59ad6bf5c3b8cb25fed32b1431b9d94832b97a29
[openssl.git] / crypto / bn / asm / ia64.S
1 .explicit
2 .text
3 .ident  "ia64.S, Version 2.1"
4 .ident  "IA-64 ISA artwork by Andy Polyakov <appro@openssl.org>"
5
6 // Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
7 //
8 // Licensed under the OpenSSL license (the "License").  You may not use
9 // this file except in compliance with the License.  You can obtain a copy
10 // in the file LICENSE in the source distribution or at
11 // https://www.openssl.org/source/license.html
12
13 //
14 // ====================================================================
15 // Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
16 // project.
17 //
18 // Rights for redistribution and usage in source and binary forms are
19 // granted according to the License. Warranty of any kind is disclaimed.
20 // ====================================================================
21 //
22 // Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is
23 // different from Itanium to this module viewpoint. Most notably, is it
24 // "wider" than Itanium? Can you experience loop scalability as
25 // discussed in commentary sections? Not really:-( Itanium2 has 6
26 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
27 // spin twice as fast, as I need 8 IALU ports. Amount of floating point
28 // ports is the same, i.e. 2, while I need 4. In other words, to this
29 // module Itanium2 remains effectively as "wide" as Itanium. Yet it's
30 // essentially different in respect to this module, and a re-tune was
31 // required. Well, because some instruction latencies has changed. Most
32 // noticeably those intensively used:
33 //
34 //                      Itanium Itanium2
35 //      ldf8            9       6               L2 hit
36 //      ld8             2       1               L1 hit
37 //      getf            2       5
38 //      xma[->getf]     7[+1]   4[+0]
39 //      add[->st8]      1[+1]   1[+0]
40 //
41 // What does it mean? You might ratiocinate that the original code
42 // should run just faster... Because sum of latencies is smaller...
43 // Wrong! Note that getf latency increased. This means that if a loop is
44 // scheduled for lower latency (as they were), then it will suffer from
45 // stall condition and the code will therefore turn anti-scalable, e.g.
46 // original bn_mul_words spun at 5*n or 2.5 times slower than expected
47 // on Itanium2! What to do? Reschedule loops for Itanium2? But then
48 // Itanium would exhibit anti-scalability. So I've chosen to reschedule
49 // for worst latency for every instruction aiming for best *all-round*
50 // performance.  
51
52 // Q.   How much faster does it get?
53 // A.   Here is the output from 'openssl speed rsa dsa' for vanilla
54 //      0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
55 //      Linux 7.1 2.96-81):
56 //
57 //                        sign    verify    sign/s verify/s
58 //      rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
59 //      rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
60 //      rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
61 //      rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
62 //                        sign    verify    sign/s verify/s
63 //      dsa  512 bits   0.0035s   0.0043s    288.3    234.8
64 //      dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
65 //
66 //      And here is similar output but for this assembler
67 //      implementation:-)
68 //
69 //                        sign    verify    sign/s verify/s
70 //      rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
71 //      rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
72 //      rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
73 //      rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
74 //                        sign    verify    sign/s verify/s
75 //      dsa  512 bits   0.0012s   0.0013s    891.9    756.6
76 //      dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
77 //      
78 //      Yes, you may argue that it's not fair comparison as it's
79 //      possible to craft the C implementation with BN_UMULT_HIGH
80 //      inline assembler macro. But of course! Here is the output
81 //      with the macro:
82 //
83 //                        sign    verify    sign/s verify/s
84 //      rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
85 //      rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
86 //      rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
87 //      rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
88 //                        sign    verify    sign/s verify/s
89 //      dsa  512 bits   0.0016s   0.0020s    613.1    510.5
90 //      dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
91 //
92 //      My code is still way faster, huh:-) And I believe that even
93 //      higher performance can be achieved. Note that as keys get
94 //      longer, performance gain is larger. Why? According to the
95 //      profiler there is another player in the field, namely
96 //      BN_from_montgomery consuming larger and larger portion of CPU
97 //      time as keysize decreases. I therefore consider putting effort
98 //      to assembler implementation of the following routine:
99 //
100 //      void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
101 //      {
102 //      int      i,j;
103 //      BN_ULONG v;
104 //
105 //      for (i=0; i<nl; i++)
106 //              {
107 //              v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
108 //              nrp++;
109 //              rp++;
110 //              if (((nrp[-1]+=v)&BN_MASK2) < v)
111 //                      for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
112 //              }
113 //      }
114 //
115 //      It might as well be beneficial to implement even combaX
116 //      variants, as it appears as it can literally unleash the
117 //      performance (see comment section to bn_mul_comba8 below).
118 //
119 //      And finally for your reference the output for 0.9.6a compiled
120 //      with SGIcc version 0.01.0-12 (keep in mind that for the moment
121 //      of this writing it's not possible to convince SGIcc to use
122 //      BN_UMULT_HIGH inline assembler macro, yet the code is fast,
123 //      i.e. for a compiler generated one:-):
124 //
125 //                        sign    verify    sign/s verify/s
126 //      rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
127 //      rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
128 //      rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
129 //      rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
130 //                        sign    verify    sign/s verify/s
131 //      dsa  512 bits   0.0018s   0.0022s    547.3    459.6
132 //      dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
133 //
134 //      Oh! Benchmarks were performed on 733MHz Lion-class Itanium
135 //      system running Redhat Linux 7.1 (very special thanks to Ray
136 //      McCaffity of Williams Communications for providing an account).
137 //
138 // Q.   What's the heck with 'rum 1<<5' at the end of every function?
139 // A.   Well, by clearing the "upper FP registers written" bit of the
140 //      User Mask I want to excuse the kernel from preserving upper
141 //      (f32-f128) FP register bank over process context switch, thus
142 //      minimizing bus bandwidth consumption during the switch (i.e.
143 //      after PKI operation completes and the program is off doing
144 //      something else like bulk symmetric encryption). Having said
145 //      this, I also want to point out that it might be good idea
146 //      to compile the whole toolkit (as well as majority of the
147 //      programs for that matter) with -mfixed-range=f32-f127 command
148 //      line option. No, it doesn't prevent the compiler from writing
149 //      to upper bank, but at least discourages to do so. If you don't
150 //      like the idea you have the option to compile the module with
151 //      -Drum=nop.m in command line.
152 //
153
154 #if defined(_HPUX_SOURCE) && !defined(_LP64)
155 #define ADDP    addp4
156 #else
157 #define ADDP    add
158 #endif
159 #ifdef __VMS
160 .alias abort, "decc$abort"
161 #endif
162
163 #if 1
164 //
165 // bn_[add|sub]_words routines.
166 //
167 // Loops are spinning in 2*(n+5) ticks on Itanium (provided that the
168 // data reside in L1 cache, i.e. 2 ticks away). It's possible to
169 // compress the epilogue and get down to 2*n+6, but at the cost of
170 // scalability (the neat feature of this implementation is that it
171 // shall automagically spin in n+5 on "wider" IA-64 implementations:-)
172 // I consider that the epilogue is short enough as it is to trade tiny
173 // performance loss on Itanium for scalability.
174 //
175 // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
176 //
177 .global bn_add_words#
178 .proc   bn_add_words#
179 .align  64
180 .skip   32      // makes the loop body aligned at 64-byte boundary
181 bn_add_words:
182         .prologue
183         .save   ar.pfs,r2
184 { .mii; alloc           r2=ar.pfs,4,12,0,16
185         cmp4.le         p6,p0=r35,r0    };;
186 { .mfb; mov             r8=r0                   // return value
187 (p6)    br.ret.spnt.many        b0      };;
188
189 { .mib; sub             r10=r35,r0,1
190         .save   ar.lc,r3
191         mov             r3=ar.lc
192         brp.loop.imp    .L_bn_add_words_ctop,.L_bn_add_words_cend-16
193                                         }
194 { .mib; ADDP            r14=0,r32               // rp
195         .save   pr,r9
196         mov             r9=pr           };;
197         .body
198 { .mii; ADDP            r15=0,r33               // ap
199         mov             ar.lc=r10
200         mov             ar.ec=6         }
201 { .mib; ADDP            r16=0,r34               // bp
202         mov             pr.rot=1<<16    };;
203
204 .L_bn_add_words_ctop:
205 { .mii; (p16)   ld8             r32=[r16],8       // b=*(bp++)
206         (p18)   add             r39=r37,r34
207         (p19)   cmp.ltu.unc     p56,p0=r40,r38  }
208 { .mfb; (p0)    nop.m           0x0
209         (p0)    nop.f           0x0
210         (p0)    nop.b           0x0             }
211 { .mii; (p16)   ld8             r35=[r15],8       // a=*(ap++)
212         (p58)   cmp.eq.or       p57,p0=-1,r41     // (p20)
213         (p58)   add             r41=1,r41       } // (p20)
214 { .mfb; (p21)   st8             [r14]=r42,8       // *(rp++)=r
215         (p0)    nop.f           0x0
216         br.ctop.sptk    .L_bn_add_words_ctop    };;
217 .L_bn_add_words_cend:
218
219 { .mii;
220 (p59)   add             r8=1,r8         // return value
221         mov             pr=r9,0x1ffff
222         mov             ar.lc=r3        }
223 { .mbb; nop.b           0x0
224         br.ret.sptk.many        b0      };;
225 .endp   bn_add_words#
226
227 //
228 // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
229 //
230 .global bn_sub_words#
231 .proc   bn_sub_words#
232 .align  64
233 .skip   32      // makes the loop body aligned at 64-byte boundary
234 bn_sub_words:
235         .prologue
236         .save   ar.pfs,r2
237 { .mii; alloc           r2=ar.pfs,4,12,0,16
238         cmp4.le         p6,p0=r35,r0    };;
239 { .mfb; mov             r8=r0                   // return value
240 (p6)    br.ret.spnt.many        b0      };;
241
242 { .mib; sub             r10=r35,r0,1
243         .save   ar.lc,r3
244         mov             r3=ar.lc
245         brp.loop.imp    .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
246                                         }
247 { .mib; ADDP            r14=0,r32               // rp
248         .save   pr,r9
249         mov             r9=pr           };;
250         .body
251 { .mii; ADDP            r15=0,r33               // ap
252         mov             ar.lc=r10
253         mov             ar.ec=6         }
254 { .mib; ADDP            r16=0,r34               // bp
255         mov             pr.rot=1<<16    };;
256
257 .L_bn_sub_words_ctop:
258 { .mii; (p16)   ld8             r32=[r16],8       // b=*(bp++)
259         (p18)   sub             r39=r37,r34
260         (p19)   cmp.gtu.unc     p56,p0=r40,r38  }
261 { .mfb; (p0)    nop.m           0x0
262         (p0)    nop.f           0x0
263         (p0)    nop.b           0x0             }
264 { .mii; (p16)   ld8             r35=[r15],8       // a=*(ap++)
265         (p58)   cmp.eq.or       p57,p0=0,r41      // (p20)
266         (p58)   add             r41=-1,r41      } // (p20)
267 { .mbb; (p21)   st8             [r14]=r42,8       // *(rp++)=r
268         (p0)    nop.b           0x0
269         br.ctop.sptk    .L_bn_sub_words_ctop    };;
270 .L_bn_sub_words_cend:
271
272 { .mii;
273 (p59)   add             r8=1,r8         // return value
274         mov             pr=r9,0x1ffff
275         mov             ar.lc=r3        }
276 { .mbb; nop.b           0x0
277         br.ret.sptk.many        b0      };;
278 .endp   bn_sub_words#
279 #endif
280
281 #if 0
282 #define XMA_TEMPTATION
283 #endif
284
285 #if 1
286 //
287 // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
288 //
289 .global bn_mul_words#
290 .proc   bn_mul_words#
291 .align  64
292 .skip   32      // makes the loop body aligned at 64-byte boundary
293 bn_mul_words:
294         .prologue
295         .save   ar.pfs,r2
296 #ifdef XMA_TEMPTATION
297 { .mfi; alloc           r2=ar.pfs,4,0,0,0       };;
298 #else
299 { .mfi; alloc           r2=ar.pfs,4,12,0,16     };;
300 #endif
301 { .mib; mov             r8=r0                   // return value
302         cmp4.le         p6,p0=r34,r0
303 (p6)    br.ret.spnt.many        b0              };;
304
305 { .mii; sub     r10=r34,r0,1
306         .save   ar.lc,r3
307         mov     r3=ar.lc
308         .save   pr,r9
309         mov     r9=pr                   };;
310
311         .body
312 { .mib; setf.sig        f8=r35  // w
313         mov             pr.rot=0x800001<<16
314                         // ------^----- serves as (p50) at first (p27)
315         brp.loop.imp    .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
316                                         }
317
318 #ifndef XMA_TEMPTATION
319
320 { .mmi; ADDP            r14=0,r32       // rp
321         ADDP            r15=0,r33       // ap
322         mov             ar.lc=r10       }
323 { .mmi; mov             r40=0           // serves as r35 at first (p27)
324         mov             ar.ec=13        };;
325
326 // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
327 // L2 cache (i.e. 9 ticks away) as floating point load/store instructions
328 // bypass L1 cache and L2 latency is actually best-case scenario for
329 // ldf8. The loop is not scalable and shall run in 2*(n+12) even on
330 // "wider" IA-64 implementations. It's a trade-off here. n+24 loop
331 // would give us ~5% in *overall* performance improvement on "wider"
332 // IA-64, but would hurt Itanium for about same because of longer
333 // epilogue. As it's a matter of few percents in either case I've
334 // chosen to trade the scalability for development time (you can see
335 // this very instruction sequence in bn_mul_add_words loop which in
336 // turn is scalable).
337 .L_bn_mul_words_ctop:
338 { .mfi; (p25)   getf.sig        r36=f52                 // low
339         (p21)   xmpy.lu         f48=f37,f8
340         (p28)   cmp.ltu         p54,p50=r41,r39 }
341 { .mfi; (p16)   ldf8            f32=[r15],8
342         (p21)   xmpy.hu         f40=f37,f8
343         (p0)    nop.i           0x0             };;
344 { .mii; (p25)   getf.sig        r32=f44                 // high
345         .pred.rel       "mutex",p50,p54
346         (p50)   add             r40=r38,r35             // (p27)
347         (p54)   add             r40=r38,r35,1   }       // (p27)
348 { .mfb; (p28)   st8             [r14]=r41,8
349         (p0)    nop.f           0x0
350         br.ctop.sptk    .L_bn_mul_words_ctop    };;
351 .L_bn_mul_words_cend:
352
353 { .mii; nop.m           0x0
354 .pred.rel       "mutex",p51,p55
355 (p51)   add             r8=r36,r0
356 (p55)   add             r8=r36,r0,1     }
357 { .mfb; nop.m   0x0
358         nop.f   0x0
359         nop.b   0x0                     }
360
361 #else   // XMA_TEMPTATION
362
363         setf.sig        f37=r0  // serves as carry at (p18) tick
364         mov             ar.lc=r10
365         mov             ar.ec=5;;
366
367 // Most of you examining this code very likely wonder why in the name
368 // of Intel the following loop is commented out? Indeed, it looks so
369 // neat that you find it hard to believe that it's something wrong
370 // with it, right? The catch is that every iteration depends on the
371 // result from previous one and the latter isn't available instantly.
372 // The loop therefore spins at the latency of xma minus 1, or in other
373 // words at 6*(n+4) ticks:-( Compare to the "production" loop above
374 // that runs in 2*(n+11) where the low latency problem is worked around
375 // by moving the dependency to one-tick latent integer ALU. Note that
376 // "distance" between ldf8 and xma is not latency of ldf8, but the
377 // *difference* between xma and ldf8 latencies.
378 .L_bn_mul_words_ctop:
379 { .mfi; (p16)   ldf8            f32=[r33],8
380         (p18)   xma.hu          f38=f34,f8,f39  }
381 { .mfb; (p20)   stf8            [r32]=f37,8
382         (p18)   xma.lu          f35=f34,f8,f39
383         br.ctop.sptk    .L_bn_mul_words_ctop    };;
384 .L_bn_mul_words_cend:
385
386         getf.sig        r8=f41          // the return value
387
388 #endif  // XMA_TEMPTATION
389
390 { .mii; nop.m           0x0
391         mov             pr=r9,0x1ffff
392         mov             ar.lc=r3        }
393 { .mfb; rum             1<<5            // clear um.mfh
394         nop.f           0x0
395         br.ret.sptk.many        b0      };;
396 .endp   bn_mul_words#
397 #endif
398
399 #if 1
400 //
401 // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
402 //
403 .global bn_mul_add_words#
404 .proc   bn_mul_add_words#
405 .align  64
406 .skip   48      // makes the loop body aligned at 64-byte boundary
407 bn_mul_add_words:
408         .prologue
409         .save   ar.pfs,r2
410 { .mmi; alloc           r2=ar.pfs,4,4,0,8
411         cmp4.le         p6,p0=r34,r0
412         .save   ar.lc,r3
413         mov             r3=ar.lc        };;
414 { .mib; mov             r8=r0           // return value
415         sub             r10=r34,r0,1
416 (p6)    br.ret.spnt.many        b0      };;
417
418 { .mib; setf.sig        f8=r35          // w
419         .save   pr,r9
420         mov             r9=pr
421         brp.loop.imp    .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
422                                         }
423         .body
424 { .mmi; ADDP            r14=0,r32       // rp
425         ADDP            r15=0,r33       // ap
426         mov             ar.lc=r10       }
427 { .mii; ADDP            r16=0,r32       // rp copy
428         mov             pr.rot=0x2001<<16
429                         // ------^----- serves as (p40) at first (p27)
430         mov             ar.ec=11        };;
431
432 // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
433 // Itanium 2. Yes, unlike previous versions it scales:-) Previous
434 // version was performing *all* additions in IALU and was starving
435 // for those even on Itanium 2. In this version one addition is
436 // moved to FPU and is folded with multiplication. This is at cost
437 // of propagating the result from previous call to this subroutine
438 // to L2 cache... In other words negligible even for shorter keys.
439 // *Overall* performance improvement [over previous version] varies
440 // from 11 to 22 percent depending on key length.
441 .L_bn_mul_add_words_ctop:
442 .pred.rel       "mutex",p40,p42
443 { .mfi; (p23)   getf.sig        r36=f45                 // low
444         (p20)   xma.lu          f42=f36,f8,f50          // low
445         (p40)   add             r39=r39,r35     }       // (p27)
446 { .mfi; (p16)   ldf8            f32=[r15],8             // *(ap++)
447         (p20)   xma.hu          f36=f36,f8,f50          // high
448         (p42)   add             r39=r39,r35,1   };;     // (p27)
449 { .mmi; (p24)   getf.sig        r32=f40                 // high
450         (p16)   ldf8            f46=[r16],8             // *(rp1++)
451         (p40)   cmp.ltu         p41,p39=r39,r35 }       // (p27)
452 { .mib; (p26)   st8             [r14]=r39,8             // *(rp2++)
453         (p42)   cmp.leu         p41,p39=r39,r35         // (p27)
454         br.ctop.sptk    .L_bn_mul_add_words_ctop};;
455 .L_bn_mul_add_words_cend:
456
457 { .mmi; .pred.rel       "mutex",p40,p42
458 (p40)   add             r8=r35,r0
459 (p42)   add             r8=r35,r0,1
460         mov             pr=r9,0x1ffff   }
461 { .mib; rum             1<<5            // clear um.mfh
462         mov             ar.lc=r3
463         br.ret.sptk.many        b0      };;
464 .endp   bn_mul_add_words#
465 #endif
466
467 #if 1
468 //
469 // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
470 //
471 .global bn_sqr_words#
472 .proc   bn_sqr_words#
473 .align  64
474 .skip   32      // makes the loop body aligned at 64-byte boundary 
475 bn_sqr_words:
476         .prologue
477         .save   ar.pfs,r2
478 { .mii; alloc           r2=ar.pfs,3,0,0,0
479         sxt4            r34=r34         };;
480 { .mii; cmp.le          p6,p0=r34,r0
481         mov             r8=r0           }       // return value
482 { .mfb; ADDP            r32=0,r32
483         nop.f           0x0
484 (p6)    br.ret.spnt.many        b0      };;
485
486 { .mii; sub     r10=r34,r0,1
487         .save   ar.lc,r3
488         mov     r3=ar.lc
489         .save   pr,r9
490         mov     r9=pr                   };;
491
492         .body
493 { .mib; ADDP            r33=0,r33
494         mov             pr.rot=1<<16
495         brp.loop.imp    .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
496                                         }
497 { .mii; add             r34=8,r32
498         mov             ar.lc=r10
499         mov             ar.ec=18        };;
500
501 // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
502 // possible to compress the epilogue (I'm getting tired to write this
503 // comment over and over) and get down to 2*n+16 at the cost of
504 // scalability. The decision will very likely be reconsidered after the
505 // benchmark program is profiled. I.e. if performance gain on Itanium
506 // will appear larger than loss on "wider" IA-64, then the loop should
507 // be explicitly split and the epilogue compressed.
508 .L_bn_sqr_words_ctop:
509 { .mfi; (p16)   ldf8            f32=[r33],8
510         (p25)   xmpy.lu         f42=f41,f41
511         (p0)    nop.i           0x0             }
512 { .mib; (p33)   stf8            [r32]=f50,16
513         (p0)    nop.i           0x0
514         (p0)    nop.b           0x0             }
515 { .mfi; (p0)    nop.m           0x0
516         (p25)   xmpy.hu         f52=f41,f41
517         (p0)    nop.i           0x0             }
518 { .mib; (p33)   stf8            [r34]=f60,16
519         (p0)    nop.i           0x0
520         br.ctop.sptk    .L_bn_sqr_words_ctop    };;
521 .L_bn_sqr_words_cend:
522
523 { .mii; nop.m           0x0
524         mov             pr=r9,0x1ffff
525         mov             ar.lc=r3        }
526 { .mfb; rum             1<<5            // clear um.mfh
527         nop.f           0x0
528         br.ret.sptk.many        b0      };;
529 .endp   bn_sqr_words#
530 #endif
531
532 #if 1
533 // Apparently we win nothing by implementing special bn_sqr_comba8.
534 // Yes, it is possible to reduce the number of multiplications by
535 // almost factor of two, but then the amount of additions would
536 // increase by factor of two (as we would have to perform those
537 // otherwise performed by xma ourselves). Normally we would trade
538 // anyway as multiplications are way more expensive, but not this
539 // time... Multiplication kernel is fully pipelined and as we drain
540 // one 128-bit multiplication result per clock cycle multiplications
541 // are effectively as inexpensive as additions. Special implementation
542 // might become of interest for "wider" IA-64 implementation as you'll
543 // be able to get through the multiplication phase faster (there won't
544 // be any stall issues as discussed in the commentary section below and
545 // you therefore will be able to employ all 4 FP units)... But these
546 // Itanium days it's simply too hard to justify the effort so I just
547 // drop down to bn_mul_comba8 code:-)
548 //
549 // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
550 //
551 .global bn_sqr_comba8#
552 .proc   bn_sqr_comba8#
553 .align  64
554 bn_sqr_comba8:
555         .prologue
556         .save   ar.pfs,r2
557 #if defined(_HPUX_SOURCE) && !defined(_LP64)
558 { .mii; alloc   r2=ar.pfs,2,1,0,0
559         addp4   r33=0,r33
560         addp4   r32=0,r32               };;
561 { .mii;
562 #else
563 { .mii; alloc   r2=ar.pfs,2,1,0,0
564 #endif
565         mov     r34=r33
566         add     r14=8,r33               };;
567         .body
568 { .mii; add     r17=8,r34
569         add     r15=16,r33
570         add     r18=16,r34              }
571 { .mfb; add     r16=24,r33
572         br      .L_cheat_entry_point8   };;
573 .endp   bn_sqr_comba8#
574 #endif
575
576 #if 1
577 // I've estimated this routine to run in ~120 ticks, but in reality
578 // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
579 // cycles consumed for instructions fetch? Or did I misinterpret some
580 // clause in Itanium Âµ-architecture manual? Comments are welcomed and
581 // highly appreciated.
582 //
583 // On Itanium 2 it takes ~190 ticks. This is because of stalls on
584 // result from getf.sig. I do nothing about it at this point for
585 // reasons depicted below.
586 //
587 // However! It should be noted that even 160 ticks is darn good result
588 // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
589 // C version (compiled with gcc with inline assembler). I really
590 // kicked compiler's butt here, didn't I? Yeah! This brings us to the
591 // following statement. It's damn shame that this routine isn't called
592 // very often nowadays! According to the profiler most CPU time is
593 // consumed by bn_mul_add_words called from BN_from_montgomery. In
594 // order to estimate what we're missing, I've compared the performance
595 // of this routine against "traditional" implementation, i.e. against
596 // following routine:
597 //
598 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
599 // {    r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
600 //      r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
601 //      r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
602 //      r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
603 //      r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
604 //      r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
605 //      r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
606 //      r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
607 // }
608 //
609 // The one below is over 8 times faster than the one above:-( Even
610 // more reasons to "combafy" bn_mul_add_mont...
611 //
612 // And yes, this routine really made me wish there were an optimizing
613 // assembler! It also feels like it deserves a dedication.
614 //
615 //      To my wife for being there and to my kids...
616 //
617 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
618 //
619 #define carry1  r14
620 #define carry2  r15
621 #define carry3  r34
622 .global bn_mul_comba8#
623 .proc   bn_mul_comba8#
624 .align  64
625 bn_mul_comba8:
626         .prologue
627         .save   ar.pfs,r2
628 #if defined(_HPUX_SOURCE) && !defined(_LP64)
629 { .mii; alloc   r2=ar.pfs,3,0,0,0
630         addp4   r33=0,r33
631         addp4   r34=0,r34               };;
632 { .mii; addp4   r32=0,r32
633 #else
634 { .mii; alloc   r2=ar.pfs,3,0,0,0
635 #endif
636         add     r14=8,r33
637         add     r17=8,r34               }
638         .body
639 { .mii; add     r15=16,r33
640         add     r18=16,r34
641         add     r16=24,r33              }
642 .L_cheat_entry_point8:
643 { .mmi; add     r19=24,r34
644
645         ldf8    f32=[r33],32            };;
646
647 { .mmi; ldf8    f120=[r34],32
648         ldf8    f121=[r17],32           }
649 { .mmi; ldf8    f122=[r18],32
650         ldf8    f123=[r19],32           };;
651 { .mmi; ldf8    f124=[r34]
652         ldf8    f125=[r17]              }
653 { .mmi; ldf8    f126=[r18]
654         ldf8    f127=[r19]              }
655
656 { .mmi; ldf8    f33=[r14],32
657         ldf8    f34=[r15],32            }
658 { .mmi; ldf8    f35=[r16],32;;
659         ldf8    f36=[r33]               }
660 { .mmi; ldf8    f37=[r14]
661         ldf8    f38=[r15]               }
662 { .mfi; ldf8    f39=[r16]
663 // -------\ Entering multiplier's heaven /-------
664 // ------------\                    /------------
665 // -----------------\          /-----------------
666 // ----------------------\/----------------------
667                 xma.hu  f41=f32,f120,f0         }
668 { .mfi;         xma.lu  f40=f32,f120,f0         };; // (*)
669 { .mfi;         xma.hu  f51=f32,f121,f0         }
670 { .mfi;         xma.lu  f50=f32,f121,f0         };;
671 { .mfi;         xma.hu  f61=f32,f122,f0         }
672 { .mfi;         xma.lu  f60=f32,f122,f0         };;
673 { .mfi;         xma.hu  f71=f32,f123,f0         }
674 { .mfi;         xma.lu  f70=f32,f123,f0         };;
675 { .mfi;         xma.hu  f81=f32,f124,f0         }
676 { .mfi;         xma.lu  f80=f32,f124,f0         };;
677 { .mfi;         xma.hu  f91=f32,f125,f0         }
678 { .mfi;         xma.lu  f90=f32,f125,f0         };;
679 { .mfi;         xma.hu  f101=f32,f126,f0        }
680 { .mfi;         xma.lu  f100=f32,f126,f0        };;
681 { .mfi;         xma.hu  f111=f32,f127,f0        }
682 { .mfi;         xma.lu  f110=f32,f127,f0        };;//
683 // (*)  You can argue that splitting at every second bundle would
684 //      prevent "wider" IA-64 implementations from achieving the peak
685 //      performance. Well, not really... The catch is that if you
686 //      intend to keep 4 FP units busy by splitting at every fourth
687 //      bundle and thus perform these 16 multiplications in 4 ticks,
688 //      the first bundle *below* would stall because the result from
689 //      the first xma bundle *above* won't be available for another 3
690 //      ticks (if not more, being an optimist, I assume that "wider"
691 //      implementation will have same latency:-). This stall will hold
692 //      you back and the performance would be as if every second bundle
693 //      were split *anyway*...
694 { .mfi; getf.sig        r16=f40
695                 xma.hu  f42=f33,f120,f41
696         add             r33=8,r32               }
697 { .mfi;         xma.lu  f41=f33,f120,f41        };;
698 { .mfi; getf.sig        r24=f50
699                 xma.hu  f52=f33,f121,f51        }
700 { .mfi;         xma.lu  f51=f33,f121,f51        };;
701 { .mfi; st8             [r32]=r16,16
702                 xma.hu  f62=f33,f122,f61        }
703 { .mfi;         xma.lu  f61=f33,f122,f61        };;
704 { .mfi;         xma.hu  f72=f33,f123,f71        }
705 { .mfi;         xma.lu  f71=f33,f123,f71        };;
706 { .mfi;         xma.hu  f82=f33,f124,f81        }
707 { .mfi;         xma.lu  f81=f33,f124,f81        };;
708 { .mfi;         xma.hu  f92=f33,f125,f91        }
709 { .mfi;         xma.lu  f91=f33,f125,f91        };;
710 { .mfi;         xma.hu  f102=f33,f126,f101      }
711 { .mfi;         xma.lu  f101=f33,f126,f101      };;
712 { .mfi;         xma.hu  f112=f33,f127,f111      }
713 { .mfi;         xma.lu  f111=f33,f127,f111      };;//
714 //-------------------------------------------------//
715 { .mfi; getf.sig        r25=f41
716                 xma.hu  f43=f34,f120,f42        }
717 { .mfi;         xma.lu  f42=f34,f120,f42        };;
718 { .mfi; getf.sig        r16=f60
719                 xma.hu  f53=f34,f121,f52        }
720 { .mfi;         xma.lu  f52=f34,f121,f52        };;
721 { .mfi; getf.sig        r17=f51
722                 xma.hu  f63=f34,f122,f62
723         add             r25=r25,r24             }
724 { .mfi;         xma.lu  f62=f34,f122,f62
725         mov             carry1=0                };;
726 { .mfi; cmp.ltu         p6,p0=r25,r24
727                 xma.hu  f73=f34,f123,f72        }
728 { .mfi;         xma.lu  f72=f34,f123,f72        };;
729 { .mfi; st8             [r33]=r25,16
730                 xma.hu  f83=f34,f124,f82
731 (p6)    add             carry1=1,carry1         }
732 { .mfi;         xma.lu  f82=f34,f124,f82        };;
733 { .mfi;         xma.hu  f93=f34,f125,f92        }
734 { .mfi;         xma.lu  f92=f34,f125,f92        };;
735 { .mfi;         xma.hu  f103=f34,f126,f102      }
736 { .mfi;         xma.lu  f102=f34,f126,f102      };;
737 { .mfi;         xma.hu  f113=f34,f127,f112      }
738 { .mfi;         xma.lu  f112=f34,f127,f112      };;//
739 //-------------------------------------------------//
740 { .mfi; getf.sig        r18=f42
741                 xma.hu  f44=f35,f120,f43
742         add             r17=r17,r16             }
743 { .mfi;         xma.lu  f43=f35,f120,f43        };;
744 { .mfi; getf.sig        r24=f70
745                 xma.hu  f54=f35,f121,f53        }
746 { .mfi; mov             carry2=0
747                 xma.lu  f53=f35,f121,f53        };;
748 { .mfi; getf.sig        r25=f61
749                 xma.hu  f64=f35,f122,f63
750         cmp.ltu         p7,p0=r17,r16           }
751 { .mfi; add             r18=r18,r17
752                 xma.lu  f63=f35,f122,f63        };;
753 { .mfi; getf.sig        r26=f52
754                 xma.hu  f74=f35,f123,f73
755 (p7)    add             carry2=1,carry2         }
756 { .mfi; cmp.ltu         p7,p0=r18,r17
757                 xma.lu  f73=f35,f123,f73
758         add             r18=r18,carry1          };;
759 { .mfi;
760                 xma.hu  f84=f35,f124,f83
761 (p7)    add             carry2=1,carry2         }
762 { .mfi; cmp.ltu         p7,p0=r18,carry1
763                 xma.lu  f83=f35,f124,f83        };;
764 { .mfi; st8             [r32]=r18,16
765                 xma.hu  f94=f35,f125,f93
766 (p7)    add             carry2=1,carry2         }
767 { .mfi;         xma.lu  f93=f35,f125,f93        };;
768 { .mfi;         xma.hu  f104=f35,f126,f103      }
769 { .mfi;         xma.lu  f103=f35,f126,f103      };;
770 { .mfi;         xma.hu  f114=f35,f127,f113      }
771 { .mfi; mov             carry1=0
772                 xma.lu  f113=f35,f127,f113
773         add             r25=r25,r24             };;//
774 //-------------------------------------------------//
775 { .mfi; getf.sig        r27=f43
776                 xma.hu  f45=f36,f120,f44
777         cmp.ltu         p6,p0=r25,r24           }
778 { .mfi;         xma.lu  f44=f36,f120,f44        
779         add             r26=r26,r25             };;
780 { .mfi; getf.sig        r16=f80
781                 xma.hu  f55=f36,f121,f54
782 (p6)    add             carry1=1,carry1         }
783 { .mfi;         xma.lu  f54=f36,f121,f54        };;
784 { .mfi; getf.sig        r17=f71
785                 xma.hu  f65=f36,f122,f64
786         cmp.ltu         p6,p0=r26,r25           }
787 { .mfi;         xma.lu  f64=f36,f122,f64
788         add             r27=r27,r26             };;
789 { .mfi; getf.sig        r18=f62
790                 xma.hu  f75=f36,f123,f74
791 (p6)    add             carry1=1,carry1         }
792 { .mfi; cmp.ltu         p6,p0=r27,r26
793                 xma.lu  f74=f36,f123,f74
794         add             r27=r27,carry2          };;
795 { .mfi; getf.sig        r19=f53
796                 xma.hu  f85=f36,f124,f84
797 (p6)    add             carry1=1,carry1         }
798 { .mfi;         xma.lu  f84=f36,f124,f84
799         cmp.ltu         p6,p0=r27,carry2        };;
800 { .mfi; st8             [r33]=r27,16
801                 xma.hu  f95=f36,f125,f94
802 (p6)    add             carry1=1,carry1         }
803 { .mfi;         xma.lu  f94=f36,f125,f94        };;
804 { .mfi;         xma.hu  f105=f36,f126,f104      }
805 { .mfi; mov             carry2=0
806                 xma.lu  f104=f36,f126,f104
807         add             r17=r17,r16             };;
808 { .mfi;         xma.hu  f115=f36,f127,f114
809         cmp.ltu         p7,p0=r17,r16           }
810 { .mfi;         xma.lu  f114=f36,f127,f114
811         add             r18=r18,r17             };;//
812 //-------------------------------------------------//
813 { .mfi; getf.sig        r20=f44
814                 xma.hu  f46=f37,f120,f45
815 (p7)    add             carry2=1,carry2         }
816 { .mfi; cmp.ltu         p7,p0=r18,r17
817                 xma.lu  f45=f37,f120,f45
818         add             r19=r19,r18             };;
819 { .mfi; getf.sig        r24=f90
820                 xma.hu  f56=f37,f121,f55        }
821 { .mfi;         xma.lu  f55=f37,f121,f55        };;
822 { .mfi; getf.sig        r25=f81
823                 xma.hu  f66=f37,f122,f65
824 (p7)    add             carry2=1,carry2         }
825 { .mfi; cmp.ltu         p7,p0=r19,r18
826                 xma.lu  f65=f37,f122,f65
827         add             r20=r20,r19             };;
828 { .mfi; getf.sig        r26=f72
829                 xma.hu  f76=f37,f123,f75
830 (p7)    add             carry2=1,carry2         }
831 { .mfi; cmp.ltu         p7,p0=r20,r19
832                 xma.lu  f75=f37,f123,f75
833         add             r20=r20,carry1          };;
834 { .mfi; getf.sig        r27=f63
835                 xma.hu  f86=f37,f124,f85
836 (p7)    add             carry2=1,carry2         }
837 { .mfi;         xma.lu  f85=f37,f124,f85
838         cmp.ltu         p7,p0=r20,carry1        };;
839 { .mfi; getf.sig        r28=f54
840                 xma.hu  f96=f37,f125,f95
841 (p7)    add             carry2=1,carry2         }
842 { .mfi; st8             [r32]=r20,16
843                 xma.lu  f95=f37,f125,f95        };;
844 { .mfi;         xma.hu  f106=f37,f126,f105      }
845 { .mfi; mov             carry1=0
846                 xma.lu  f105=f37,f126,f105
847         add             r25=r25,r24             };;
848 { .mfi;         xma.hu  f116=f37,f127,f115
849         cmp.ltu         p6,p0=r25,r24           }
850 { .mfi;         xma.lu  f115=f37,f127,f115
851         add             r26=r26,r25             };;//
852 //-------------------------------------------------//
853 { .mfi; getf.sig        r29=f45
854                 xma.hu  f47=f38,f120,f46
855 (p6)    add             carry1=1,carry1         }
856 { .mfi; cmp.ltu         p6,p0=r26,r25
857                 xma.lu  f46=f38,f120,f46
858         add             r27=r27,r26             };;
859 { .mfi; getf.sig        r16=f100
860                 xma.hu  f57=f38,f121,f56
861 (p6)    add             carry1=1,carry1         }
862 { .mfi; cmp.ltu         p6,p0=r27,r26
863                 xma.lu  f56=f38,f121,f56
864         add             r28=r28,r27             };;
865 { .mfi; getf.sig        r17=f91
866                 xma.hu  f67=f38,f122,f66
867 (p6)    add             carry1=1,carry1         }
868 { .mfi; cmp.ltu         p6,p0=r28,r27
869                 xma.lu  f66=f38,f122,f66
870         add             r29=r29,r28             };;
871 { .mfi; getf.sig        r18=f82
872                 xma.hu  f77=f38,f123,f76
873 (p6)    add             carry1=1,carry1         }
874 { .mfi; cmp.ltu         p6,p0=r29,r28
875                 xma.lu  f76=f38,f123,f76
876         add             r29=r29,carry2          };;
877 { .mfi; getf.sig        r19=f73
878                 xma.hu  f87=f38,f124,f86
879 (p6)    add             carry1=1,carry1         }
880 { .mfi;         xma.lu  f86=f38,f124,f86
881         cmp.ltu         p6,p0=r29,carry2        };;
882 { .mfi; getf.sig        r20=f64
883                 xma.hu  f97=f38,f125,f96
884 (p6)    add             carry1=1,carry1         }
885 { .mfi; st8             [r33]=r29,16
886                 xma.lu  f96=f38,f125,f96        };;
887 { .mfi; getf.sig        r21=f55
888                 xma.hu  f107=f38,f126,f106      }
889 { .mfi; mov             carry2=0
890                 xma.lu  f106=f38,f126,f106
891         add             r17=r17,r16             };;
892 { .mfi;         xma.hu  f117=f38,f127,f116
893         cmp.ltu         p7,p0=r17,r16           }
894 { .mfi;         xma.lu  f116=f38,f127,f116
895         add             r18=r18,r17             };;//
896 //-------------------------------------------------//
897 { .mfi; getf.sig        r22=f46
898                 xma.hu  f48=f39,f120,f47
899 (p7)    add             carry2=1,carry2         }
900 { .mfi; cmp.ltu         p7,p0=r18,r17
901                 xma.lu  f47=f39,f120,f47
902         add             r19=r19,r18             };;
903 { .mfi; getf.sig        r24=f110
904                 xma.hu  f58=f39,f121,f57
905 (p7)    add             carry2=1,carry2         }
906 { .mfi; cmp.ltu         p7,p0=r19,r18
907                 xma.lu  f57=f39,f121,f57
908         add             r20=r20,r19             };;
909 { .mfi; getf.sig        r25=f101
910                 xma.hu  f68=f39,f122,f67
911 (p7)    add             carry2=1,carry2         }
912 { .mfi; cmp.ltu         p7,p0=r20,r19
913                 xma.lu  f67=f39,f122,f67
914         add             r21=r21,r20             };;
915 { .mfi; getf.sig        r26=f92
916                 xma.hu  f78=f39,f123,f77
917 (p7)    add             carry2=1,carry2         }
918 { .mfi; cmp.ltu         p7,p0=r21,r20
919                 xma.lu  f77=f39,f123,f77
920         add             r22=r22,r21             };;
921 { .mfi; getf.sig        r27=f83
922                 xma.hu  f88=f39,f124,f87
923 (p7)    add             carry2=1,carry2         }
924 { .mfi; cmp.ltu         p7,p0=r22,r21
925                 xma.lu  f87=f39,f124,f87
926         add             r22=r22,carry1          };;
927 { .mfi; getf.sig        r28=f74
928                 xma.hu  f98=f39,f125,f97
929 (p7)    add             carry2=1,carry2         }
930 { .mfi;         xma.lu  f97=f39,f125,f97
931         cmp.ltu         p7,p0=r22,carry1        };;
932 { .mfi; getf.sig        r29=f65
933                 xma.hu  f108=f39,f126,f107
934 (p7)    add             carry2=1,carry2         }
935 { .mfi; st8             [r32]=r22,16
936                 xma.lu  f107=f39,f126,f107      };;
937 { .mfi; getf.sig        r30=f56
938                 xma.hu  f118=f39,f127,f117      }
939 { .mfi;         xma.lu  f117=f39,f127,f117      };;//
940 //-------------------------------------------------//
941 // Leaving multiplier's heaven... Quite a ride, huh?
942
943 { .mii; getf.sig        r31=f47
944         add             r25=r25,r24
945         mov             carry1=0                };;
946 { .mii;         getf.sig        r16=f111
947         cmp.ltu         p6,p0=r25,r24
948         add             r26=r26,r25             };;
949 { .mfb;         getf.sig        r17=f102        }
950 { .mii;
951 (p6)    add             carry1=1,carry1
952         cmp.ltu         p6,p0=r26,r25
953         add             r27=r27,r26             };;
954 { .mfb; nop.m   0x0                             }
955 { .mii;
956 (p6)    add             carry1=1,carry1
957         cmp.ltu         p6,p0=r27,r26
958         add             r28=r28,r27             };;
959 { .mii;         getf.sig        r18=f93
960                 add             r17=r17,r16
961                 mov             carry3=0        }
962 { .mii;
963 (p6)    add             carry1=1,carry1
964         cmp.ltu         p6,p0=r28,r27
965         add             r29=r29,r28             };;
966 { .mii;         getf.sig        r19=f84
967                 cmp.ltu         p7,p0=r17,r16   }
968 { .mii;
969 (p6)    add             carry1=1,carry1
970         cmp.ltu         p6,p0=r29,r28
971         add             r30=r30,r29             };;
972 { .mii;         getf.sig        r20=f75
973                 add             r18=r18,r17     }
974 { .mii;
975 (p6)    add             carry1=1,carry1
976         cmp.ltu         p6,p0=r30,r29
977         add             r31=r31,r30             };;
978 { .mfb;         getf.sig        r21=f66         }
979 { .mii; (p7)    add             carry3=1,carry3
980                 cmp.ltu         p7,p0=r18,r17
981                 add             r19=r19,r18     }
982 { .mfb; nop.m   0x0                             }
983 { .mii;
984 (p6)    add             carry1=1,carry1
985         cmp.ltu         p6,p0=r31,r30
986         add             r31=r31,carry2          };;
987 { .mfb;         getf.sig        r22=f57         }
988 { .mii; (p7)    add             carry3=1,carry3
989                 cmp.ltu         p7,p0=r19,r18
990                 add             r20=r20,r19     }
991 { .mfb; nop.m   0x0                             }
992 { .mii;
993 (p6)    add             carry1=1,carry1
994         cmp.ltu         p6,p0=r31,carry2        };;
995 { .mfb;         getf.sig        r23=f48         }
996 { .mii; (p7)    add             carry3=1,carry3
997                 cmp.ltu         p7,p0=r20,r19
998                 add             r21=r21,r20     }
999 { .mii;
1000 (p6)    add             carry1=1,carry1         }
1001 { .mfb; st8             [r33]=r31,16            };;
1002
1003 { .mfb; getf.sig        r24=f112                }
1004 { .mii; (p7)    add             carry3=1,carry3
1005                 cmp.ltu         p7,p0=r21,r20
1006                 add             r22=r22,r21     };;
1007 { .mfb; getf.sig        r25=f103                }
1008 { .mii; (p7)    add             carry3=1,carry3
1009                 cmp.ltu         p7,p0=r22,r21
1010                 add             r23=r23,r22     };;
1011 { .mfb; getf.sig        r26=f94                 }
1012 { .mii; (p7)    add             carry3=1,carry3
1013                 cmp.ltu         p7,p0=r23,r22
1014                 add             r23=r23,carry1  };;
1015 { .mfb; getf.sig        r27=f85                 }
1016 { .mii; (p7)    add             carry3=1,carry3
1017                 cmp.ltu         p7,p8=r23,carry1};;
1018 { .mii; getf.sig        r28=f76
1019         add             r25=r25,r24
1020         mov             carry1=0                }
1021 { .mii;         st8             [r32]=r23,16
1022         (p7)    add             carry2=1,carry3
1023         (p8)    add             carry2=0,carry3 };;
1024
1025 { .mfb; nop.m   0x0                             }
1026 { .mii; getf.sig        r29=f67
1027         cmp.ltu         p6,p0=r25,r24
1028         add             r26=r26,r25             };;
1029 { .mfb; getf.sig        r30=f58                 }
1030 { .mii;
1031 (p6)    add             carry1=1,carry1
1032         cmp.ltu         p6,p0=r26,r25
1033         add             r27=r27,r26             };;
1034 { .mfb;         getf.sig        r16=f113        }
1035 { .mii;
1036 (p6)    add             carry1=1,carry1
1037         cmp.ltu         p6,p0=r27,r26
1038         add             r28=r28,r27             };;
1039 { .mfb;         getf.sig        r17=f104        }
1040 { .mii;
1041 (p6)    add             carry1=1,carry1
1042         cmp.ltu         p6,p0=r28,r27
1043         add             r29=r29,r28             };;
1044 { .mfb;         getf.sig        r18=f95         }
1045 { .mii;
1046 (p6)    add             carry1=1,carry1
1047         cmp.ltu         p6,p0=r29,r28
1048         add             r30=r30,r29             };;
1049 { .mii;         getf.sig        r19=f86
1050                 add             r17=r17,r16
1051                 mov             carry3=0        }
1052 { .mii;
1053 (p6)    add             carry1=1,carry1
1054         cmp.ltu         p6,p0=r30,r29
1055         add             r30=r30,carry2          };;
1056 { .mii;         getf.sig        r20=f77
1057                 cmp.ltu         p7,p0=r17,r16
1058                 add             r18=r18,r17     }
1059 { .mii;
1060 (p6)    add             carry1=1,carry1
1061         cmp.ltu         p6,p0=r30,carry2        };;
1062 { .mfb;         getf.sig        r21=f68         }
1063 { .mii; st8             [r33]=r30,16
1064 (p6)    add             carry1=1,carry1         };;
1065
1066 { .mfb; getf.sig        r24=f114                }
1067 { .mii; (p7)    add             carry3=1,carry3
1068                 cmp.ltu         p7,p0=r18,r17
1069                 add             r19=r19,r18     };;
1070 { .mfb; getf.sig        r25=f105                }
1071 { .mii; (p7)    add             carry3=1,carry3
1072                 cmp.ltu         p7,p0=r19,r18
1073                 add             r20=r20,r19     };;
1074 { .mfb; getf.sig        r26=f96                 }
1075 { .mii; (p7)    add             carry3=1,carry3
1076                 cmp.ltu         p7,p0=r20,r19
1077                 add             r21=r21,r20     };;
1078 { .mfb; getf.sig        r27=f87                 }
1079 { .mii; (p7)    add             carry3=1,carry3
1080                 cmp.ltu         p7,p0=r21,r20
1081                 add             r21=r21,carry1  };;
1082 { .mib; getf.sig        r28=f78                 
1083         add             r25=r25,r24             }
1084 { .mib; (p7)    add             carry3=1,carry3
1085                 cmp.ltu         p7,p8=r21,carry1};;
1086 { .mii;         st8             [r32]=r21,16
1087         (p7)    add             carry2=1,carry3
1088         (p8)    add             carry2=0,carry3 }
1089
1090 { .mii; mov             carry1=0
1091         cmp.ltu         p6,p0=r25,r24
1092         add             r26=r26,r25             };;
1093 { .mfb;         getf.sig        r16=f115        }
1094 { .mii;
1095 (p6)    add             carry1=1,carry1
1096         cmp.ltu         p6,p0=r26,r25
1097         add             r27=r27,r26             };;
1098 { .mfb;         getf.sig        r17=f106        }
1099 { .mii;
1100 (p6)    add             carry1=1,carry1
1101         cmp.ltu         p6,p0=r27,r26
1102         add             r28=r28,r27             };;
1103 { .mfb;         getf.sig        r18=f97         }
1104 { .mii;
1105 (p6)    add             carry1=1,carry1
1106         cmp.ltu         p6,p0=r28,r27
1107         add             r28=r28,carry2          };;
1108 { .mib;         getf.sig        r19=f88
1109                 add             r17=r17,r16     }
1110 { .mib;
1111 (p6)    add             carry1=1,carry1
1112         cmp.ltu         p6,p0=r28,carry2        };;
1113 { .mii; st8             [r33]=r28,16
1114 (p6)    add             carry1=1,carry1         }
1115
1116 { .mii;         mov             carry2=0
1117                 cmp.ltu         p7,p0=r17,r16
1118                 add             r18=r18,r17     };;
1119 { .mfb; getf.sig        r24=f116                }
1120 { .mii; (p7)    add             carry2=1,carry2
1121                 cmp.ltu         p7,p0=r18,r17
1122                 add             r19=r19,r18     };;
1123 { .mfb; getf.sig        r25=f107                }
1124 { .mii; (p7)    add             carry2=1,carry2
1125                 cmp.ltu         p7,p0=r19,r18
1126                 add             r19=r19,carry1  };;
1127 { .mfb; getf.sig        r26=f98                 }
1128 { .mii; (p7)    add             carry2=1,carry2
1129                 cmp.ltu         p7,p0=r19,carry1};;
1130 { .mii;         st8             [r32]=r19,16
1131         (p7)    add             carry2=1,carry2 }
1132
1133 { .mfb; add             r25=r25,r24             };;
1134
1135 { .mfb;         getf.sig        r16=f117        }
1136 { .mii; mov             carry1=0
1137         cmp.ltu         p6,p0=r25,r24
1138         add             r26=r26,r25             };;
1139 { .mfb;         getf.sig        r17=f108        }
1140 { .mii;
1141 (p6)    add             carry1=1,carry1
1142         cmp.ltu         p6,p0=r26,r25
1143         add             r26=r26,carry2          };;
1144 { .mfb; nop.m   0x0                             }
1145 { .mii;
1146 (p6)    add             carry1=1,carry1
1147         cmp.ltu         p6,p0=r26,carry2        };;
1148 { .mii; st8             [r33]=r26,16
1149 (p6)    add             carry1=1,carry1         }
1150
1151 { .mfb;         add             r17=r17,r16     };;
1152 { .mfb; getf.sig        r24=f118                }
1153 { .mii;         mov             carry2=0
1154                 cmp.ltu         p7,p0=r17,r16
1155                 add             r17=r17,carry1  };;
1156 { .mii; (p7)    add             carry2=1,carry2
1157                 cmp.ltu         p7,p0=r17,carry1};;
1158 { .mii;         st8             [r32]=r17
1159         (p7)    add             carry2=1,carry2 };;
1160 { .mfb; add             r24=r24,carry2          };;
1161 { .mib; st8             [r33]=r24               }
1162
1163 { .mib; rum             1<<5            // clear um.mfh
1164         br.ret.sptk.many        b0      };;
1165 .endp   bn_mul_comba8#
1166 #undef  carry3
1167 #undef  carry2
1168 #undef  carry1
1169 #endif
1170
1171 #if 1
1172 // It's possible to make it faster (see comment to bn_sqr_comba8), but
1173 // I reckon it doesn't worth the effort. Basically because the routine
1174 // (actually both of them) practically never called... So I just play
1175 // same trick as with bn_sqr_comba8.
1176 //
1177 // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1178 //
1179 .global bn_sqr_comba4#
1180 .proc   bn_sqr_comba4#
1181 .align  64
1182 bn_sqr_comba4:
1183         .prologue
1184         .save   ar.pfs,r2
1185 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1186 { .mii; alloc   r2=ar.pfs,2,1,0,0
1187         addp4   r32=0,r32
1188         addp4   r33=0,r33               };;
1189 { .mii;
1190 #else
1191 { .mii; alloc   r2=ar.pfs,2,1,0,0
1192 #endif
1193         mov     r34=r33
1194         add     r14=8,r33               };;
1195         .body
1196 { .mii; add     r17=8,r34
1197         add     r15=16,r33
1198         add     r18=16,r34              }
1199 { .mfb; add     r16=24,r33
1200         br      .L_cheat_entry_point4   };;
1201 .endp   bn_sqr_comba4#
1202 #endif
1203
1204 #if 1
1205 // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1206 //
1207 // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1208 //
1209 #define carry1  r14
1210 #define carry2  r15
1211 .global bn_mul_comba4#
1212 .proc   bn_mul_comba4#
1213 .align  64
1214 bn_mul_comba4:
1215         .prologue
1216         .save   ar.pfs,r2
1217 #if defined(_HPUX_SOURCE) && !defined(_LP64)
1218 { .mii; alloc   r2=ar.pfs,3,0,0,0
1219         addp4   r33=0,r33
1220         addp4   r34=0,r34               };;
1221 { .mii; addp4   r32=0,r32
1222 #else
1223 { .mii; alloc   r2=ar.pfs,3,0,0,0
1224 #endif
1225         add     r14=8,r33
1226         add     r17=8,r34               }
1227         .body
1228 { .mii; add     r15=16,r33
1229         add     r18=16,r34
1230         add     r16=24,r33              };;
1231 .L_cheat_entry_point4:
1232 { .mmi; add     r19=24,r34
1233
1234         ldf8    f32=[r33]               }
1235
1236 { .mmi; ldf8    f120=[r34]
1237         ldf8    f121=[r17]              };;
1238 { .mmi; ldf8    f122=[r18]
1239         ldf8    f123=[r19]              }
1240
1241 { .mmi; ldf8    f33=[r14]
1242         ldf8    f34=[r15]               }
1243 { .mfi; ldf8    f35=[r16]
1244
1245                 xma.hu  f41=f32,f120,f0         }
1246 { .mfi;         xma.lu  f40=f32,f120,f0         };;
1247 { .mfi;         xma.hu  f51=f32,f121,f0         }
1248 { .mfi;         xma.lu  f50=f32,f121,f0         };;
1249 { .mfi;         xma.hu  f61=f32,f122,f0         }
1250 { .mfi;         xma.lu  f60=f32,f122,f0         };;
1251 { .mfi;         xma.hu  f71=f32,f123,f0         }
1252 { .mfi;         xma.lu  f70=f32,f123,f0         };;//
1253 // Major stall takes place here, and 3 more places below. Result from
1254 // first xma is not available for another 3 ticks.
1255 { .mfi; getf.sig        r16=f40
1256                 xma.hu  f42=f33,f120,f41
1257         add             r33=8,r32               }
1258 { .mfi;         xma.lu  f41=f33,f120,f41        };;
1259 { .mfi; getf.sig        r24=f50
1260                 xma.hu  f52=f33,f121,f51        }
1261 { .mfi;         xma.lu  f51=f33,f121,f51        };;
1262 { .mfi; st8             [r32]=r16,16
1263                 xma.hu  f62=f33,f122,f61        }
1264 { .mfi;         xma.lu  f61=f33,f122,f61        };;
1265 { .mfi;         xma.hu  f72=f33,f123,f71        }
1266 { .mfi;         xma.lu  f71=f33,f123,f71        };;//
1267 //-------------------------------------------------//
1268 { .mfi; getf.sig        r25=f41
1269                 xma.hu  f43=f34,f120,f42        }
1270 { .mfi;         xma.lu  f42=f34,f120,f42        };;
1271 { .mfi; getf.sig        r16=f60
1272                 xma.hu  f53=f34,f121,f52        }
1273 { .mfi;         xma.lu  f52=f34,f121,f52        };;
1274 { .mfi; getf.sig        r17=f51
1275                 xma.hu  f63=f34,f122,f62
1276         add             r25=r25,r24             }
1277 { .mfi; mov             carry1=0
1278                 xma.lu  f62=f34,f122,f62        };;
1279 { .mfi; st8             [r33]=r25,16
1280                 xma.hu  f73=f34,f123,f72
1281         cmp.ltu         p6,p0=r25,r24           }
1282 { .mfi;         xma.lu  f72=f34,f123,f72        };;//
1283 //-------------------------------------------------//
1284 { .mfi; getf.sig        r18=f42
1285                 xma.hu  f44=f35,f120,f43
1286 (p6)    add             carry1=1,carry1         }
1287 { .mfi; add             r17=r17,r16
1288                 xma.lu  f43=f35,f120,f43
1289         mov             carry2=0                };;
1290 { .mfi; getf.sig        r24=f70
1291                 xma.hu  f54=f35,f121,f53
1292         cmp.ltu         p7,p0=r17,r16           }
1293 { .mfi;         xma.lu  f53=f35,f121,f53        };;
1294 { .mfi; getf.sig        r25=f61
1295                 xma.hu  f64=f35,f122,f63
1296         add             r18=r18,r17             }
1297 { .mfi;         xma.lu  f63=f35,f122,f63
1298 (p7)    add             carry2=1,carry2         };;
1299 { .mfi; getf.sig        r26=f52
1300                 xma.hu  f74=f35,f123,f73
1301         cmp.ltu         p7,p0=r18,r17           }
1302 { .mfi;         xma.lu  f73=f35,f123,f73
1303         add             r18=r18,carry1          };;
1304 //-------------------------------------------------//
1305 { .mii; st8             [r32]=r18,16
1306 (p7)    add             carry2=1,carry2
1307         cmp.ltu         p7,p0=r18,carry1        };;
1308
1309 { .mfi; getf.sig        r27=f43 // last major stall
1310 (p7)    add             carry2=1,carry2         };;
1311 { .mii;         getf.sig        r16=f71
1312         add             r25=r25,r24
1313         mov             carry1=0                };;
1314 { .mii;         getf.sig        r17=f62 
1315         cmp.ltu         p6,p0=r25,r24
1316         add             r26=r26,r25             };;
1317 { .mii;
1318 (p6)    add             carry1=1,carry1
1319         cmp.ltu         p6,p0=r26,r25
1320         add             r27=r27,r26             };;
1321 { .mii;
1322 (p6)    add             carry1=1,carry1
1323         cmp.ltu         p6,p0=r27,r26
1324         add             r27=r27,carry2          };;
1325 { .mii;         getf.sig        r18=f53
1326 (p6)    add             carry1=1,carry1
1327         cmp.ltu         p6,p0=r27,carry2        };;
1328 { .mfi; st8             [r33]=r27,16
1329 (p6)    add             carry1=1,carry1         }
1330
1331 { .mii;         getf.sig        r19=f44
1332                 add             r17=r17,r16
1333                 mov             carry2=0        };;
1334 { .mii; getf.sig        r24=f72
1335                 cmp.ltu         p7,p0=r17,r16
1336                 add             r18=r18,r17     };;
1337 { .mii; (p7)    add             carry2=1,carry2
1338                 cmp.ltu         p7,p0=r18,r17
1339                 add             r19=r19,r18     };;
1340 { .mii; (p7)    add             carry2=1,carry2
1341                 cmp.ltu         p7,p0=r19,r18
1342                 add             r19=r19,carry1  };;
1343 { .mii; getf.sig        r25=f63
1344         (p7)    add             carry2=1,carry2
1345                 cmp.ltu         p7,p0=r19,carry1};;
1346 { .mii;         st8             [r32]=r19,16
1347         (p7)    add             carry2=1,carry2 }
1348
1349 { .mii; getf.sig        r26=f54
1350         add             r25=r25,r24
1351         mov             carry1=0                };;
1352 { .mii;         getf.sig        r16=f73
1353         cmp.ltu         p6,p0=r25,r24
1354         add             r26=r26,r25             };;
1355 { .mii;
1356 (p6)    add             carry1=1,carry1
1357         cmp.ltu         p6,p0=r26,r25
1358         add             r26=r26,carry2          };;
1359 { .mii;         getf.sig        r17=f64
1360 (p6)    add             carry1=1,carry1
1361         cmp.ltu         p6,p0=r26,carry2        };;
1362 { .mii; st8             [r33]=r26,16
1363 (p6)    add             carry1=1,carry1         }
1364
1365 { .mii; getf.sig        r24=f74
1366                 add             r17=r17,r16     
1367                 mov             carry2=0        };;
1368 { .mii;         cmp.ltu         p7,p0=r17,r16
1369                 add             r17=r17,carry1  };;
1370
1371 { .mii; (p7)    add             carry2=1,carry2
1372                 cmp.ltu         p7,p0=r17,carry1};;
1373 { .mii;         st8             [r32]=r17,16
1374         (p7)    add             carry2=1,carry2 };;
1375
1376 { .mii; add             r24=r24,carry2          };;
1377 { .mii; st8             [r33]=r24               }
1378
1379 { .mib; rum             1<<5            // clear um.mfh
1380         br.ret.sptk.many        b0      };;
1381 .endp   bn_mul_comba4#
1382 #undef  carry2
1383 #undef  carry1
1384 #endif
1385
1386 #if 1
1387 //
1388 // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1389 //
1390 // In the nutshell it's a port of my MIPS III/IV implementation.
1391 //
1392 #define AT      r14
1393 #define H       r16
1394 #define HH      r20
1395 #define L       r17
1396 #define D       r18
1397 #define DH      r22
1398 #define I       r21
1399
1400 #if 0
1401 // Some preprocessors (most notably HP-UX) appear to be allergic to
1402 // macros enclosed to parenthesis [as these three were].
1403 #define cont    p16
1404 #define break   p0      // p20
1405 #define equ     p24
1406 #else
1407 cont=p16
1408 break=p0
1409 equ=p24
1410 #endif
1411
1412 .global abort#
1413 .global bn_div_words#
1414 .proc   bn_div_words#
1415 .align  64
1416 bn_div_words:
1417         .prologue
1418         .save   ar.pfs,r2
1419 { .mii; alloc           r2=ar.pfs,3,5,0,8
1420         .save   b0,r3
1421         mov             r3=b0
1422         .save   pr,r10
1423         mov             r10=pr          };;
1424 { .mmb; cmp.eq          p6,p0=r34,r0
1425         mov             r8=-1
1426 (p6)    br.ret.spnt.many        b0      };;
1427
1428         .body
1429 { .mii; mov             H=r32           // save h
1430         mov             ar.ec=0         // don't rotate at exit
1431         mov             pr.rot=0        }
1432 { .mii; mov             L=r33           // save l
1433         mov             r25=r0          // needed if abort is called on VMS
1434         mov             r36=r0          };;
1435
1436 .L_divw_shift:  // -vv- note signed comparison
1437 { .mfi; (p0)    cmp.lt          p16,p0=r0,r34   // d
1438         (p0)    shladd          r33=r34,1,r0    }
1439 { .mfb; (p0)    add             r35=1,r36
1440         (p0)    nop.f           0x0
1441 (p16)   br.wtop.dpnt            .L_divw_shift   };;
1442
1443 { .mii; mov             D=r34
1444         shr.u           DH=r34,32
1445         sub             r35=64,r36              };;
1446 { .mii; setf.sig        f7=DH
1447         shr.u           AT=H,r35
1448         mov             I=r36                   };;
1449 { .mib; cmp.ne          p6,p0=r0,AT
1450         shl             H=H,r36
1451 (p6)    br.call.spnt.clr        b0=abort        };;     // overflow, die...
1452
1453 { .mfi; fcvt.xuf.s1     f7=f7
1454         shr.u           AT=L,r35                };;
1455 { .mii; shl             L=L,r36
1456         or              H=H,AT                  };;
1457
1458 { .mii; nop.m           0x0
1459         cmp.leu         p6,p0=D,H;;
1460 (p6)    sub             H=H,D                   }
1461
1462 { .mlx; setf.sig        f14=D
1463         movl            AT=0xffffffff           };;
1464 ///////////////////////////////////////////////////////////
1465 { .mii; setf.sig        f6=H
1466         shr.u           HH=H,32;;
1467         cmp.eq          p6,p7=HH,DH             };;
1468 { .mfb;
1469 (p6)    setf.sig        f8=AT
1470 (p7)    fcvt.xuf.s1     f6=f6
1471 (p7)    br.call.sptk    b6=.L_udiv64_32_b6      };;
1472
1473 { .mfi; getf.sig        r33=f8                          // q
1474         xmpy.lu         f9=f8,f14               }
1475 { .mfi; xmpy.hu         f10=f8,f14
1476         shrp            H=H,L,32                };;
1477
1478 { .mmi; getf.sig        r35=f9                          // tl
1479         getf.sig        r31=f10                 };;     // th
1480
1481 .L_divw_1st_iter:
1482 { .mii; (p0)    add             r32=-1,r33
1483         (p0)    cmp.eq          equ,cont=HH,r31         };;
1484 { .mii; (p0)    cmp.ltu         p8,p0=r35,D
1485         (p0)    sub             r34=r35,D
1486         (equ)   cmp.leu         break,cont=r35,H        };;
1487 { .mib; (cont)  cmp.leu         cont,break=HH,r31
1488         (p8)    add             r31=-1,r31
1489 (cont)  br.wtop.spnt            .L_divw_1st_iter        };;
1490 ///////////////////////////////////////////////////////////
1491 { .mii; sub             H=H,r35
1492         shl             r8=r33,32
1493         shl             L=L,32                  };;
1494 ///////////////////////////////////////////////////////////
1495 { .mii; setf.sig        f6=H
1496         shr.u           HH=H,32;;
1497         cmp.eq          p6,p7=HH,DH             };;
1498 { .mfb;
1499 (p6)    setf.sig        f8=AT
1500 (p7)    fcvt.xuf.s1     f6=f6
1501 (p7)    br.call.sptk    b6=.L_udiv64_32_b6      };;
1502
1503 { .mfi; getf.sig        r33=f8                          // q
1504         xmpy.lu         f9=f8,f14               }
1505 { .mfi; xmpy.hu         f10=f8,f14
1506         shrp            H=H,L,32                };;
1507
1508 { .mmi; getf.sig        r35=f9                          // tl
1509         getf.sig        r31=f10                 };;     // th
1510
1511 .L_divw_2nd_iter:
1512 { .mii; (p0)    add             r32=-1,r33
1513         (p0)    cmp.eq          equ,cont=HH,r31         };;
1514 { .mii; (p0)    cmp.ltu         p8,p0=r35,D
1515         (p0)    sub             r34=r35,D
1516         (equ)   cmp.leu         break,cont=r35,H        };;
1517 { .mib; (cont)  cmp.leu         cont,break=HH,r31
1518         (p8)    add             r31=-1,r31
1519 (cont)  br.wtop.spnt            .L_divw_2nd_iter        };;
1520 ///////////////////////////////////////////////////////////
1521 { .mii; sub     H=H,r35
1522         or      r8=r8,r33
1523         mov     ar.pfs=r2               };;
1524 { .mii; shr.u   r9=H,I                  // remainder if anybody wants it
1525         mov     pr=r10,0x1ffff          }
1526 { .mfb; br.ret.sptk.many        b0      };;
1527
1528 // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1529 // procedure.
1530 //
1531 // inputs:      f6 = (double)a, f7 = (double)b
1532 // output:      f8 = (int)(a/b)
1533 // clobbered:   f8,f9,f10,f11,pred
1534 pred=p15
1535 // This snippet is based on text found in the "Divide, Square
1536 // Root and Remainder" section at
1537 // http://www.intel.com/software/products/opensource/libraries/num.htm.
1538 // Yes, I admit that the referred code was used as template,
1539 // but after I realized that there hardly is any other instruction
1540 // sequence which would perform this operation. I mean I figure that
1541 // any independent attempt to implement high-performance division
1542 // will result in code virtually identical to the Intel code. It
1543 // should be noted though that below division kernel is 1 cycle
1544 // faster than Intel one (note commented splits:-), not to mention
1545 // original prologue (rather lack of one) and epilogue.
1546 .align  32
1547 .skip   16
1548 .L_udiv64_32_b6:
1549         frcpa.s1        f8,pred=f6,f7;;         // [0]  y0 = 1 / b
1550
1551 (pred)  fnma.s1         f9=f7,f8,f1             // [5]  e0 = 1 - b * y0
1552 (pred)  fmpy.s1         f10=f6,f8;;             // [5]  q0 = a * y0
1553 (pred)  fmpy.s1         f11=f9,f9               // [10] e1 = e0 * e0
1554 (pred)  fma.s1          f10=f9,f10,f10;;        // [10] q1 = q0 + e0 * q0
1555 (pred)  fma.s1          f8=f9,f8,f8     //;;    // [15] y1 = y0 + e0 * y0
1556 (pred)  fma.s1          f9=f11,f10,f10;;        // [15] q2 = q1 + e1 * q1
1557 (pred)  fma.s1          f8=f11,f8,f8    //;;    // [20] y2 = y1 + e1 * y1
1558 (pred)  fnma.s1         f10=f7,f9,f6;;          // [20] r2 = a - b * q2
1559 (pred)  fma.s1          f8=f10,f8,f9;;          // [25] q3 = q2 + r2 * y2
1560
1561         fcvt.fxu.trunc.s1       f8=f8           // [30] q = trunc(q3)
1562         br.ret.sptk.many        b6;;
1563 .endp   bn_div_words#
1564 #endif