SPARCv9 assembly pack: harmonize ABI handling (so that it's handled in one
[openssl.git] / crypto / bn / bn_asm.c
1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  * 
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  * 
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  * 
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from 
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  * 
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  * 
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63
64 #include <stdio.h>
65 #include <assert.h>
66 #include <openssl/crypto.h>
67 #include "cryptlib.h"
68 #include "bn_lcl.h"
69
70 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
71
72 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
73         {
74         BN_ULONG c1=0;
75
76         assert(num >= 0);
77         if (num <= 0) return(c1);
78
79 #ifndef OPENSSL_SMALL_FOOTPRINT
80         while (num&~3)
81                 {
82                 mul_add(rp[0],ap[0],w,c1);
83                 mul_add(rp[1],ap[1],w,c1);
84                 mul_add(rp[2],ap[2],w,c1);
85                 mul_add(rp[3],ap[3],w,c1);
86                 ap+=4; rp+=4; num-=4;
87                 }
88 #endif
89         while (num)
90                 {
91                 mul_add(rp[0],ap[0],w,c1);
92                 ap++; rp++; num--;
93                 }
94         
95         return(c1);
96         } 
97
98 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
99         {
100         BN_ULONG c1=0;
101
102         assert(num >= 0);
103         if (num <= 0) return(c1);
104
105 #ifndef OPENSSL_SMALL_FOOTPRINT
106         while (num&~3)
107                 {
108                 mul(rp[0],ap[0],w,c1);
109                 mul(rp[1],ap[1],w,c1);
110                 mul(rp[2],ap[2],w,c1);
111                 mul(rp[3],ap[3],w,c1);
112                 ap+=4; rp+=4; num-=4;
113                 }
114 #endif
115         while (num)
116                 {
117                 mul(rp[0],ap[0],w,c1);
118                 ap++; rp++; num--;
119                 }
120         return(c1);
121         } 
122
123 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
124         {
125         assert(n >= 0);
126         if (n <= 0) return;
127
128 #ifndef OPENSSL_SMALL_FOOTPRINT
129         while (n&~3)
130                 {
131                 sqr(r[0],r[1],a[0]);
132                 sqr(r[2],r[3],a[1]);
133                 sqr(r[4],r[5],a[2]);
134                 sqr(r[6],r[7],a[3]);
135                 a+=4; r+=8; n-=4;
136                 }
137 #endif
138         while (n)
139                 {
140                 sqr(r[0],r[1],a[0]);
141                 a++; r+=2; n--;
142                 }
143         }
144
145 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
146
147 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
148         {
149         BN_ULONG c=0;
150         BN_ULONG bl,bh;
151
152         assert(num >= 0);
153         if (num <= 0) return((BN_ULONG)0);
154
155         bl=LBITS(w);
156         bh=HBITS(w);
157
158 #ifndef OPENSSL_SMALL_FOOTPRINT
159         while (num&~3)
160                 {
161                 mul_add(rp[0],ap[0],bl,bh,c);
162                 mul_add(rp[1],ap[1],bl,bh,c);
163                 mul_add(rp[2],ap[2],bl,bh,c);
164                 mul_add(rp[3],ap[3],bl,bh,c);
165                 ap+=4; rp+=4; num-=4;
166                 }
167 #endif
168         while (num)
169                 {
170                 mul_add(rp[0],ap[0],bl,bh,c);
171                 ap++; rp++; num--;
172                 }
173         return(c);
174         } 
175
176 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
177         {
178         BN_ULONG carry=0;
179         BN_ULONG bl,bh;
180
181         assert(num >= 0);
182         if (num <= 0) return((BN_ULONG)0);
183
184         bl=LBITS(w);
185         bh=HBITS(w);
186
187 #ifndef OPENSSL_SMALL_FOOTPRINT
188         while (num&~3)
189                 {
190                 mul(rp[0],ap[0],bl,bh,carry);
191                 mul(rp[1],ap[1],bl,bh,carry);
192                 mul(rp[2],ap[2],bl,bh,carry);
193                 mul(rp[3],ap[3],bl,bh,carry);
194                 ap+=4; rp+=4; num-=4;
195                 }
196 #endif
197         while (num)
198                 {
199                 mul(rp[0],ap[0],bl,bh,carry);
200                 ap++; rp++; num--;
201                 }
202         return(carry);
203         } 
204
205 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
206         {
207         assert(n >= 0);
208         if (n <= 0) return;
209
210 #ifndef OPENSSL_SMALL_FOOTPRINT
211         while (n&~3)
212                 {
213                 sqr64(r[0],r[1],a[0]);
214                 sqr64(r[2],r[3],a[1]);
215                 sqr64(r[4],r[5],a[2]);
216                 sqr64(r[6],r[7],a[3]);
217                 a+=4; r+=8; n-=4;
218                 }
219 #endif
220         while (n)
221                 {
222                 sqr64(r[0],r[1],a[0]);
223                 a++; r+=2; n--;
224                 }
225         }
226
227 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
228
229 #if defined(BN_LLONG) && defined(BN_DIV2W)
230
231 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
232         {
233         return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
234         }
235
236 #else
237
238 /* Divide h,l by d and return the result. */
239 /* I need to test this some more :-( */
240 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
241         {
242         BN_ULONG dh,dl,q,ret=0,th,tl,t;
243         int i,count=2;
244
245         if (d == 0) return(BN_MASK2);
246
247         i=BN_num_bits_word(d);
248         assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
249
250         i=BN_BITS2-i;
251         if (h >= d) h-=d;
252
253         if (i)
254                 {
255                 d<<=i;
256                 h=(h<<i)|(l>>(BN_BITS2-i));
257                 l<<=i;
258                 }
259         dh=(d&BN_MASK2h)>>BN_BITS4;
260         dl=(d&BN_MASK2l);
261         for (;;)
262                 {
263                 if ((h>>BN_BITS4) == dh)
264                         q=BN_MASK2l;
265                 else
266                         q=h/dh;
267
268                 th=q*dh;
269                 tl=dl*q;
270                 for (;;)
271                         {
272                         t=h-th;
273                         if ((t&BN_MASK2h) ||
274                                 ((tl) <= (
275                                         (t<<BN_BITS4)|
276                                         ((l&BN_MASK2h)>>BN_BITS4))))
277                                 break;
278                         q--;
279                         th-=dh;
280                         tl-=dl;
281                         }
282                 t=(tl>>BN_BITS4);
283                 tl=(tl<<BN_BITS4)&BN_MASK2h;
284                 th+=t;
285
286                 if (l < tl) th++;
287                 l-=tl;
288                 if (h < th)
289                         {
290                         h+=d;
291                         q--;
292                         }
293                 h-=th;
294
295                 if (--count == 0) break;
296
297                 ret=q<<BN_BITS4;
298                 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
299                 l=(l&BN_MASK2l)<<BN_BITS4;
300                 }
301         ret|=q;
302         return(ret);
303         }
304 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
305
306 #ifdef BN_LLONG
307 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
308         {
309         BN_ULLONG ll=0;
310
311         assert(n >= 0);
312         if (n <= 0) return((BN_ULONG)0);
313
314 #ifndef OPENSSL_SMALL_FOOTPRINT
315         while (n&~3)
316                 {
317                 ll+=(BN_ULLONG)a[0]+b[0];
318                 r[0]=(BN_ULONG)ll&BN_MASK2;
319                 ll>>=BN_BITS2;
320                 ll+=(BN_ULLONG)a[1]+b[1];
321                 r[1]=(BN_ULONG)ll&BN_MASK2;
322                 ll>>=BN_BITS2;
323                 ll+=(BN_ULLONG)a[2]+b[2];
324                 r[2]=(BN_ULONG)ll&BN_MASK2;
325                 ll>>=BN_BITS2;
326                 ll+=(BN_ULLONG)a[3]+b[3];
327                 r[3]=(BN_ULONG)ll&BN_MASK2;
328                 ll>>=BN_BITS2;
329                 a+=4; b+=4; r+=4; n-=4;
330                 }
331 #endif
332         while (n)
333                 {
334                 ll+=(BN_ULLONG)a[0]+b[0];
335                 r[0]=(BN_ULONG)ll&BN_MASK2;
336                 ll>>=BN_BITS2;
337                 a++; b++; r++; n--;
338                 }
339         return((BN_ULONG)ll);
340         }
341 #else /* !BN_LLONG */
342 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
343         {
344         BN_ULONG c,l,t;
345
346         assert(n >= 0);
347         if (n <= 0) return((BN_ULONG)0);
348
349         c=0;
350 #ifndef OPENSSL_SMALL_FOOTPRINT
351         while (n&~3)
352                 {
353                 t=a[0];
354                 t=(t+c)&BN_MASK2;
355                 c=(t < c);
356                 l=(t+b[0])&BN_MASK2;
357                 c+=(l < t);
358                 r[0]=l;
359                 t=a[1];
360                 t=(t+c)&BN_MASK2;
361                 c=(t < c);
362                 l=(t+b[1])&BN_MASK2;
363                 c+=(l < t);
364                 r[1]=l;
365                 t=a[2];
366                 t=(t+c)&BN_MASK2;
367                 c=(t < c);
368                 l=(t+b[2])&BN_MASK2;
369                 c+=(l < t);
370                 r[2]=l;
371                 t=a[3];
372                 t=(t+c)&BN_MASK2;
373                 c=(t < c);
374                 l=(t+b[3])&BN_MASK2;
375                 c+=(l < t);
376                 r[3]=l;
377                 a+=4; b+=4; r+=4; n-=4;
378                 }
379 #endif
380         while(n)
381                 {
382                 t=a[0];
383                 t=(t+c)&BN_MASK2;
384                 c=(t < c);
385                 l=(t+b[0])&BN_MASK2;
386                 c+=(l < t);
387                 r[0]=l;
388                 a++; b++; r++; n--;
389                 }
390         return((BN_ULONG)c);
391         }
392 #endif /* !BN_LLONG */
393
394 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
395         {
396         BN_ULONG t1,t2;
397         int c=0;
398
399         assert(n >= 0);
400         if (n <= 0) return((BN_ULONG)0);
401
402 #ifndef OPENSSL_SMALL_FOOTPRINT
403         while (n&~3)
404                 {
405                 t1=a[0]; t2=b[0];
406                 r[0]=(t1-t2-c)&BN_MASK2;
407                 if (t1 != t2) c=(t1 < t2);
408                 t1=a[1]; t2=b[1];
409                 r[1]=(t1-t2-c)&BN_MASK2;
410                 if (t1 != t2) c=(t1 < t2);
411                 t1=a[2]; t2=b[2];
412                 r[2]=(t1-t2-c)&BN_MASK2;
413                 if (t1 != t2) c=(t1 < t2);
414                 t1=a[3]; t2=b[3];
415                 r[3]=(t1-t2-c)&BN_MASK2;
416                 if (t1 != t2) c=(t1 < t2);
417                 a+=4; b+=4; r+=4; n-=4;
418                 }
419 #endif
420         while (n)
421                 {
422                 t1=a[0]; t2=b[0];
423                 r[0]=(t1-t2-c)&BN_MASK2;
424                 if (t1 != t2) c=(t1 < t2);
425                 a++; b++; r++; n--;
426                 }
427         return(c);
428         }
429
430 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
431
432 #ifndef OPENSSL_FIPSCANISTER
433 #undef bn_mul_comba8
434 #undef bn_mul_comba4
435 #undef bn_sqr_comba8
436 #undef bn_sqr_comba4
437 #endif
438
439 /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
440 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
441 /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
442 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
443
444 #ifdef BN_LLONG
445 #define mul_add_c(a,b,c0,c1,c2) \
446         t=(BN_ULLONG)a*b; \
447         t1=(BN_ULONG)Lw(t); \
448         t2=(BN_ULONG)Hw(t); \
449         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
450         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
451
452 #define mul_add_c2(a,b,c0,c1,c2) \
453         t=(BN_ULLONG)a*b; \
454         tt=(t+t)&BN_MASK; \
455         if (tt < t) c2++; \
456         t1=(BN_ULONG)Lw(tt); \
457         t2=(BN_ULONG)Hw(tt); \
458         c0=(c0+t1)&BN_MASK2;  \
459         if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
460         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
461
462 #define sqr_add_c(a,i,c0,c1,c2) \
463         t=(BN_ULLONG)a[i]*a[i]; \
464         t1=(BN_ULONG)Lw(t); \
465         t2=(BN_ULONG)Hw(t); \
466         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
467         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
468
469 #define sqr_add_c2(a,i,j,c0,c1,c2) \
470         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
471
472 #elif defined(BN_UMULT_LOHI)
473
474 #define mul_add_c(a,b,c0,c1,c2) {       \
475         BN_ULONG ta=(a),tb=(b);         \
476         BN_UMULT_LOHI(t1,t2,ta,tb);     \
477         c0 += t1; t2 += (c0<t1)?1:0;    \
478         c1 += t2; c2 += (c1<t2)?1:0;    \
479         }
480
481 #define mul_add_c2(a,b,c0,c1,c2) {      \
482         BN_ULONG ta=(a),tb=(b),t0;      \
483         BN_UMULT_LOHI(t0,t1,ta,tb);     \
484         t2 = t1+t1; c2 += (t2<t1)?1:0;  \
485         t1 = t0+t0; t2 += (t1<t0)?1:0;  \
486         c0 += t1; t2 += (c0<t1)?1:0;    \
487         c1 += t2; c2 += (c1<t2)?1:0;    \
488         }
489
490 #define sqr_add_c(a,i,c0,c1,c2) {       \
491         BN_ULONG ta=(a)[i];             \
492         BN_UMULT_LOHI(t1,t2,ta,ta);     \
493         c0 += t1; t2 += (c0<t1)?1:0;    \
494         c1 += t2; c2 += (c1<t2)?1:0;    \
495         }
496
497 #define sqr_add_c2(a,i,j,c0,c1,c2)      \
498         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
499
500 #elif defined(BN_UMULT_HIGH)
501
502 #define mul_add_c(a,b,c0,c1,c2) {       \
503         BN_ULONG ta=(a),tb=(b);         \
504         t1 = ta * tb;                   \
505         t2 = BN_UMULT_HIGH(ta,tb);      \
506         c0 += t1; t2 += (c0<t1)?1:0;    \
507         c1 += t2; c2 += (c1<t2)?1:0;    \
508         }
509
510 #define mul_add_c2(a,b,c0,c1,c2) {      \
511         BN_ULONG ta=(a),tb=(b),t0;      \
512         t1 = BN_UMULT_HIGH(ta,tb);      \
513         t0 = ta * tb;                   \
514         t2 = t1+t1; c2 += (t2<t1)?1:0;  \
515         t1 = t0+t0; t2 += (t1<t0)?1:0;  \
516         c0 += t1; t2 += (c0<t1)?1:0;    \
517         c1 += t2; c2 += (c1<t2)?1:0;    \
518         }
519
520 #define sqr_add_c(a,i,c0,c1,c2) {       \
521         BN_ULONG ta=(a)[i];             \
522         t1 = ta * ta;                   \
523         t2 = BN_UMULT_HIGH(ta,ta);      \
524         c0 += t1; t2 += (c0<t1)?1:0;    \
525         c1 += t2; c2 += (c1<t2)?1:0;    \
526         }
527
528 #define sqr_add_c2(a,i,j,c0,c1,c2)      \
529         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
530
531 #else /* !BN_LLONG */
532 #define mul_add_c(a,b,c0,c1,c2) \
533         t1=LBITS(a); t2=HBITS(a); \
534         bl=LBITS(b); bh=HBITS(b); \
535         mul64(t1,t2,bl,bh); \
536         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
537         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
538
539 #define mul_add_c2(a,b,c0,c1,c2) \
540         t1=LBITS(a); t2=HBITS(a); \
541         bl=LBITS(b); bh=HBITS(b); \
542         mul64(t1,t2,bl,bh); \
543         if (t2 & BN_TBIT) c2++; \
544         t2=(t2+t2)&BN_MASK2; \
545         if (t1 & BN_TBIT) t2++; \
546         t1=(t1+t1)&BN_MASK2; \
547         c0=(c0+t1)&BN_MASK2;  \
548         if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
549         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
550
551 #define sqr_add_c(a,i,c0,c1,c2) \
552         sqr64(t1,t2,(a)[i]); \
553         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
554         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
555
556 #define sqr_add_c2(a,i,j,c0,c1,c2) \
557         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
558 #endif /* !BN_LLONG */
559
560 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
561         {
562 #ifdef BN_LLONG
563         BN_ULLONG t;
564 #else
565         BN_ULONG bl,bh;
566 #endif
567         BN_ULONG t1,t2;
568         BN_ULONG c1,c2,c3;
569
570         c1=0;
571         c2=0;
572         c3=0;
573         mul_add_c(a[0],b[0],c1,c2,c3);
574         r[0]=c1;
575         c1=0;
576         mul_add_c(a[0],b[1],c2,c3,c1);
577         mul_add_c(a[1],b[0],c2,c3,c1);
578         r[1]=c2;
579         c2=0;
580         mul_add_c(a[2],b[0],c3,c1,c2);
581         mul_add_c(a[1],b[1],c3,c1,c2);
582         mul_add_c(a[0],b[2],c3,c1,c2);
583         r[2]=c3;
584         c3=0;
585         mul_add_c(a[0],b[3],c1,c2,c3);
586         mul_add_c(a[1],b[2],c1,c2,c3);
587         mul_add_c(a[2],b[1],c1,c2,c3);
588         mul_add_c(a[3],b[0],c1,c2,c3);
589         r[3]=c1;
590         c1=0;
591         mul_add_c(a[4],b[0],c2,c3,c1);
592         mul_add_c(a[3],b[1],c2,c3,c1);
593         mul_add_c(a[2],b[2],c2,c3,c1);
594         mul_add_c(a[1],b[3],c2,c3,c1);
595         mul_add_c(a[0],b[4],c2,c3,c1);
596         r[4]=c2;
597         c2=0;
598         mul_add_c(a[0],b[5],c3,c1,c2);
599         mul_add_c(a[1],b[4],c3,c1,c2);
600         mul_add_c(a[2],b[3],c3,c1,c2);
601         mul_add_c(a[3],b[2],c3,c1,c2);
602         mul_add_c(a[4],b[1],c3,c1,c2);
603         mul_add_c(a[5],b[0],c3,c1,c2);
604         r[5]=c3;
605         c3=0;
606         mul_add_c(a[6],b[0],c1,c2,c3);
607         mul_add_c(a[5],b[1],c1,c2,c3);
608         mul_add_c(a[4],b[2],c1,c2,c3);
609         mul_add_c(a[3],b[3],c1,c2,c3);
610         mul_add_c(a[2],b[4],c1,c2,c3);
611         mul_add_c(a[1],b[5],c1,c2,c3);
612         mul_add_c(a[0],b[6],c1,c2,c3);
613         r[6]=c1;
614         c1=0;
615         mul_add_c(a[0],b[7],c2,c3,c1);
616         mul_add_c(a[1],b[6],c2,c3,c1);
617         mul_add_c(a[2],b[5],c2,c3,c1);
618         mul_add_c(a[3],b[4],c2,c3,c1);
619         mul_add_c(a[4],b[3],c2,c3,c1);
620         mul_add_c(a[5],b[2],c2,c3,c1);
621         mul_add_c(a[6],b[1],c2,c3,c1);
622         mul_add_c(a[7],b[0],c2,c3,c1);
623         r[7]=c2;
624         c2=0;
625         mul_add_c(a[7],b[1],c3,c1,c2);
626         mul_add_c(a[6],b[2],c3,c1,c2);
627         mul_add_c(a[5],b[3],c3,c1,c2);
628         mul_add_c(a[4],b[4],c3,c1,c2);
629         mul_add_c(a[3],b[5],c3,c1,c2);
630         mul_add_c(a[2],b[6],c3,c1,c2);
631         mul_add_c(a[1],b[7],c3,c1,c2);
632         r[8]=c3;
633         c3=0;
634         mul_add_c(a[2],b[7],c1,c2,c3);
635         mul_add_c(a[3],b[6],c1,c2,c3);
636         mul_add_c(a[4],b[5],c1,c2,c3);
637         mul_add_c(a[5],b[4],c1,c2,c3);
638         mul_add_c(a[6],b[3],c1,c2,c3);
639         mul_add_c(a[7],b[2],c1,c2,c3);
640         r[9]=c1;
641         c1=0;
642         mul_add_c(a[7],b[3],c2,c3,c1);
643         mul_add_c(a[6],b[4],c2,c3,c1);
644         mul_add_c(a[5],b[5],c2,c3,c1);
645         mul_add_c(a[4],b[6],c2,c3,c1);
646         mul_add_c(a[3],b[7],c2,c3,c1);
647         r[10]=c2;
648         c2=0;
649         mul_add_c(a[4],b[7],c3,c1,c2);
650         mul_add_c(a[5],b[6],c3,c1,c2);
651         mul_add_c(a[6],b[5],c3,c1,c2);
652         mul_add_c(a[7],b[4],c3,c1,c2);
653         r[11]=c3;
654         c3=0;
655         mul_add_c(a[7],b[5],c1,c2,c3);
656         mul_add_c(a[6],b[6],c1,c2,c3);
657         mul_add_c(a[5],b[7],c1,c2,c3);
658         r[12]=c1;
659         c1=0;
660         mul_add_c(a[6],b[7],c2,c3,c1);
661         mul_add_c(a[7],b[6],c2,c3,c1);
662         r[13]=c2;
663         c2=0;
664         mul_add_c(a[7],b[7],c3,c1,c2);
665         r[14]=c3;
666         r[15]=c1;
667         }
668
669 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
670         {
671 #ifdef BN_LLONG
672         BN_ULLONG t;
673 #else
674         BN_ULONG bl,bh;
675 #endif
676         BN_ULONG t1,t2;
677         BN_ULONG c1,c2,c3;
678
679         c1=0;
680         c2=0;
681         c3=0;
682         mul_add_c(a[0],b[0],c1,c2,c3);
683         r[0]=c1;
684         c1=0;
685         mul_add_c(a[0],b[1],c2,c3,c1);
686         mul_add_c(a[1],b[0],c2,c3,c1);
687         r[1]=c2;
688         c2=0;
689         mul_add_c(a[2],b[0],c3,c1,c2);
690         mul_add_c(a[1],b[1],c3,c1,c2);
691         mul_add_c(a[0],b[2],c3,c1,c2);
692         r[2]=c3;
693         c3=0;
694         mul_add_c(a[0],b[3],c1,c2,c3);
695         mul_add_c(a[1],b[2],c1,c2,c3);
696         mul_add_c(a[2],b[1],c1,c2,c3);
697         mul_add_c(a[3],b[0],c1,c2,c3);
698         r[3]=c1;
699         c1=0;
700         mul_add_c(a[3],b[1],c2,c3,c1);
701         mul_add_c(a[2],b[2],c2,c3,c1);
702         mul_add_c(a[1],b[3],c2,c3,c1);
703         r[4]=c2;
704         c2=0;
705         mul_add_c(a[2],b[3],c3,c1,c2);
706         mul_add_c(a[3],b[2],c3,c1,c2);
707         r[5]=c3;
708         c3=0;
709         mul_add_c(a[3],b[3],c1,c2,c3);
710         r[6]=c1;
711         r[7]=c2;
712         }
713
714 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
715         {
716 #ifdef BN_LLONG
717         BN_ULLONG t,tt;
718 #else
719         BN_ULONG bl,bh;
720 #endif
721         BN_ULONG t1,t2;
722         BN_ULONG c1,c2,c3;
723
724         c1=0;
725         c2=0;
726         c3=0;
727         sqr_add_c(a,0,c1,c2,c3);
728         r[0]=c1;
729         c1=0;
730         sqr_add_c2(a,1,0,c2,c3,c1);
731         r[1]=c2;
732         c2=0;
733         sqr_add_c(a,1,c3,c1,c2);
734         sqr_add_c2(a,2,0,c3,c1,c2);
735         r[2]=c3;
736         c3=0;
737         sqr_add_c2(a,3,0,c1,c2,c3);
738         sqr_add_c2(a,2,1,c1,c2,c3);
739         r[3]=c1;
740         c1=0;
741         sqr_add_c(a,2,c2,c3,c1);
742         sqr_add_c2(a,3,1,c2,c3,c1);
743         sqr_add_c2(a,4,0,c2,c3,c1);
744         r[4]=c2;
745         c2=0;
746         sqr_add_c2(a,5,0,c3,c1,c2);
747         sqr_add_c2(a,4,1,c3,c1,c2);
748         sqr_add_c2(a,3,2,c3,c1,c2);
749         r[5]=c3;
750         c3=0;
751         sqr_add_c(a,3,c1,c2,c3);
752         sqr_add_c2(a,4,2,c1,c2,c3);
753         sqr_add_c2(a,5,1,c1,c2,c3);
754         sqr_add_c2(a,6,0,c1,c2,c3);
755         r[6]=c1;
756         c1=0;
757         sqr_add_c2(a,7,0,c2,c3,c1);
758         sqr_add_c2(a,6,1,c2,c3,c1);
759         sqr_add_c2(a,5,2,c2,c3,c1);
760         sqr_add_c2(a,4,3,c2,c3,c1);
761         r[7]=c2;
762         c2=0;
763         sqr_add_c(a,4,c3,c1,c2);
764         sqr_add_c2(a,5,3,c3,c1,c2);
765         sqr_add_c2(a,6,2,c3,c1,c2);
766         sqr_add_c2(a,7,1,c3,c1,c2);
767         r[8]=c3;
768         c3=0;
769         sqr_add_c2(a,7,2,c1,c2,c3);
770         sqr_add_c2(a,6,3,c1,c2,c3);
771         sqr_add_c2(a,5,4,c1,c2,c3);
772         r[9]=c1;
773         c1=0;
774         sqr_add_c(a,5,c2,c3,c1);
775         sqr_add_c2(a,6,4,c2,c3,c1);
776         sqr_add_c2(a,7,3,c2,c3,c1);
777         r[10]=c2;
778         c2=0;
779         sqr_add_c2(a,7,4,c3,c1,c2);
780         sqr_add_c2(a,6,5,c3,c1,c2);
781         r[11]=c3;
782         c3=0;
783         sqr_add_c(a,6,c1,c2,c3);
784         sqr_add_c2(a,7,5,c1,c2,c3);
785         r[12]=c1;
786         c1=0;
787         sqr_add_c2(a,7,6,c2,c3,c1);
788         r[13]=c2;
789         c2=0;
790         sqr_add_c(a,7,c3,c1,c2);
791         r[14]=c3;
792         r[15]=c1;
793         }
794
795 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
796         {
797 #ifdef BN_LLONG
798         BN_ULLONG t,tt;
799 #else
800         BN_ULONG bl,bh;
801 #endif
802         BN_ULONG t1,t2;
803         BN_ULONG c1,c2,c3;
804
805         c1=0;
806         c2=0;
807         c3=0;
808         sqr_add_c(a,0,c1,c2,c3);
809         r[0]=c1;
810         c1=0;
811         sqr_add_c2(a,1,0,c2,c3,c1);
812         r[1]=c2;
813         c2=0;
814         sqr_add_c(a,1,c3,c1,c2);
815         sqr_add_c2(a,2,0,c3,c1,c2);
816         r[2]=c3;
817         c3=0;
818         sqr_add_c2(a,3,0,c1,c2,c3);
819         sqr_add_c2(a,2,1,c1,c2,c3);
820         r[3]=c1;
821         c1=0;
822         sqr_add_c(a,2,c2,c3,c1);
823         sqr_add_c2(a,3,1,c2,c3,c1);
824         r[4]=c2;
825         c2=0;
826         sqr_add_c2(a,3,2,c3,c1,c2);
827         r[5]=c3;
828         c3=0;
829         sqr_add_c(a,3,c1,c2,c3);
830         r[6]=c1;
831         r[7]=c2;
832         }
833
834 #ifdef OPENSSL_NO_ASM
835 #ifdef OPENSSL_BN_ASM_MONT
836 #include <alloca.h>
837 /*
838  * This is essentially reference implementation, which may or may not
839  * result in performance improvement. E.g. on IA-32 this routine was
840  * observed to give 40% faster rsa1024 private key operations and 10%
841  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
842  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
843  * reference implementation, one to be used as starting point for
844  * platform-specific assembler. Mentioned numbers apply to compiler
845  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
846  * can vary not only from platform to platform, but even for compiler
847  * versions. Assembler vs. assembler improvement coefficients can
848  * [and are known to] differ and are to be documented elsewhere.
849  */
850 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
851         {
852         BN_ULONG c0,c1,ml,*tp,n0;
853 #ifdef mul64
854         BN_ULONG mh;
855 #endif
856         volatile BN_ULONG *vp;
857         int i=0,j;
858
859 #if 0   /* template for platform-specific implementation */
860         if (ap==bp)     return bn_sqr_mont(rp,ap,np,n0p,num);
861 #endif
862         vp = tp = alloca((num+2)*sizeof(BN_ULONG));
863
864         n0 = *n0p;
865
866         c0 = 0;
867         ml = bp[0];
868 #ifdef mul64
869         mh = HBITS(ml);
870         ml = LBITS(ml);
871         for (j=0;j<num;++j)
872                 mul(tp[j],ap[j],ml,mh,c0);
873 #else
874         for (j=0;j<num;++j)
875                 mul(tp[j],ap[j],ml,c0);
876 #endif
877
878         tp[num]   = c0;
879         tp[num+1] = 0;
880         goto enter;
881
882         for(i=0;i<num;i++)
883                 {
884                 c0 = 0;
885                 ml = bp[i];
886 #ifdef mul64
887                 mh = HBITS(ml);
888                 ml = LBITS(ml);
889                 for (j=0;j<num;++j)
890                         mul_add(tp[j],ap[j],ml,mh,c0);
891 #else
892                 for (j=0;j<num;++j)
893                         mul_add(tp[j],ap[j],ml,c0);
894 #endif
895                 c1 = (tp[num] + c0)&BN_MASK2;
896                 tp[num]   = c1;
897                 tp[num+1] = (c1<c0?1:0);
898         enter:
899                 c1  = tp[0];
900                 ml = (c1*n0)&BN_MASK2;
901                 c0 = 0;
902 #ifdef mul64
903                 mh = HBITS(ml);
904                 ml = LBITS(ml);
905                 mul_add(c1,np[0],ml,mh,c0);
906 #else
907                 mul_add(c1,ml,np[0],c0);
908 #endif
909                 for(j=1;j<num;j++)
910                         {
911                         c1 = tp[j];
912 #ifdef mul64
913                         mul_add(c1,np[j],ml,mh,c0);
914 #else
915                         mul_add(c1,ml,np[j],c0);
916 #endif
917                         tp[j-1] = c1&BN_MASK2;
918                         }
919                 c1        = (tp[num] + c0)&BN_MASK2;
920                 tp[num-1] = c1;
921                 tp[num]   = tp[num+1] + (c1<c0?1:0);
922                 }
923
924         if (tp[num]!=0 || tp[num-1]>=np[num-1])
925                 {
926                 c0 = bn_sub_words(rp,tp,np,num);
927                 if (tp[num]!=0 || c0==0)
928                         {
929                         for(i=0;i<num+2;i++)    vp[i] = 0;
930                         return 1;
931                         }
932                 }
933         for(i=0;i<num;i++)      rp[i] = tp[i],  vp[i] = 0;
934         vp[num]   = 0;
935         vp[num+1] = 0;
936         return 1;
937         }
938 #else
939 /*
940  * Return value of 0 indicates that multiplication/convolution was not
941  * performed to signal the caller to fall down to alternative/original
942  * code-path.
943  */
944 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
945 {       return 0;       }
946 #endif /* OPENSSL_BN_ASM_MONT */
947 #endif
948
949 #else /* !BN_MUL_COMBA */
950
951 /* hmm... is it faster just to do a multiply? */
952 #ifndef OPENSSL_FIPSCANISTER
953 #undef bn_sqr_comba4
954 #undef bn_sqr_comba8
955 #endif
956 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
957         {
958         BN_ULONG t[8];
959         bn_sqr_normal(r,a,4,t);
960         }
961
962 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
963         {
964         BN_ULONG t[16];
965         bn_sqr_normal(r,a,8,t);
966         }
967
968 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
969         {
970         r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
971         r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
972         r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
973         r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
974         }
975
976 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
977         {
978         r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
979         r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
980         r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
981         r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
982         r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
983         r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
984         r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
985         r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
986         }
987
988 #ifdef OPENSSL_NO_ASM
989 #ifdef OPENSSL_BN_ASM_MONT
990 #include <alloca.h>
991 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
992         {
993         BN_ULONG c0,c1,*tp,n0=*n0p;
994         volatile BN_ULONG *vp;
995         int i=0,j;
996
997         vp = tp = alloca((num+2)*sizeof(BN_ULONG));
998
999         for(i=0;i<=num;i++)     tp[i]=0;
1000
1001         for(i=0;i<num;i++)
1002                 {
1003                 c0         = bn_mul_add_words(tp,ap,num,bp[i]);
1004                 c1         = (tp[num] + c0)&BN_MASK2;
1005                 tp[num]    = c1;
1006                 tp[num+1]  = (c1<c0?1:0);
1007
1008                 c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
1009                 c1         = (tp[num] + c0)&BN_MASK2;
1010                 tp[num]    = c1;
1011                 tp[num+1] += (c1<c0?1:0);
1012                 for(j=0;j<=num;j++)     tp[j]=tp[j+1];
1013                 }
1014
1015         if (tp[num]!=0 || tp[num-1]>=np[num-1])
1016                 {
1017                 c0 = bn_sub_words(rp,tp,np,num);
1018                 if (tp[num]!=0 || c0==0)
1019                         {
1020                         for(i=0;i<num+2;i++)    vp[i] = 0;
1021                         return 1;
1022                         }
1023                 }
1024         for(i=0;i<num;i++)      rp[i] = tp[i],  vp[i] = 0;
1025         vp[num]   = 0;
1026         vp[num+1] = 0;
1027         return 1;
1028         }
1029 #else
1030 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1031 {       return 0;       }
1032 #endif /* OPENSSL_BN_ASM_MONT */
1033 #endif
1034
1035 #endif /* !BN_MUL_COMBA */