X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=doc%2Fcrypto%2FBN_add.pod;h=88c7a799eea5a119f77ac4e9cbd8e0ac2bf02202;hp=2f6a3b448f6fbdbbed0547b3047178edb9ea1d2b;hb=aae41f8c54257d9fa6904d3a9aa09c5db6cefd0d;hpb=d629757a8429118b7e5c51df3cc74f16b10170a5 diff --git a/doc/crypto/BN_add.pod b/doc/crypto/BN_add.pod index 2f6a3b448f..88c7a799ee 100644 --- a/doc/crypto/BN_add.pod +++ b/doc/crypto/BN_add.pod @@ -2,8 +2,9 @@ =head1 NAME -BN_add, BN_sub, BN_mul, BN_div, BN_sqr, BN_mod, BN_mod_mul, BN_exp, -BN_mod_exp, BN_gcd - Arithmetic operations on BIGNUMs +BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, +BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - +arithmetic operations on BIGNUMs =head1 SYNOPSIS @@ -15,16 +16,26 @@ BN_mod_exp, BN_gcd - Arithmetic operations on BIGNUMs int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); + int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); + int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx); - int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); - int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); - int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m, + int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); + + int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, + BN_CTX *ctx); + + int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, + BN_CTX *ctx); + + int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); + int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); + int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, @@ -34,44 +45,59 @@ BN_mod_exp, BN_gcd - Arithmetic operations on BIGNUMs =head1 DESCRIPTION -BN_add() adds B and B and places the result in B (C). -B may be the same B as B or B. +BN_add() adds I and I and places the result in I (C). +I may be the same B as I or I. -BN_sub() subtracts B from B and places the result in B (C). +BN_sub() subtracts I from I and places the result in I (C). -BN_mul() multiplies B and B and places the result in B (C). +BN_mul() multiplies I and I and places the result in I (C). +I may be the same B as I or I. For multiplication by powers of 2, use L. -BN_div() divides B by B and places the result in B and the -remainder in B (C). Either of B and B may -be NULL, in which case the respective value is not returned. +BN_sqr() takes the square of I and places the result in I +(C). I and I may be the same B. +This function is faster than BN_mul(r,a,a). + +BN_div() divides I by I and places the result in I and the +remainder in I (C). Either of I and I may +be B, in which case the respective value is not returned. +The result is rounded towards zero; thus if I is negative, the +remainder will be zero or negative. For division by powers of 2, use BN_rshift(3). -BN_sqr() takes the square of B and places the result in B -(C). B and B may be the same B. -This function is faster than BN_mul(r,a,a). +BN_mod() corresponds to BN_div() with I set to B. + +BN_nnmod() reduces I modulo I and places the non-negative +remainder in I. + +BN_mod_add() adds I to I modulo I and places the non-negative +result in I. + +BN_mod_sub() subtracts I from I modulo I and places the +non-negative result in I. -BN_mod() find the remainder of B divided by B and places it in -B (C). +BN_mod_mul() multiplies I by I and finds the non-negative +remainder respective to modulus I (C). I may be +the same B as I or I. For more efficient algorithms for +repeated computations using the same modulus, see +L and +L. -BN_mod_mul() multiplies B by B and finds the remainder when -divided by B (C). B may be the same B as B -or B. For a more efficient algorithm, see -L; for repeated -computations using the same modulus, see L. +BN_mod_sqr() takes the square of I modulo B and places the +result in I. -BN_exp() raises B to the B

-th power and places the result in B +BN_exp() raises I to the I

-th power and places the result in I (C). This function is faster than repeated applications of BN_mul(). -BN_mod_exp() computes B to the B

-th power modulo B (C to the I

-th power modulo I (C). This function uses less time and space than BN_exp(). -BN_gcd() computes the greatest common divisor of B and B and -places the result in B. B may be the same B as B or -B. +BN_gcd() computes the greatest common divisor of I and I and +places the result in I. I may be the same B as I or +I. -For all functions, B is a previously allocated B used for +For all functions, I is a previously allocated B used for temporary variables; see L. Unless noted otherwise, the result B must be different from @@ -85,14 +111,16 @@ The error codes can be obtained by L. =head1 SEE ALSO -L, L, L, +L, L, L, L, L =head1 HISTORY -BN_add(), BN_sub(), BN_div(), BN_sqr(), BN_mod(), BN_mod_mul(), +BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and -OpenSSL. The B argument to BN_mul() was added in SSLeay +OpenSSL. The I argument to BN_mul() was added in SSLeay 0.9.1b. BN_exp() appeared in SSLeay 0.9.0. +BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in +OpenSSL 0.9.7. =cut