modes/asm/ghashp8-ppc.pl: improve performance by 2.7x.
[openssl.git] / crypto / modes / asm / ghash-x86.pl
index d31fbae0d8b02e94cc0a7c79e3c3ea71f8eeaace..4eb0b2c6e52db4b7ede85fbec858a598b9f73623 100644 (file)
@@ -1,4 +1,11 @@
-#!/usr/bin/env perl
+#! /usr/bin/env perl
+# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License").  You may not use
+# this file except in compliance with the License.  You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
 #
 # ====================================================================
 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
 # For reference, AMD Bulldozer processes one byte in 1.98 cycles in
 # 32-bit mode and 1.89 in 64-bit.
 
+# February 2013
+#
+# Overhaul: aggregate Karatsuba post-processing, improve ILP in
+# reduction_alg9. Resulting performance is 1.96 cycles per byte on
+# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
+
 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
 push(@INC,"${dir}","${dir}../../perlasm");
 require "x86asm.pl";
 
+$output=pop;
+open STDOUT,">$output";
+
 &asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
 
 $sse2=0;
@@ -352,7 +368,7 @@ $S=12;              # shift factor for rem_4bit
 # effective address calculation and finally merge of value to Z.hi.
 # Reference to rem_4bit is scheduled so late that I had to >>4
 # rem_4bit elements. This resulted in 20-45% procent improvement
-# on contemporary µ-archs.
+# on contemporary Âµ-archs.
 {
     my $cnt;
     my $rem_4bit = "eax";
@@ -828,17 +844,18 @@ $len="ebx";
 &static_label("bswap");
 
 sub clmul64x64_T2 {    # minimal "register" pressure
-my ($Xhi,$Xi,$Hkey)=@_;
+my ($Xhi,$Xi,$Hkey,$HK)=@_;
 
        &movdqa         ($Xhi,$Xi);             #
        &pshufd         ($T1,$Xi,0b01001110);
-       &pshufd         ($T2,$Hkey,0b01001110);
+       &pshufd         ($T2,$Hkey,0b01001110)  if (!defined($HK));
        &pxor           ($T1,$Xi);              #
-       &pxor           ($T2,$Hkey);
+       &pxor           ($T2,$Hkey)             if (!defined($HK));
+                       $HK=$T2                 if (!defined($HK));
 
        &pclmulqdq      ($Xi,$Hkey,0x00);       #######
        &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
-       &pclmulqdq      ($T1,$T2,0x00);         #######
+       &pclmulqdq      ($T1,$HK,0x00);         #######
        &xorps          ($T1,$Xi);              #
        &xorps          ($T1,$Xhi);             #
 
@@ -885,31 +902,32 @@ if (1) {          # Algorithm 9 with <<1 twist.
                        # below. Algorithm 9 was therefore chosen for
                        # further optimization...
 
-sub reduction_alg9 {   # 17/13 times faster than Intel version
+sub reduction_alg9 {   # 17/11 times faster than Intel version
 my ($Xhi,$Xi) = @_;
 
        # 1st phase
-       &movdqa         ($T1,$Xi);              #
+       &movdqa         ($T2,$Xi);              #
+       &movdqa         ($T1,$Xi);
+       &psllq          ($Xi,5);
+       &pxor           ($T1,$Xi);              #
        &psllq          ($Xi,1);
        &pxor           ($Xi,$T1);              #
-       &psllq          ($Xi,5);                #
-       &pxor           ($Xi,$T1);              #
        &psllq          ($Xi,57);               #
-       &movdqa         ($T2,$Xi);              #
+       &movdqa         ($T1,$Xi);              #
        &pslldq         ($Xi,8);
-       &psrldq         ($T2,8);                #
-       &pxor           ($Xi,$T1);
-       &pxor           ($Xhi,$T2);             #
+       &psrldq         ($T1,8);                #       
+       &pxor           ($Xi,$T2);
+       &pxor           ($Xhi,$T1);             #
 
        # 2nd phase
        &movdqa         ($T2,$Xi);
+       &psrlq          ($Xi,1);
+       &pxor           ($Xhi,$T2);             #
+       &pxor           ($T2,$Xi);
        &psrlq          ($Xi,5);
        &pxor           ($Xi,$T2);              #
        &psrlq          ($Xi,1);                #
-       &pxor           ($Xi,$T2);              #
-       &pxor           ($T2,$Xhi);
-       &psrlq          ($Xi,1);                #
-       &pxor           ($Xi,$T2);              #
+       &pxor           ($Xi,$Xhi)              #
 }
 
 &function_begin_B("gcm_init_clmul");
@@ -943,8 +961,14 @@ my ($Xhi,$Xi) = @_;
        &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
        &reduction_alg9 ($Xhi,$Xi);
 
+       &pshufd         ($T1,$Hkey,0b01001110);
+       &pshufd         ($T2,$Xi,0b01001110);
+       &pxor           ($T1,$Hkey);            # Karatsuba pre-processing
        &movdqu         (&QWP(0,$Htbl),$Hkey);  # save H
+       &pxor           ($T2,$Xi);              # Karatsuba pre-processing
        &movdqu         (&QWP(16,$Htbl),$Xi);   # save H^2
+       &palignr        ($T2,$T1,8);            # low part is H.lo^H.hi
+       &movdqu         (&QWP(32,$Htbl),$T2);   # save Karatsuba "salt"
 
        &ret            ();
 &function_end_B("gcm_init_clmul");
@@ -962,8 +986,9 @@ my ($Xhi,$Xi) = @_;
        &movdqa         ($T3,&QWP(0,$const));
        &movups         ($Hkey,&QWP(0,$Htbl));
        &pshufb         ($Xi,$T3);
+       &movups         ($T2,&QWP(32,$Htbl));
 
-       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);
+       &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$T2);
        &reduction_alg9 ($Xhi,$Xi);
 
        &pshufb         ($Xi,$T3);
@@ -1000,79 +1025,109 @@ my ($Xhi,$Xi) = @_;
        &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
        &pshufb         ($T1,$T3);
        &pshufb         ($Xn,$T3);
+       &movdqu         ($T3,&QWP(32,$Htbl));
        &pxor           ($Xi,$T1);              # Ii+Xi
 
-       &clmul64x64_T2  ($Xhn,$Xn,$Hkey);       # H*Ii+1
+       &pshufd         ($T1,$Xn,0b01001110);   # H*Ii+1
+       &movdqa         ($Xhn,$Xn);
+       &pxor           ($T1,$Xn);              #
+       &lea            ($inp,&DWP(32,$inp));   # i+=2
+
+       &pclmulqdq      ($Xn,$Hkey,0x00);       #######
+       &pclmulqdq      ($Xhn,$Hkey,0x11);      #######
+       &pclmulqdq      ($T1,$T3,0x00);         #######
        &movups         ($Hkey,&QWP(16,$Htbl)); # load H^2
+       &nop            ();
 
-       &lea            ($inp,&DWP(32,$inp));   # i+=2
        &sub            ($len,0x20);
        &jbe            (&label("even_tail"));
+       &jmp            (&label("mod_loop"));
 
-&set_label("mod_loop");
-       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
-       &movdqu         ($T1,&QWP(0,$inp));     # Ii
-       &movups         ($Hkey,&QWP(0,$Htbl));  # load H
+&set_label("mod_loop",32);
+       &pshufd         ($T2,$Xi,0b01001110);   # H^2*(Ii+Xi)
+       &movdqa         ($Xhi,$Xi);
+       &pxor           ($T2,$Xi);              #
+       &nop            ();
 
-       &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
-       &pxor           ($Xhi,$Xhn);
+       &pclmulqdq      ($Xi,$Hkey,0x00);       #######
+       &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
+       &pclmulqdq      ($T2,$T3,0x10);         #######
+       &movups         ($Hkey,&QWP(0,$Htbl));  # load H
 
-       &movdqu         ($Xn,&QWP(16,$inp));    # Ii+1
-       &pshufb         ($T1,$T3);
-       &pshufb         ($Xn,$T3);
+       &xorps          ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
+       &movdqa         ($T3,&QWP(0,$const));
+       &xorps          ($Xhi,$Xhn);
+        &movdqu        ($Xhn,&QWP(0,$inp));    # Ii
+       &pxor           ($T1,$Xi);              # aggregated Karatsuba post-processing
+        &movdqu        ($Xn,&QWP(16,$inp));    # Ii+1
+       &pxor           ($T1,$Xhi);             #
 
-       &movdqa         ($T3,$Xn);              #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
-       &movdqa         ($Xhn,$Xn);
-        &pxor          ($Xhi,$T1);             # "Ii+Xi", consume early
+        &pshufb        ($Xhn,$T3);
+       &pxor           ($T2,$T1);              #
 
-         &movdqa       ($T1,$Xi);              #&reduction_alg9($Xhi,$Xi); 1st phase
+       &movdqa         ($T1,$T2);              #
+       &psrldq         ($T2,8);
+       &pslldq         ($T1,8);                #
+       &pxor           ($Xhi,$T2);
+       &pxor           ($Xi,$T1);              #
+        &pshufb        ($Xn,$T3);
+        &pxor          ($Xhi,$Xhn);            # "Ii+Xi", consume early
+
+       &movdqa         ($Xhn,$Xn);             #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
+         &movdqa       ($T2,$Xi);              #&reduction_alg9($Xhi,$Xi); 1st phase
+         &movdqa       ($T1,$Xi);
+         &psllq        ($Xi,5);
+         &pxor         ($T1,$Xi);              #
          &psllq        ($Xi,1);
          &pxor         ($Xi,$T1);              #
-         &psllq        ($Xi,5);                #
-         &pxor         ($Xi,$T1);              #
        &pclmulqdq      ($Xn,$Hkey,0x00);       #######
+       &movups         ($T3,&QWP(32,$Htbl));
          &psllq        ($Xi,57);               #
-         &movdqa       ($T2,$Xi);              #
+         &movdqa       ($T1,$Xi);              #
          &pslldq       ($Xi,8);
-         &psrldq       ($T2,8);                #       
-         &pxor         ($Xi,$T1);
-       &pshufd         ($T1,$T3,0b01001110);
+         &psrldq       ($T1,8);                #       
+         &pxor         ($Xi,$T2);
+         &pxor         ($Xhi,$T1);             #
+       &pshufd         ($T1,$Xhn,0b01001110);
+         &movdqa       ($T2,$Xi);              # 2nd phase
+         &psrlq        ($Xi,1);
+       &pxor           ($T1,$Xhn);
          &pxor         ($Xhi,$T2);             #
-       &pxor           ($T1,$T3);
-       &pshufd         ($T3,$Hkey,0b01001110);
-       &pxor           ($T3,$Hkey);            #
-
        &pclmulqdq      ($Xhn,$Hkey,0x11);      #######
-         &movdqa       ($T2,$Xi);              # 2nd phase
+       &movups         ($Hkey,&QWP(16,$Htbl)); # load H^2
+         &pxor         ($T2,$Xi);
          &psrlq        ($Xi,5);
          &pxor         ($Xi,$T2);              #
          &psrlq        ($Xi,1);                #
-         &pxor         ($Xi,$T2);              #
-         &pxor         ($T2,$Xhi);
-         &psrlq        ($Xi,1);                #
-         &pxor         ($Xi,$T2);              #
-
+         &pxor         ($Xi,$Xhi)              #
        &pclmulqdq      ($T1,$T3,0x00);         #######
-       &movups         ($Hkey,&QWP(16,$Htbl)); # load H^2
-       &xorps          ($T1,$Xn);              #
-       &xorps          ($T1,$Xhn);             #
-
-       &movdqa         ($T3,$T1);              #
-       &psrldq         ($T1,8);
-       &pslldq         ($T3,8);                #
-       &pxor           ($Xhn,$T1);
-       &pxor           ($Xn,$T3);              #
-       &movdqa         ($T3,&QWP(0,$const));
 
        &lea            ($inp,&DWP(32,$inp));
        &sub            ($len,0x20);
        &ja             (&label("mod_loop"));
 
 &set_label("even_tail");
-       &clmul64x64_T2  ($Xhi,$Xi,$Hkey);       # H^2*(Ii+Xi)
+       &pshufd         ($T2,$Xi,0b01001110);   # H^2*(Ii+Xi)
+       &movdqa         ($Xhi,$Xi);
+       &pxor           ($T2,$Xi);              #
 
-       &pxor           ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
-       &pxor           ($Xhi,$Xhn);
+       &pclmulqdq      ($Xi,$Hkey,0x00);       #######
+       &pclmulqdq      ($Xhi,$Hkey,0x11);      #######
+       &pclmulqdq      ($T2,$T3,0x10);         #######
+       &movdqa         ($T3,&QWP(0,$const));
+
+       &xorps          ($Xi,$Xn);              # (H*Ii+1) + H^2*(Ii+Xi)
+       &xorps          ($Xhi,$Xhn);
+       &pxor           ($T1,$Xi);              # aggregated Karatsuba post-processing
+       &pxor           ($T1,$Xhi);             #
+
+       &pxor           ($T2,$T1);              #
+
+       &movdqa         ($T1,$T2);              #
+       &psrldq         ($T2,8);
+       &pslldq         ($T1,8);                #
+       &pxor           ($Xhi,$T2);
+       &pxor           ($Xi,$T1);              #
 
        &reduction_alg9 ($Xhi,$Xi);
 
@@ -1324,6 +1379,8 @@ my ($Xhi,$Xi)=@_;
 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
 &asm_finish();
 
+close STDOUT;
+
 # A question was risen about choice of vanilla MMX. Or rather why wasn't
 # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
 # CPUs such as PIII, "4-bit" MMX version was observed to provide better