From: Andy Polyakov Date: Fri, 4 Nov 2016 11:24:14 +0000 (+0100) Subject: sha/asm/sha512-armv8.pl: add NEON version of SHA256. X-Git-Tag: OpenSSL_1_1_1-pre1~3085 X-Git-Url: https://git.openssl.org/?p=openssl.git;a=commitdiff_plain;h=866e505e0d663158b0fe63a7fb7455eebacc6470 sha/asm/sha512-armv8.pl: add NEON version of SHA256. This provides up to 30% better performance on some of recent processors. Reviewed-by: Richard Levitte --- diff --git a/crypto/sha/asm/sha512-armv8.pl b/crypto/sha/asm/sha512-armv8.pl index ffd80d6be3..ffae5f23bc 100644 --- a/crypto/sha/asm/sha512-armv8.pl +++ b/crypto/sha/asm/sha512-armv8.pl @@ -37,6 +37,20 @@ # indication of some compiler "pathology", most notably code # generated with -mgeneral-regs-only is significanty faster # and the gap is only 40-90%. +# +# October 2016. +# +# Originally it was reckoned that it makes no sense to implement NEON +# version of SHA256 for 64-bit processors. This is because performance +# improvement on most wide-spread Cortex-A5x processors was observed +# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was +# observed that 32-bit NEON SHA256 performs significantly better than +# 64-bit scalar version on *some* of the more recent processors. As +# result 64-bit NEON version of SHA256 was added to provide best +# all-round performance. For example it executes ~30% faster on X-Gene +# and Mongoose. [For reference, NEON version of SHA512 is bound to +# deliver much less improvement, likely *negative* on Cortex-A5x. +# Which is why NEON support is limited to SHA256.] $output=pop; $flavour=pop; @@ -195,6 +209,8 @@ $code.=<<___ if ($SZ==4); ldr w16,[x16] tst w16,#ARMV8_SHA256 b.ne .Lv8_entry + tst w16,#ARMV7_NEON + b.ne .Lneon_entry #endif ___ $code.=<<___; @@ -425,6 +441,296 @@ $code.=<<___; ___ } +if ($SZ==4) { ######################################### NEON stuff # +# You'll surely note a lot of similarities with sha256-armv4 module, +# and of course it's not a coincidence. sha256-armv4 was used as +# initial template, but was adapted for ARMv8 instruction set and +# extensively re-tuned for all-round performance. + +my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10)); +my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15)); +my $Ktbl="x16"; +my $Xfer="x17"; +my @X = map("q$_",(0..3)); +my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19)); +my $j=0; + +sub AUTOLOAD() # thunk [simplified] x86-style perlasm +{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; + my $arg = pop; + $arg = "#$arg" if ($arg*1 eq $arg); + $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; +} + +sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; } +sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; } +sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; } + +sub Xupdate() +{ use integer; + my $body = shift; + my @insns = (&$body,&$body,&$body,&$body); + my ($a,$b,$c,$d,$e,$f,$g,$h); + + &ext_8 ($T0,@X[0],@X[1],4); # X[1..4] + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &ext_8 ($T3,@X[2],@X[3],4); # X[9..12] + eval(shift(@insns)); + eval(shift(@insns)); + &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15] + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T2,$T0,$sigma0[0]); + eval(shift(@insns)); + &ushr_32 ($T1,$T0,$sigma0[2]); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12] + eval(shift(@insns)); + &sli_32 ($T2,$T0,32-$sigma0[0]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T3,$T0,$sigma0[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T1,$T1,$T2); + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T3,$T0,32-$sigma0[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T4,$T7,$sigma1[0]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4]) + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T4,$T7,32-$sigma1[0]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T5,$T7,$sigma1[2]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T3,$T7,$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) + eval(shift(@insns)); + eval(shift(@insns)); + &sli_u32 ($T3,$T7,32-$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T5,$T5,$T4); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15]) + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15]) + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T6,@X[0],$sigma1[0]); + eval(shift(@insns)); + &ushr_32 ($T7,@X[0],$sigma1[2]); + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T6,@X[0],32-$sigma1[0]); + eval(shift(@insns)); + &ushr_32 ($T5,@X[0],$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T7,$T7,$T6); + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T5,@X[0],32-$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &ld1_32 ("{$T0}","[$Ktbl], #16"); + eval(shift(@insns)); + &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17]) + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T5,$T5,$T5); + eval(shift(@insns)); + eval(shift(@insns)); + &mov (&Dhi($T5), &Dlo($T7)); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17]) + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 ($T0,$T0,@X[0]); + while($#insns>=1) { eval(shift(@insns)); } + &st1_32 ("{$T0}","[$Xfer], #16"); + eval(shift(@insns)); + + push(@X,shift(@X)); # "rotate" X[] +} + +sub Xpreload() +{ use integer; + my $body = shift; + my @insns = (&$body,&$body,&$body,&$body); + my ($a,$b,$c,$d,$e,$f,$g,$h); + + eval(shift(@insns)); + eval(shift(@insns)); + &ld1_8 ("{@X[0]}","[$inp],#16"); + eval(shift(@insns)); + eval(shift(@insns)); + &ld1_32 ("{$T0}","[$Ktbl],#16"); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &rev32 (@X[0],@X[0]); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 ($T0,$T0,@X[0]); + foreach (@insns) { eval; } # remaining instructions + &st1_32 ("{$T0}","[$Xfer], #16"); + + push(@X,shift(@X)); # "rotate" X[] +} + +sub body_00_15 () { + ( + '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. + '&add ($h,$h,$t1)', # h+=X[i]+K[i] + '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past + '&and ($t1,$f,$e)', + '&bic ($t4,$g,$e)', + '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', + '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past + '&orr ($t1,$t1,$t4)', # Ch(e,f,g) + '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) + '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', + '&add ($h,$h,$t1)', # h+=Ch(e,f,g) + '&ror ($t0,$t0,"#$Sigma1[0]")', + '&eor ($t2,$a,$b)', # a^b, b^c in next round + '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) + '&add ($h,$h,$t0)', # h+=Sigma1(e) + '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. + '&ldr ($t1,"[$Ktbl]") if ($j==15);'. + '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) + '&ror ($t4,$t4,"#$Sigma0[0]")', + '&add ($d,$d,$h)', # d+=h + '&eor ($t3,$t3,$b)', # Maj(a,b,c) + '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' + ) +} + +$code.=<<___; +#ifdef __KERNEL__ +.globl sha256_block_neon +#endif +.type sha256_block_neon,%function +.align 4 +sha256_block_neon: +.Lneon_entry: + stp x29, x30, [sp, #-16]! + mov x29, sp + sub sp,sp,#16*4 + + adr $Ktbl,.LK256 + add $num,$inp,$num,lsl#6 // len to point at the end of inp + + ld1.8 {@X[0]},[$inp], #16 + ld1.8 {@X[1]},[$inp], #16 + ld1.8 {@X[2]},[$inp], #16 + ld1.8 {@X[3]},[$inp], #16 + ld1.32 {$T0},[$Ktbl], #16 + ld1.32 {$T1},[$Ktbl], #16 + ld1.32 {$T2},[$Ktbl], #16 + ld1.32 {$T3},[$Ktbl], #16 + rev32 @X[0],@X[0] // yes, even on + rev32 @X[1],@X[1] // big-endian + rev32 @X[2],@X[2] + rev32 @X[3],@X[3] + mov $Xfer,sp + add.32 $T0,$T0,@X[0] + add.32 $T1,$T1,@X[1] + add.32 $T2,$T2,@X[2] + st1.32 {$T0-$T1},[$Xfer], #32 + add.32 $T3,$T3,@X[3] + st1.32 {$T2-$T3},[$Xfer] + sub $Xfer,$Xfer,#32 + + ldp $A,$B,[$ctx] + ldp $C,$D,[$ctx,#8] + ldp $E,$F,[$ctx,#16] + ldp $G,$H,[$ctx,#24] + ldr $t1,[sp,#0] + mov $t2,wzr + eor $t3,$B,$C + mov $t4,wzr + b .L_00_48 + +.align 4 +.L_00_48: +___ + &Xupdate(\&body_00_15); + &Xupdate(\&body_00_15); + &Xupdate(\&body_00_15); + &Xupdate(\&body_00_15); +$code.=<<___; + cmp $t1,#0 // check for K256 terminator + ldr $t1,[sp,#0] + sub $Xfer,$Xfer,#64 + bne .L_00_48 + + sub $Ktbl,$Ktbl,#256 // rewind $Ktbl + cmp $inp,$num + mov $Xfer, #64 + csel $Xfer, $Xfer, xzr, eq + sub $inp,$inp,$Xfer // avoid SEGV + mov $Xfer,sp +___ + &Xpreload(\&body_00_15); + &Xpreload(\&body_00_15); + &Xpreload(\&body_00_15); + &Xpreload(\&body_00_15); +$code.=<<___; + add $A,$A,$t4 // h+=Sigma0(a) from the past + ldp $t0,$t1,[$ctx,#0] + add $A,$A,$t2 // h+=Maj(a,b,c) from the past + ldp $t2,$t3,[$ctx,#8] + add $A,$A,$t0 // accumulate + add $B,$B,$t1 + ldp $t0,$t1,[$ctx,#16] + add $C,$C,$t2 + add $D,$D,$t3 + ldp $t2,$t3,[$ctx,#24] + add $E,$E,$t0 + add $F,$F,$t1 + ldr $t1,[sp,#0] + stp $A,$B,[$ctx,#0] + add $G,$G,$t2 + mov $t2,wzr + stp $C,$D,[$ctx,#8] + add $H,$H,$t3 + stp $E,$F,[$ctx,#16] + eor $t3,$B,$C + stp $G,$H,[$ctx,#24] + mov $t4,wzr + mov $Xfer,sp + b.ne .L_00_48 + + ldr x29,[x29] + add sp,sp,#16*4+16 + ret +.size sha256_block_neon,.-sha256_block_neon +___ +} + $code.=<<___; #ifndef __KERNEL__ .comm OPENSSL_armcap_P,4,4 @@ -456,12 +762,15 @@ close SELF; foreach(split("\n",$code)) { - s/\`([^\`]*)\`/eval($1)/geo; + s/\`([^\`]*)\`/eval($1)/ge; + + s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge; - s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo; + s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers - s/\.\w?32\b//o and s/\.16b/\.4s/go; - m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go; + s/\.[ui]?8(\s)/$1/; + s/\.\w?32\b// and s/\.16b/\.4s/g; + m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g; print $_,"\n"; }