Prevent DTLS Finished message injection
authorMatt Caswell <>
Thu, 30 Jun 2016 14:06:27 +0000 (15:06 +0100)
committerMatt Caswell <>
Mon, 22 Aug 2016 09:53:55 +0000 (10:53 +0100)
Follow on from CVE-2016-2179

The investigation and analysis of CVE-2016-2179 highlighted a related flaw.

This commit fixes a security "near miss" in the buffered message handling
code. Ultimately this is not currently believed to be exploitable due to
the reasons outlined below, and therefore there is no CVE for this on its

The issue this commit fixes is a MITM attack where the attacker can inject
a Finished message into the handshake. In the description below it is
assumed that the attacker injects the Finished message for the server to
receive it. The attack could work equally well the other way around (i.e
where the client receives the injected Finished message).

The MITM requires the following capabilities:
- The ability to manipulate the MTU that the client selects such that it
is small enough for the client to fragment Finished messages.
- The ability to selectively drop and modify records sent from the client
- The ability to inject its own records and send them to the server

The MITM forces the client to select a small MTU such that the client
will fragment the Finished message. Ideally for the attacker the first
fragment will contain all but the last byte of the Finished message,
with the second fragment containing the final byte.

During the handshake and prior to the client sending the CCS the MITM
injects a plaintext Finished message fragment to the server containing
all but the final byte of the Finished message. The message sequence
number should be the one expected to be used for the real Finished message.

OpenSSL will recognise that the received fragment is for the future and
will buffer it for later use.

After the client sends the CCS it then sends its own Finished message in
two fragments. The MITM causes the first of these fragments to be
dropped. The OpenSSL server will then receive the second of the fragments
and reassemble the complete Finished message consisting of the MITM
fragment and the final byte from the real client.

The advantage to the attacker in injecting a Finished message is that
this provides the capability to modify other handshake messages (e.g.
the ClientHello) undetected. A difficulty for the attacker is knowing in
advance what impact any of those changes might have on the final byte of
the handshake hash that is going to be sent in the "real" Finished
message. In the worst case for the attacker this means that only 1 in
256 of such injection attempts will succeed.

It may be possible in some situations for the attacker to improve this such
that all attempts succeed. For example if the handshake includes client
authentication then the final message flight sent by the client will
include a Certificate. Certificates are ASN.1 objects where the signed
portion is DER encoded. The non-signed portion could be BER encoded and so
the attacker could re-encode the certificate such that the hash for the
whole handshake comes to a different value. The certificate re-encoding
would not be detectable because only the non-signed portion is changed. As
this is the final flight of messages sent from the client the attacker
knows what the complete hanshake hash value will be that the client will
send - and therefore knows what the final byte will be. Through a process
of trial and error the attacker can re-encode the certificate until the
modified handhshake also has a hash with the same final byte. This means
that when the Finished message is verified by the server it will be
correct in all cases.

In practice the MITM would need to be able to perform the same attack
against both the client and the server. If the attack is only performed
against the server (say) then the server will not detect the modified
handshake, but the client will and will abort the connection.
Fortunately, although OpenSSL is vulnerable to Finished message
injection, it is not vulnerable if *both* client and server are OpenSSL.
The reason is that OpenSSL has a hard "floor" for a minimum MTU size
that it will never go below. This minimum means that a Finished message
will never be sent in a fragmented form and therefore the MITM does not
have one of its pre-requisites. Therefore this could only be exploited
if using OpenSSL and some other DTLS peer that had its own and separate
Finished message injection flaw.

The fix is to ensure buffered messages are cleared on epoch change.

Reviewed-by: Richard Levitte <>

index be6aac7..cd582f3 100644 (file)
@@ -1189,6 +1189,12 @@ void dtls1_reset_seq_numbers(SSL *s, int rw)
         memcpy(&s->rlayer.d->bitmap, &s->rlayer.d->next_bitmap,
         memset(&s->rlayer.d->next_bitmap, 0, sizeof(s->rlayer.d->next_bitmap));
+        /*
+         * We must not use any buffered messages received from the previous
+         * epoch
+         */
+        dtls1_clear_received_buffer(s);
     } else {
         seq = s->rlayer.write_sequence;
         memcpy(s->rlayer.d->last_write_sequence, seq,