X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=doc%2Fcrypto%2FBN_generate_prime.pod;h=4522fa9bdb0f6400b9664a547595dd3b2e146977;hp=7dccacbc1e553f6cf47cbfe4ce1eb9b8eea7404c;hb=2afb29b480d87c4c24f830e69dfe82762e3db608;hpb=bda2fa364d1002d2b5d4d500eb573cd5d9c02207 diff --git a/doc/crypto/BN_generate_prime.pod b/doc/crypto/BN_generate_prime.pod index 7dccacbc1e..4522fa9bdb 100644 --- a/doc/crypto/BN_generate_prime.pod +++ b/doc/crypto/BN_generate_prime.pod @@ -2,12 +2,31 @@ =head1 NAME -BN_generate_prime, BN_is_prime, BN_is_prime_fasttest - generate primes and test for primality +BN_generate_prime_ex, BN_is_prime_ex, BN_is_prime_fasttest_ex, BN_GENCB_call, +BN_GENCB_set_old, BN_GENCB_set, BN_generate_prime, BN_is_prime, +BN_is_prime_fasttest - generate primes and test for primality =head1 SYNOPSIS #include + int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add, + const BIGNUM *rem, BN_GENCB *cb); + + int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb); + + int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, + int do_trial_division, BN_GENCB *cb); + + int BN_GENCB_call(BN_GENCB *cb, int a, int b); + + #define BN_GENCB_set_old(gencb, callback, cb_arg) ... + + #define BN_GENCB_set(gencb, callback, cb_arg) ... + + +Deprecated: + BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add, BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg); @@ -20,27 +39,27 @@ BN_generate_prime, BN_is_prime, BN_is_prime_fasttest - generate primes and test =head1 DESCRIPTION -BN_generate_prime() generates a pseudo-random prime number of B -bits. +BN_generate_prime_ex() generates a pseudo-random prime number of +at least bit length B. If B is not B, it will be used to store the number. -If B is not B, it is called as follows: +If B is not B, it is used as follows: =over 4 =item * -B is called after generating the i-th +B is called after generating the i-th potential prime number. =item * -While the number is being tested for primality, B is called as described below. +While the number is being tested for primality, +B is called as described below. =item * -When a prime has been found, B is called. +When a prime has been found, B is called. =back @@ -54,38 +73,67 @@ generator. If B is true, it will be a safe prime (i.e. a prime p so that (p-1)/2 is also prime). -The PRNG must be seeded prior to calling BN_generate_prime(). +The PRNG must be seeded prior to calling BN_generate_prime_ex(). The prime number generation has a negligible error probability. -BN_is_prime() and BN_is_prime_fasttest() test if the number B is +BN_is_prime_ex() and BN_is_prime_fasttest_ex() test if the number B

is prime. The following tests are performed until one of them shows that -B is composite; if B passes all these tests, it is considered +B

is composite; if B

passes all these tests, it is considered prime. -BN_is_prime_fasttest(), when called with B, +BN_is_prime_fasttest_ex(), when called with B, first attempts trial division by a number of small primes; -if no divisors are found by this test and B is not B, -B is called. +if no divisors are found by this test and B is not B, +B is called. If B, this test is skipped. -Both BN_is_prime() and BN_is_prime_fasttest() perform a Miller-Rabin -probabilistic primality test with B iterations. If -B, a number of iterations is used that +Both BN_is_prime_ex() and BN_is_prime_fasttest_ex() perform a Miller-Rabin +probabilistic primality test with B iterations. If +B, a number of iterations is used that yields a false positive rate of at most 2^-80 for random input. -If B is not B, B is called +If B is not B, B is called after the j-th iteration (j = 0, 1, ...). B is a pre-allocated B (to save the overhead of allocating and freeing the structure in a loop), or B. +BN_GENCB_call calls the callback function held in the B structure +and passes the ints B and B as arguments. There are two types of +B structure that are supported: "new" style and "old" style. New +programs should prefer the "new" style, whilst the "old" style is provided +for backwards compatibility purposes. + +For "new" style callbacks a BN_GENCB structure should be initialised with a +call to BN_GENCB_set(), where B is a B, B is of +type B and B is a B. +"Old" style callbacks are the same except they are initialised with a call +to BN_GENCB_set_old() and B is of type +B. + +A callback is invoked through a call to B. This will check +the type of the callback and will invoke B for new +style callbacks or B for old style. + +BN_generate_prime (deprecated) works in the same way as +BN_generate_prime_ex but expects an old style callback function +directly in the B parameter, and an argument to pass to it in +the B. Similarly BN_is_prime and BN_is_prime_fasttest are +deprecated and can be compared to BN_is_prime_ex and +BN_is_prime_fasttest_ex respectively. + =head1 RETURN VALUES -BN_generate_prime() returns the prime number on success, B otherwise. +BN_generate_prime_ex() return 1 on success or 0 on error. -BN_is_prime() returns 0 if the number is composite, 1 if it is -prime with an error probability of less than 0.25^B, and +BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime() and +BN_is_prime_fasttest() return 0 if the number is composite, 1 if it is +prime with an error probability of less than 0.25^B, and -1 on error. +BN_generate_prime() returns the prime number on success, B otherwise. + +Callback functions should return 1 on success or 0 on error. + The error codes can be obtained by L. =head1 SEE ALSO