*
492  * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
493  * layout so that accessing any of these table values shows the same access
494  * pattern as far as cache lines are concerned.  The following functions are
495  * used to transfer a BIGNUM from/to that table.
496  */
497
498 static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
499                                         unsigned char *buf, int idx,
500                                         int window)
501 {
502     int i, j;
503     int width = 1 << window;
504     BN_ULONG *table = (BN_ULONG *)buf;
505
506     if (top > b->top)
507         top = b->top;           /* this works because 'buf' is explicitly
508                                  * zeroed */
509     for (i = 0, j = idx; i < top; i++, j += width) {
510         table[j] = b->d[i];
511     }
512
513     return 1;
514 }
515
516 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
517                                           unsigned char *buf, int idx,
518                                           int window)
519 {
520     int i, j;
521     int width = 1 << window;
522     /*
523      * We declare table 'volatile' in order to discourage compiler
524      * from reordering loads from the table. Concern is that if
525      * reordered in specific manner loads might give away the
526      * information we are trying to conceal. Some would argue that
527      * compiler can reorder them anyway, but it can as well be
528      * argued that doing so would be violation of standard...
529      */
530     volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
531
532     if (bn_wexpand(b, top) == NULL)
533         return 0;
534
535     if (window <= 3) {
536         for (i = 0; i < top; i++, table += width) {
537             BN_ULONG acc = 0;
538
539             for (j = 0; j < width; j++) {
540                 acc |= table[j] &
541                        ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
542             }
543
544             b->d[i] = acc;
545         }
546     } else {
547         int xstride = 1 << (window - 2);
548         BN_ULONG y0, y1, y2, y3;
549
550         i = idx >> (window - 2);        /* equivalent of idx / xstride */
551         idx &= xstride - 1;             /* equivalent of idx % xstride */
552
553         y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
554         y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
555         y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
556         y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
557
558         for (i = 0; i < top; i++, table += width) {
559             BN_ULONG acc = 0;
560
561             for (j = 0; j < xstride; j++) {
562                 acc |= ( (table[j + 0 * xstride] & y0) |
563                          (table[j + 1 * xstride] & y1) |
564                          (table[j + 2 * xstride] & y2) |
565                          (table[j + 3 * xstride] & y3) )
566                        & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
567             }
568
569             b->d[i] = acc;
570         }
571     }
572
573     b->top = top;
574     b->flags |= BN_FLG_FIXED_TOP;
575     return 1;
576 }
577
578 /*
579  * Given a pointer value, compute the next address that is a cache line
580  * multiple.
581  */
582 #define MOD_EXP_CTIME_ALIGN(x_) \
583         ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
584
585 /*
586  * This variant of BN_mod_exp_mont() uses fixed windows and the special
587  * precomputation memory layout to limit data-dependency to a minimum to
588  * protect secret exponents (cf. the hyper-threading timing attacks pointed
589  * out by Colin Percival,
590  * http://www.daemonology.net/hyperthreading-considered-harmful/)
591  */
592 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
593                               const BIGNUM *m, BN_CTX *ctx,
594                               BN_MONT_CTX *in_mont)
595 {
596     int i, bits, ret = 0, window, wvalue, wmask, window0;
597     int top;
598     BN_MONT_CTX *mont = NULL;
599
600     int numPowers;
601     unsigned char *powerbufFree = NULL;
602     int powerbufLen = 0;
603     unsigned char *powerbuf = NULL;
604     BIGNUM tmp, am;
605 #if defined(SPARC_T4_MONT)
606     unsigned int t4 = 0;
607 #endif
608
609     bn_check_top(a);
610     bn_check_top(p);
611     bn_check_top(m);
612
613     if (!BN_is_odd(m)) {
614         BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
615         return 0;
616     }
617
618     top = m->top;
619
620     /*
621      * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
622      * whether the top bits are zero.
623      */
624     bits = p->top * BN_BITS2;
625     if (bits == 0) {
626         /* x**0 mod 1, or x**0 mod -1 is still zero. */
627         if (BN_abs_is_word(m, 1)) {
628             ret = 1;
629             BN_zero(rr);
630         } else {
631             ret = BN_one(rr);
632         }
633         return ret;
634     }
635
636     BN_CTX_start(ctx);
637
638     /*
639      * Allocate a montgomery context if it was not supplied by the caller. If
640      * this is not done, things will break in the montgomery part.
641      */
642     if (in_mont != NULL)
643         mont = in_mont;
644     else {
645         if ((mont = BN_MONT_CTX_new()) == NULL)
646             goto err;
647         if (!BN_MONT_CTX_set(mont, m, ctx))
648             goto err;
649     }
650
651     if (a->neg || BN_ucmp(a, m) >= 0) {
652         BIGNUM *reduced = BN_CTX_get(ctx);
653         if (reduced == NULL
654             || !BN_nnmod(reduced, a, m, ctx)) {
655             goto err;
656         }
657         a = reduced;
658     }
659
660 #ifdef RSAZ_ENABLED
661     /*
662      * If the size of the operands allow it, perform the optimized
663      * RSAZ exponentiation. For further information see
664      * crypto/bn/rsaz_exp.c and accompanying assembly modules.
665      */
666     if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
667         && rsaz_avx2_eligible()) {
668         if (NULL == bn_wexpand(rr, 16))
669             goto err;
670         RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
671                                mont->n0[0]);
672         rr->top = 16;
673         rr->neg = 0;
674         bn_correct_top(rr);
675         ret = 1;
676         goto err;
677     } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
678         if (NULL == bn_wexpand(rr, 8))
679             goto err;
680         RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
681         rr->top = 8;
682         rr->neg = 0;
683         bn_correct_top(rr);
684         ret = 1;
685         goto err;
686     }
687 #endif
688
689     /* Get the window size to use with size of p. */
690     window = BN_window_bits_for_ctime_exponent_size(bits);
691 #if defined(SPARC_T4_MONT)
692     if (window >= 5 && (top & 15) == 0 && top <= 64 &&
693         (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
694         (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
695         window = 5;
696     else
697 #endif
698 #if defined(OPENSSL_BN_ASM_MONT5)
699     if (window >= 5) {
700         window = 5;             /* ~5% improvement for RSA2048 sign, and even
701                                  * for RSA4096 */
702         /* reserve space for mont->N.d[] copy */
703         powerbufLen += top * sizeof(mont->N.d[0]);
704     }
705 #endif
706     (void)0;
707
708     /*
709      * Allocate a buffer large enough to hold all of the pre-computed powers
710      * of am, am itself and tmp.
711      */
712     numPowers = 1 << window;
713     powerbufLen += sizeof(m->d[0]) * (top * numPowers +
714                                       ((2 * top) >
715                                        numPowers ? (2 * top) : numPowers));
716 #ifdef alloca
717     if (powerbufLen < 3072)
718         powerbufFree =
719             alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
720     else
721 #endif
722         if ((powerbufFree =
723              OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
724             == NULL)
725         goto err;
726
727     powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
728     memset(powerbuf, 0, powerbufLen);
729
730 #ifdef alloca
731     if (powerbufLen < 3072)
732         powerbufFree = NULL;
733 #endif
734
735     /* lay down tmp and am right after powers table */
736     tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
737     am.d = tmp.d + top;
738     tmp.top = am.top = 0;
739     tmp.dmax = am.dmax = top;
740     tmp.neg = am.neg = 0;
741     tmp.flags = am.flags = BN_FLG_STATIC_DATA;
742
743     /* prepare a^0 in Montgomery domain */
744 #if 1                           /* by Shay Gueron's suggestion */
745     if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
746         /* 2^(top*BN_BITS2) - m */
747         tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
748         for (i = 1; i < top; i++)
749             tmp.d[i] = (~m->d[i]) & BN_MASK2;
750         tmp.top = top;
751     } else
752 #endif
753     if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
754         goto err;
755
756     /* prepare a^1 in Montgomery domain */
757     if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
758         goto err;
759
760 #if defined(SPARC_T4_MONT)
761     if (t4) {
762         typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
763                                        const BN_ULONG *n0, const void *table,
764                                        int power, int bits);
765         int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
766                               const BN_ULONG *n0, const void *table,
767                               int power, int bits);
768         int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
769                                const BN_ULONG *n0, const void *table,
770                                int power, int bits);
771         int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
772                                const BN_ULONG *n0, const void *table,
773                                int power, int bits);
774         int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
775                                const BN_ULONG *n0, const void *table,
776                                int power, int bits);
777         static const bn_pwr5_mont_f pwr5_funcs[4] = {
778             bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
779             bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
780         };
781         bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
782
783         typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
784                                       const void *bp, const BN_ULONG *np,
785                                       const BN_ULONG *n0);
786         int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
787                              const BN_ULONG *np, const BN_ULONG *n0);
788         int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
789                               const void *bp, const BN_ULONG *np,
790                               const BN_ULONG *n0);
791         int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
792                               const void *bp, const BN_ULONG *np,
793                               const BN_ULONG *n0);
794         int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
795                               const void *bp, const BN_ULONG *np,
796                               const BN_ULONG *n0);
797         static const bn_mul_mont_f mul_funcs[4] = {
798             bn_mul_mont_t4_8, bn_mul_mont_t4_16,
799             bn_mul_mont_t4_24, bn_mul_mont_t4_32
800         };
801         bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
802
803         void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
804                               const void *bp, const BN_ULONG *np,
805                               const BN_ULONG *n0, int num);
806         void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
807                             const void *bp, const BN_ULONG *np,
808                             const BN_ULONG *n0, int num);
809         void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
810                                     const void *table, const BN_ULONG *np,
811                                     const BN_ULONG *n0, int num, int power);
812         void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
813                                    void *table, size_t power);
814         void bn_gather5_t4(BN_ULONG *out, size_t num,
815                            void *table, size_t power);
816         void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
817
818         BN_ULONG *np = mont->N.d, *n0 = mont->n0;
819         int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
820                                                 * than 32 */
821
822         /*
823          * BN_to_montgomery can contaminate words above .top [in
824          * BN_DEBUG[_DEBUG] build]...
825          */
826         for (i = am.top; i < top; i++)
827             am.d[i] = 0;
828         for (i = tmp.top; i < top; i++)
829             tmp.d[i] = 0;
830
831         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
832         bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
833         if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
834             !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
835             bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
836         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
837
838         for (i = 3; i < 32; i++) {
839             /* Calculate a^i = a^(i-1) * a */
840             if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
841                 !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
842                 bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
843             bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
844         }
845
846         /* switch to 64-bit domain */
847         np = alloca(top * sizeof(BN_ULONG));
848         top /= 2;
849         bn_flip_t4(np, mont->N.d, top);
850
851         /*
852          * The exponent may not have a whole number of fixed-size windows.
853          * To simplify the main loop, the initial window has between 1 and
854          * full-window-size bits such that what remains is always a whole
855          * number of windows
856          */
857         window0 = (bits - 1) % 5 + 1;
858         wmask = (1 << window0) - 1;
859         bits -= window0;
860         wvalue = bn_get_bits(p, bits) & wmask;
861         bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
862
863         /*
864          * Scan the exponent one window at a time starting from the most
865          * significant bits.
866          */
867         while (bits > 0) {
868             if (bits < stride)
869                 stride = bits;
870             bits -= stride;
871             wvalue = bn_get_bits(p, bits);
872
873             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
874                 continue;
875             /* retry once and fall back */
876             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
877                 continue;
878
879             bits += stride - 5;
880             wvalue >>= stride - 5;
881             wvalue &= 31;
882             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
883             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
884             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
885             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
886             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
887             bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
888                                    wvalue);
889         }
890
891         bn_flip_t4(tmp.d, tmp.d, top);
892         top *= 2;
893         /* back to 32-bit domain */
894         tmp.top = top;
895         bn_correct_top(&tmp);
896         OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
897     } else
898 #endif
899 #if defined(OPENSSL_BN_ASM_MONT5)
900     if (window == 5 && top > 1) {
901         /*
902          * This optimization uses ideas from http://eprint.iacr.org/2011/239,
903          * specifically optimization of cache-timing attack countermeasures
904          * and pre-computation optimization.
905          */
906
907         /*
908          * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
909          * 512-bit RSA is hardly relevant, we omit it to spare size...
910          */
911         void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
912                                  const void *table, const BN_ULONG *np,
913                                  const BN_ULONG *n0, int num, int power);
914         void bn_scatter5(const BN_ULONG *inp, size_t num,
915                          void *table, size_t power);
916         void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
917         void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
918                        const void *table, const BN_ULONG *np,
919                        const BN_ULONG *n0, int num, int power);
920         int bn_get_bits5(const BN_ULONG *ap, int off);
921         int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
922                                const BN_ULONG *not_used, const BN_ULONG *np,
923                                const BN_ULONG *n0, int num);
924
925         BN_ULONG *n0 = mont->n0, *np;
926
927         /*
928          * BN_to_montgomery can contaminate words above .top [in
929          * BN_DEBUG[_DEBUG] build]...
930          */
931         for (i = am.top; i < top; i++)
932             am.d[i] = 0;
933         for (i = tmp.top; i < top; i++)
934             tmp.d[i] = 0;
935
936         /*
937          * copy mont->N.d[] to improve cache locality
938          */
939         for (np = am.d + top, i = 0; i < top; i++)
940             np[i] = mont->N.d[i];
941
942         bn_scatter5(tmp.d, top, powerbuf, 0);
943         bn_scatter5(am.d, am.top, powerbuf, 1);
944         bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
945         bn_scatter5(tmp.d, top, powerbuf, 2);
946
947 # if 0
948         for (i = 3; i < 32; i++) {
949             /* Calculate a^i = a^(i-1) * a */
950             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
951             bn_scatter5(tmp.d, top, powerbuf, i);
952         }
953 # else
954         /* same as above, but uses squaring for 1/2 of operations */
955         for (i = 4; i < 32; i *= 2) {
956             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
957             bn_scatter5(tmp.d, top, powerbuf, i);
958         }
959         for (i = 3; i < 8; i += 2) {
960             int j;
961             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
962             bn_scatter5(tmp.d, top, powerbuf, i);
963             for (j = 2 * i; j < 32; j *= 2) {
964                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
965                 bn_scatter5(tmp.d, top, powerbuf, j);
966             }
967         }
968         for (; i < 16; i += 2) {
969             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
970             bn_scatter5(tmp.d, top, powerbuf, i);
971             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
972             bn_scatter5(tmp.d, top, powerbuf, 2 * i);
973         }
974         for (; i < 32; i += 2) {
975             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
976             bn_scatter5(tmp.d, top, powerbuf, i);
977         }
978 # endif
979         /*
980          * The exponent may not have a whole number of fixed-size windows.
981          * To simplify the main loop, the initial window has between 1 and
982          * full-window-size bits such that what remains is always a whole
983          * number of windows
984          */
985         window0 = (bits - 1) % 5 + 1;
986         wmask = (1 << window0) - 1;
987         bits -= window0;
988         wvalue = bn_get_bits(p, bits) & wmask;
989         bn_gather5(tmp.d, top, powerbuf, wvalue);
990
991         /*
992          * Scan the exponent one window at a time starting from the most
993          * significant bits.
994          */
995         if (top & 7) {
996             while (bits > 0) {
997                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
998                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
999                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1000                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1001                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1002                 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
1003                                     bn_get_bits5(p->d, bits -= 5));
1004             }
1005         } else {
1006             while (bits > 0) {
1007                 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
1008                           bn_get_bits5(p->d, bits -= 5));
1009             }
1010         }
1011
1012         ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
1013         tmp.top = top;
1014         bn_correct_top(&tmp);
1015         if (ret) {
1016             if (!BN_copy(rr, &tmp))
1017                 ret = 0;
1018             goto err;           /* non-zero ret means it's not error */
1019         }
1020     } else
1021 #endif
1022     {
1023         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
1024             goto err;
1025         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
1026             goto err;
1027
1028         /*
1029          * If the window size is greater than 1, then calculate
1030          * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
1031          * powers could instead be computed as (a^(i/2))^2 to use the slight
1032          * performance advantage of sqr over mul).
1033          */
1034         if (window > 1) {
1035             if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
1036                 goto err;
1037             if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
1038                                               window))
1039                 goto err;
1040             for (i = 3; i < numPowers; i++) {
1041                 /* Calculate a^i = a^(i-1) * a */
1042                 if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
1043                     goto err;
1044                 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
1045                                                   window))
1046                     goto err;
1047             }
1048         }
1049
1050         /*
1051          * The exponent may not have a whole number of fixed-size windows.
1052          * To simplify the main loop, the initial window has between 1 and
1053          * full-window-size bits such that what remains is always a whole
1054          * number of windows
1055          */
1056         window0 = (bits - 1) % window + 1;
1057         wmask = (1 << window0) - 1;
1058         bits -= window0;
1059         wvalue = bn_get_bits(p, bits) & wmask;
1060         if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
1061                                             window))
1062             goto err;
1063
1064         wmask = (1 << window) - 1;
1065         /*
1066          * Scan the exponent one window at a time starting from the most
1067          * significant bits.
1068          */
1069         while (bits > 0) {
1070
1071             /* Square the result window-size times */
1072             for (i = 0; i < window; i++)
1073                 if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
1074                     goto err;
1075
1076             /*
1077              * Get a window's worth of bits from the exponent
1078              * This avoids calling BN_is_bit_set for each bit, which
1079              * is not only slower but also makes each bit vulnerable to
1080              * EM (and likely other) side-channel attacks like One&Done
1081              * (for details see "One&Done: A Single-Decryption EM-Based
1082              *  Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
1083              *  H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
1084              *  M. Prvulovic, in USENIX Security'18)
1085              */
1086             bits -= window;
1087             wvalue = bn_get_bits(p, bits) & wmask;
1088             /*
1089              * Fetch the appropriate pre-computed value from the pre-buf
1090              */
1091             if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
1092                                                 window))
1093                 goto err;
1094
1095             /* Multiply the result into the intermediate result */
1096             if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
1097                 goto err;
1098         }
1099     }
1100
1101     /*
1102      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
1103      * removes padding [if any] and makes return value suitable for public
1104      * API consumer.
1105      */
1106 #if defined(SPARC_T4_MONT)
1107     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
1108         am.d[0] = 1;            /* borrow am */
1109         for (i = 1; i < top; i++)
1110             am.d[i] = 0;
1111         if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
1112             goto err;
1113     } else
1114 #endif
1115     if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1116         goto err;
1117     ret = 1;
1118  err:
1119     if (in_mont == NULL)
1120         BN_MONT_CTX_free(mont);
1121     if (powerbuf != NULL) {
1122         OPENSSL_cleanse(powerbuf, powerbufLen);
1123         OPENSSL_free(powerbufFree);
1124     }
1125     BN_CTX_end(ctx);
1126     return ret;
1127 }
1128
1129 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1130                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1131 {
1132     BN_MONT_CTX *mont = NULL;
1133     int b, bits, ret = 0;
1134     int r_is_one;
1135     BN_ULONG w, next_w;
1136     BIGNUM *r, *t;
1137     BIGNUM *swap_tmp;
1138 #define BN_MOD_MUL_WORD(r, w, m) \
1139                 (BN_mul_word(r, (w)) && \
1140                 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
1141                         (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1142     /*
1143      * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1144      * probably more overhead than always using BN_mod (which uses BN_copy if
1145      * a similar test returns true).
1146      */
1147     /*
1148      * We can use BN_mod and do not need BN_nnmod because our accumulator is
1149      * never negative (the result of BN_mod does not depend on the sign of
1150      * the modulus).
1151      */
1152 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1153                 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1154
1155     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1156             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1157         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1158         BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1159         return 0;
1160     }
1161
1162     bn_check_top(p);
1163     bn_check_top(m);
1164
1165     if (!BN_is_odd(m)) {
1166         BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
1167         return 0;
1168     }
1169     if (m->top == 1)
1170         a %= m->d[0];           /* make sure that 'a' is reduced */
1171
1172     bits = BN_num_bits(p);
1173     if (bits == 0) {
1174         /* x**0 mod 1, or x**0 mod -1 is still zero. */
1175         if (BN_abs_is_word(m, 1)) {
1176             ret = 1;
1177             BN_zero(rr);
1178         } else {
1179             ret = BN_one(rr);
1180         }
1181         return ret;
1182     }
1183     if (a == 0) {
1184         BN_zero(rr);
1185         ret = 1;
1186         return ret;
1187     }
1188
1189     BN_CTX_start(ctx);
1190     r = BN_CTX_get(ctx);
1191     t = BN_CTX_get(ctx);
1192     if (t == NULL)
1193         goto err;
1194
1195     if (in_mont != NULL)
1196         mont = in_mont;
1197     else {
1198         if ((mont = BN_MONT_CTX_new()) == NULL)
1199             goto err;
1200         if (!BN_MONT_CTX_set(mont, m, ctx))
1201             goto err;
1202     }
1203
1204     r_is_one = 1;               /* except for Montgomery factor */
1205
1206     /* bits-1 >= 0 */
1207
1208     /* The result is accumulated in the product r*w. */
1209     w = a;                      /* bit 'bits-1' of 'p' is always set */
1210     for (b = bits - 2; b >= 0; b--) {
1211         /* First, square r*w. */
1212         next_w = w * w;
1213         if ((next_w / w) != w) { /* overflow */
1214             if (r_is_one) {
1215                 if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1216                     goto err;
1217                 r_is_one = 0;
1218             } else {
1219                 if (!BN_MOD_MUL_WORD(r, w, m))
1220                     goto err;
1221             }
1222             next_w = 1;
1223         }
1224         w = next_w;
1225         if (!r_is_one) {
1226             if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
1227                 goto err;
1228         }
1229
1230         /* Second, multiply r*w by 'a' if exponent bit is set. */
1231         if (BN_is_bit_set(p, b)) {
1232             next_w = w * a;
1233             if ((next_w / a) != w) { /* overflow */
1234                 if (r_is_one) {
1235                     if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1236                         goto err;
1237                     r_is_one = 0;
1238                 } else {
1239                     if (!BN_MOD_MUL_WORD(r, w, m))
1240                         goto err;
1241                 }
1242                 next_w = a;
1243             }
1244             w = next_w;
1245         }
1246     }
1247
1248     /* Finally, set r:=r*w. */
1249     if (w != 1) {
1250         if (r_is_one) {
1251             if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1252                 goto err;
1253             r_is_one = 0;
1254         } else {
1255             if (!BN_MOD_MUL_WORD(r, w, m))
1256                 goto err;
1257         }
1258     }
1259
1260     if (r_is_one) {             /* can happen only if a == 1 */
1261         if (!BN_one(rr))
1262             goto err;
1263     } else {
1264         if (!BN_from_montgomery(rr, r, mont, ctx))
1265             goto err;
1266     }
1267     ret = 1;
1268  err:
1269     if (in_mont == NULL)
1270         BN_MONT_CTX_free(mont);
1271     BN_CTX_end(ctx);
1272     bn_check_top(rr);
1273     return ret;
1274 }
1275
1276 /* The old fallback, simple version :-) */
1277 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1278                       const BIGNUM *m, BN_CTX *ctx)
1279 {
1280     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
1281     int start = 1;
1282     BIGNUM *d;
1283     /* Table of variables obtained from 'ctx' */
1284     BIGNUM *val[TABLE_SIZE];
1285
1286     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1287             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
1288             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1289         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1290         BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1291         return 0;
1292     }
1293
1294     bits = BN_num_bits(p);
1295     if (bits == 0) {
1296         /* x**0 mod 1, or x**0 mod -1 is still zero. */
1297         if (BN_abs_is_word(m, 1)) {
1298             ret = 1;
1299             BN_zero(r);
1300         } else {
1301             ret = BN_one(r);
1302         }
1303         return ret;
1304     }
1305
1306     BN_CTX_start(ctx);
1307     d = BN_CTX_get(ctx);
1308     val[0] = BN_CTX_get(ctx);
1309     if (val[0] == NULL)
1310         goto err;
1311
1312     if (!BN_nnmod(val[0], a, m, ctx))
1313         goto err;               /* 1 */
1314     if (BN_is_zero(val[0])) {
1315         BN_zero(r);
1316         ret = 1;
1317         goto err;
1318     }
1319
1320     window = BN_window_bits_for_exponent_size(bits);
1321     if (window > 1) {
1322         if (!BN_mod_mul(d, val[0], val[0], m, ctx))
1323             goto err;           /* 2 */
1324         j = 1 << (window - 1);
1325         for (i = 1; i < j; i++) {
1326             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
1327                 !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
1328                 goto err;
1329         }
1330     }
1331
1332     start = 1;                  /* This is used to avoid multiplication etc
1333                                  * when there is only the value '1' in the
1334                                  * buffer. */
1335     wvalue = 0;                 /* The 'value' of the window */
1336     wstart = bits - 1;          /* The top bit of the window */
1337     wend = 0;                   /* The bottom bit of the window */
1338
1339     if (!BN_one(r))
1340         goto err;
1341
1342     for (;;) {
1343         if (BN_is_bit_set(p, wstart) == 0) {
1344             if (!start)
1345                 if (!BN_mod_mul(r, r, r, m, ctx))
1346                     goto err;
1347             if (wstart == 0)
1348                 break;
1349             wstart--;
1350             continue;
1351         }
1352         /*
1353          * We now have wstart on a 'set' bit, we now need to work out how bit
1354          * a window to do.  To do this we need to scan forward until the last
1355          * set bit before the end of the window
1356          */
1357         j = wstart;
1358         wvalue = 1;
1359         wend = 0;
1360         for (i = 1; i < window; i++) {
1361             if (wstart - i < 0)
1362                 break;
1363             if (BN_is_bit_set(p, wstart - i)) {
1364                 wvalue <<= (i - wend);
1365                 wvalue |= 1;
1366                 wend = i;
1367             }
1368         }
1369
1370         /* wend is the size of the current window */
1371         j = wend + 1;
1372         /* add the 'bytes above' */
1373         if (!start)
1374             for (i = 0; i < j; i++) {
1375                 if (!BN_mod_mul(r, r, r, m, ctx))
1376                     goto err;
1377             }
1378
1379         /* wvalue will be an odd number < 2^window */
1380         if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
1381             goto err;
1382
1383         /* move the 'window' down further */
1384         wstart -= wend + 1;
1385         wvalue = 0;
1386         start = 0;
1387         if (wstart < 0)
1388             break;
1389     }
1390     ret = 1;
1391  err:
1392     BN_CTX_end(ctx);
1393     bn_check_top(r);
1394     return ret;
1395 }