3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
12 # This is a "teaser" code, as it can be improved in several ways...
13 # First of all non-SSE2 path should be implemented (yes, for now it
14 # performs Montgomery multiplication/convolution only on SSE2-capable
15 # CPUs such as P4, others fall down to original code). Then inner loop
16 # can be unrolled and modulo-scheduled to improve ILP and possibly
17 # moved to 128-bit XMM register bank (though it would require input
18 # rearrangement and/or increase bus bandwidth utilization). Dedicated
19 # squaring procedure should give further performance improvement...
20 # Yet, for being draft, the code improves rsa512 *sign* benchmark by
21 # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-)
23 push(@INC,"perlasm","../../perlasm");
26 &asm_init($ARGV[0],$0);
29 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
31 &external_label("OPENSSL_ia32cap_P") if ($sse2);
33 &function_begin("bn_mul_mont",$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":"");
38 $rp="edi"; $bp="edi"; # overlapping variables!!!
42 $_rp=&DWP(4*0,"esp"); # stack top layout
47 $_num=&DWP(4*5,"esp");
49 $_bpend=&DWP(4*7,"esp");
50 $frame=32; # size of above frame rounded up to 16n
53 &mov ("edi",&wparam(5)); # int num
55 &jb (&label("just_leave"));
57 ################################# load argument block...
58 &mov ("eax",&wparam(0)); # BN_ULONG *rp
59 &mov ("ebx",&wparam(1)); # const BN_ULONG *ap
60 &mov ("ecx",&wparam(2)); # const BN_ULONG *bp
61 &mov ("edx",&wparam(3)); # const BN_ULONG *np
62 &mov ("esi",&wparam(4)); # const BN_ULONG *n0
63 #&mov ("edi",&wparam(5)); # int num
65 &mov ("ebp","esp"); # saved stack pointer!
66 &add ("edi",2); # extra two words on top of tp
68 &lea ("esp",&DWP(-$frame,"esp","edi",4)); # alloca($frame+4*(num+2))
70 &and ("esp",-4096); # minimize TLB utilization
72 &mov ("esi",&DWP(0,"esi")); # pull n0[0]
73 &mov ($_rp,"eax"); # ... save a copy of argument block
78 &lea ($num,&DWP(-2,"edi")); # num is restored to its original value
79 #&mov ($_num,$num); # redundant as $num is not reused
80 &mov ($_sp,"ebp"); # saved stack pointer!
83 $acc0="mm0"; # mmx register bank layout
92 &picmeup("eax","OPENSSL_ia32cap_P");
93 &bt (&DWP(0,"eax"),26);
94 &jnc (&label("non_sse2"));
97 &movd ($mask,"eax"); # mask 32 lower bits
99 &mov ($ap,$_ap); # load input pointers
106 &movd ($mul0,&DWP(0,$bp)); # bp[0]
107 &movd ($mul1,&DWP(0,$ap)); # ap[0]
108 &movd ($car1,&DWP(0,$np)); # np[0]
110 &pmuludq($mul1,$mul0); # ap[0]*bp[0]
112 &movq ($acc0,$mul1); # I wish movd worked for
113 &pand ($acc0,$mask); # inter-register transfers
115 &pmuludq($mul1,$_n0); # *=n0
117 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0
118 &paddq ($car1,$acc0);
125 &movd ($acc0,&DWP(0,$ap,$j,4)); # ap[j]
126 &movd ($acc1,&DWP(0,$np,$j,4)); # np[j]
127 &pmuludq($acc0,$mul0); # ap[j]*bp[0]
128 &pmuludq($acc1,$mul1); # np[j]*m1
130 &paddq ($car0,$acc0); # +=c0
134 &paddq ($car1,$acc1); # +=c1
135 &paddq ($car1,$acc0); # +=ap[j]*bp[0];
136 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
141 &lea ($j,&DWP(1,$j));
145 &paddq ($car1,$car0);
146 &movq (&DWP($frame-4,"esp",$num,4),$car1);
152 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i]
153 &movd ($mul1,&DWP(0,$ap)); # ap[0]
154 &movd ($temp,&DWP($frame,"esp")); # tp[0]
155 &movd ($car1,&DWP(0,$np)); # np[0]
156 &pmuludq($mul1,$mul0); # ap[0]*bp[i]
158 &paddq ($mul1,$temp); # +=tp[0]
163 &pmuludq($mul1,$_n0); # *=n0
165 &pmuludq($car1,$mul1);
166 &paddq ($car1,$acc0);
173 &movd ($acc0,&DWP(0,$ap,$j,4)); # ap[j]
174 &movd ($acc1,&DWP(0,$np,$j,4)); # np[j]
175 &movd ($temp,&DWP($frame,"esp",$j,4));# tp[j]
176 &pmuludq($acc0,$mul0); # ap[j]*bp[i]
177 &pmuludq($acc1,$mul1); # np[j]*m1
178 &paddq ($car0,$temp); # +=tp[j]
179 &paddq ($car0,$acc0); # +=c0
183 &paddq ($car1,$acc1); # +=c1
184 &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j]
185 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
190 &lea ($j,&DWP(1,$j)); # j++
192 &jl (&label("inner"));
194 &movd ($temp,&DWP($frame,"esp",$num,4));
195 &paddq ($car1,$car0);
196 &paddq ($car1,$temp);
197 &movq (&DWP($frame-4,"esp",$num,4),$car1);
199 &lea ($i,&DWP(1,$i)); # i++
201 &jl (&label("outer"));
203 &emms (); # done with mmx bank
204 &jmp (&label("common_tail"));
206 &set_label("non_sse2",16);
211 &xor ("eax","eax"); # signal "not fast enough [yet]"
212 &jmp (&label("just_leave"));
213 # The code below gives ~15% improvement on 512-bit benchmark
214 # *only*:-( On all other key lengths it's slower for up to 20%.
215 # This is because the original code path holds down the overall
216 # amount of multiplications by ~25% by deploying bn_sqr_words.
217 # In other words, for the code below to be competitive,
218 # dedicated squaring procedure is a must...
220 $inp="esi"; # integer path uses these registers differently
224 &sub ($num,1); # non-SSE2 path uses num-1
228 &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num]
229 &mov ($word,&DWP(0,$word)); # bp[0]
230 &mov ($_bpend,"eax");
234 &set_label("mull",16);
235 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
237 &mul ($word); # ap[j]*bp[0]
238 &lea ($j,&DWP(1,$j));
241 &mov (&DWP($frame-4,"esp",$j,4),"eax"); # tp[j]=
243 &jb (&label("mull"));
245 &mov ("eax",&DWP(0,$inp,$num,4)); # ap[num-1]
247 &mul ($word); # ap[num-1]*bp[0]
253 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
255 &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
257 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
258 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
260 &mov ("eax",&DWP(0,$inp)); # np[0]
261 &mul ($word); # np[0]*m
262 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
266 &jmp (&label("2ndmadd"));
268 &set_label("1stmadd",16);
269 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
271 &mul ($word); # ap[j]*bp[i]
272 &lea ($j,&DWP(1,$j));
273 &add ("eax",&DWP($frame-4,"esp",$j,4)); # +=tp[j]
277 &mov (&DWP($frame-4,"esp",$j,4),"eax"); # tp[j]=
279 &jb (&label("1stmadd"));
281 &mov ("eax",&DWP(0,$inp,$num,4)); # ap[num-1]
283 &mul ($word); # ap[num-1]*bp[i]
284 &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
291 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
294 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
295 &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
297 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
298 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
300 &mov ("eax",&DWP(0,$inp)); # np[0]
301 &mul ($word); # np[0]*m
302 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
306 &set_label("2ndmadd",16);
307 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j]
309 &mul ($word); # np[j]*m
310 &lea ($j,&DWP(1,$j));
311 &add ("eax",&DWP($frame-4,"esp",$j,4)); # +=tp[j]
315 &mov (&DWP($frame-8,"esp",$j,4),"eax"); # tp[j-1]=
317 &jb (&label("2ndmadd"));
319 &mov ("eax",&DWP(0,$inp,$num,4)); # np[num-1]
321 &mul ($word); # np[num-1]*m
322 &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
326 &mov (&DWP($frame-4,"esp",$num,4),"eax"); # tp[num-2]=
329 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
330 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
331 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
332 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
334 &mov ($carry,$_bp); # &bp[i]
336 &cmp ($carry,$_bpend);
337 &je (&label("x86done"));
338 &mov ($word,&DWP(0,$carry)); # bp[i]
340 &mov ($_bp,$carry); # &bp[++i]
343 &jmp (&label("1stmadd"));
345 &set_label("x86done",16);
346 &mov ($np,$_np); # make adjustments for tail processing
350 &set_label("common_tail",16);
351 &mov ("esi",&DWP($frame,"esp",$num,4));# load upmost overflow bit
352 &mov ($rp,$_rp); # load result pointer
353 # [$ap and $bp are zapped]
355 &lea ($j,&DWP(-1,$num)); # j=num-1
356 &cmp ("esi",0); # clears CF unconditionally
357 &jnz (&label("sub"));
358 &mov ("eax",&DWP($frame,"esp",$j,4));
359 &cmp ("eax",&DWP(0,$np,$j,4)); # tp[num-1]-np[num-1]?
360 &jae (&label("sub")); # if taken CF is cleared
361 &set_label("copy",16);
362 &mov ("eax",&DWP($frame,"esp",$j,4));
363 &mov (&DWP(0,$rp,$j,4),"eax"); # rp[i]=tp[i]
364 &mov (&DWP($frame,"esp",$j,4),$j); # zap temporary vector
366 &jge (&label("copy"));
367 &jmp (&label("exit"));
369 &set_label("sub",16);
370 &mov ("eax",&DWP($frame,"esp",$i,4));
371 &sbb ("eax",&DWP(0,$np,$i,4));
372 &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i]
373 &lea ($i,&DWP(1,$i)); # i++
374 &dec ($j); # doesn't affect CF!
375 &jge (&label("sub"));
376 &lea ($j,&DWP(-1,$num)); # j=num-1
377 &sbb ("esi",0); # esi holds upmost overflow bit
378 &jc (&label("copy"));
379 &set_label("zap",16);
380 &mov (&DWP($frame,"esp",$j,4),$i); # zap temporary vector
382 &jge (&label("zap"));
384 &set_label("exit",4);
385 &mov ("esp",$_sp); # pull saved stack pointer
387 &set_label("just_leave");
388 &function_end("bn_mul_mont");