X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fsha%2Fasm%2Fsha512-armv8.pl;h=f7c67219ed0904ae83bc68a4412639e5564d920c;hp=d009f3f1bc977b1538385751432031974275af80;hb=db42bb440e76399b89fc8ae04644441a2a5f6821;hpb=be5a87a1b00aceba5484a7ec198ac622c9283def diff --git a/crypto/sha/asm/sha512-armv8.pl b/crypto/sha/asm/sha512-armv8.pl index d009f3f1bc..f7c67219ed 100644 --- a/crypto/sha/asm/sha512-armv8.pl +++ b/crypto/sha/asm/sha512-armv8.pl @@ -1,10 +1,18 @@ -#!/usr/bin/env perl +#! /usr/bin/env perl +# Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. # +# Licensed under the Apache License 2.0 (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. +# +# Permission to use under GPLv2 terms is granted. # ==================================================================== # # SHA256/512 for ARMv8. @@ -18,7 +26,9 @@ # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***)) # Denver 2.01 10.5 (+26%) 6.70 (+8%) # X-Gene 20.0 (+100%) 12.8 (+300%(***)) -# +# Mongoose 2.36 13.0 (+50%) 8.36 (+33%) +# Kryo 1.92 17.4 (+30%) 11.2 (+8%) +# # (*) Software SHA256 results are of lesser relevance, presented # mostly for informational purposes. # (**) The result is a trade-off: it's possible to improve it by @@ -26,19 +36,37 @@ # on Cortex-A53 (or by 4 cycles per round). # (***) Super-impressive coefficients over gcc-generated code are # indication of some compiler "pathology", most notably code -# generated with -mgeneral-regs-only is significanty faster +# generated with -mgeneral-regs-only is significantly faster # and the gap is only 40-90%. - -$flavour=shift; -$output=shift; - -$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; -( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or -( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or -die "can't locate arm-xlate.pl"; - -open OUT,"| \"$^X\" $xlate $flavour $output"; -*STDOUT=*OUT; +# +# October 2016. +# +# Originally it was reckoned that it makes no sense to implement NEON +# version of SHA256 for 64-bit processors. This is because performance +# improvement on most wide-spread Cortex-A5x processors was observed +# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was +# observed that 32-bit NEON SHA256 performs significantly better than +# 64-bit scalar version on *some* of the more recent processors. As +# result 64-bit NEON version of SHA256 was added to provide best +# all-round performance. For example it executes ~30% faster on X-Gene +# and Mongoose. [For reference, NEON version of SHA512 is bound to +# deliver much less improvement, likely *negative* on Cortex-A5x. +# Which is why NEON support is limited to SHA256.] + +$output=pop; +$flavour=pop; + +if ($flavour && $flavour ne "void") { + $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; + ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or + ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or + die "can't locate arm-xlate.pl"; + + open OUT,"| \"$^X\" $xlate $flavour $output"; + *STDOUT=*OUT; +} else { + open STDOUT,">$output"; +} if ($output =~ /512/) { $BITS=512; @@ -75,7 +103,7 @@ my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); $T0=@X[$i+3] if ($i<11); $code.=<<___ if ($i<16); -#ifndef __ARMEB__ +#ifndef __AARCH64EB__ rev @X[$i],@X[$i] // $i #endif ___ @@ -158,25 +186,34 @@ ___ } $code.=<<___; -#include "arm_arch.h" +#ifndef __KERNEL__ +# include "arm_arch.h" +.extern OPENSSL_armcap_P +#endif .text -.extern OPENSSL_armcap_P .globl $func .type $func,%function .align 6 $func: +#ifndef __KERNEL__ + adrp x16,OPENSSL_armcap_P + ldr w16,[x16,#:lo12:OPENSSL_armcap_P] ___ $code.=<<___ if ($SZ==4); - ldr x16,.LOPENSSL_armcap_P - adr x17,.LOPENSSL_armcap_P - add x16,x16,x17 - ldr w16,[x16] tst w16,#ARMV8_SHA256 b.ne .Lv8_entry + tst w16,#ARMV7_NEON + b.ne .Lneon_entry +___ +$code.=<<___ if ($SZ==8); + tst w16,#ARMV8_SHA512 + b.ne .Lv8_entry ___ $code.=<<___; +#endif + .inst 0xd503233f // paciasp stp x29,x30,[sp,#-128]! add x29,sp,#0 @@ -238,6 +275,7 @@ $code.=<<___; ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldp x29,x30,[sp],#128 + .inst 0xd50323bf // autiasp ret .size $func,.-$func @@ -309,9 +347,6 @@ $code.=<<___ if ($SZ==4); ___ $code.=<<___; .size .LK$BITS,.-.LK$BITS -.align 3 -.LOPENSSL_armcap_P: - .quad OPENSSL_armcap_P-. .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by " .align 2 ___ @@ -325,6 +360,7 @@ my ($W0,$W1)=("v16.4s","v17.4s"); my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b"); $code.=<<___; +#ifndef __KERNEL__ .type sha256_block_armv8,%function .align 6 sha256_block_armv8: @@ -393,11 +429,406 @@ $code.=<<___; ldr x29,[sp],#16 ret .size sha256_block_armv8,.-sha256_block_armv8 +#endif +___ +} + +if ($SZ==4) { ######################################### NEON stuff # +# You'll surely note a lot of similarities with sha256-armv4 module, +# and of course it's not a coincidence. sha256-armv4 was used as +# initial template, but was adapted for ARMv8 instruction set and +# extensively re-tuned for all-round performance. + +my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10)); +my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15)); +my $Ktbl="x16"; +my $Xfer="x17"; +my @X = map("q$_",(0..3)); +my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19)); +my $j=0; + +sub AUTOLOAD() # thunk [simplified] x86-style perlasm +{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; + my $arg = pop; + $arg = "#$arg" if ($arg*1 eq $arg); + $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; +} + +sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; } +sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; } +sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; } + +sub Xupdate() +{ use integer; + my $body = shift; + my @insns = (&$body,&$body,&$body,&$body); + my ($a,$b,$c,$d,$e,$f,$g,$h); + + &ext_8 ($T0,@X[0],@X[1],4); # X[1..4] + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &ext_8 ($T3,@X[2],@X[3],4); # X[9..12] + eval(shift(@insns)); + eval(shift(@insns)); + &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15] + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T2,$T0,$sigma0[0]); + eval(shift(@insns)); + &ushr_32 ($T1,$T0,$sigma0[2]); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12] + eval(shift(@insns)); + &sli_32 ($T2,$T0,32-$sigma0[0]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T3,$T0,$sigma0[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T1,$T1,$T2); + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T3,$T0,32-$sigma0[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T4,$T7,$sigma1[0]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4]) + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T4,$T7,32-$sigma1[0]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T5,$T7,$sigma1[2]); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T3,$T7,$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) + eval(shift(@insns)); + eval(shift(@insns)); + &sli_u32 ($T3,$T7,32-$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T5,$T5,$T4); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15]) + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15]) + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &ushr_32 ($T6,@X[0],$sigma1[0]); + eval(shift(@insns)); + &ushr_32 ($T7,@X[0],$sigma1[2]); + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T6,@X[0],32-$sigma1[0]); + eval(shift(@insns)); + &ushr_32 ($T5,@X[0],$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T7,$T7,$T6); + eval(shift(@insns)); + eval(shift(@insns)); + &sli_32 ($T5,@X[0],32-$sigma1[1]); + eval(shift(@insns)); + eval(shift(@insns)); + &ld1_32 ("{$T0}","[$Ktbl], #16"); + eval(shift(@insns)); + &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17]) + eval(shift(@insns)); + eval(shift(@insns)); + &eor_8 ($T5,$T5,$T5); + eval(shift(@insns)); + eval(shift(@insns)); + &mov (&Dhi($T5), &Dlo($T7)); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17]) + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 ($T0,$T0,@X[0]); + while($#insns>=1) { eval(shift(@insns)); } + &st1_32 ("{$T0}","[$Xfer], #16"); + eval(shift(@insns)); + + push(@X,shift(@X)); # "rotate" X[] +} + +sub Xpreload() +{ use integer; + my $body = shift; + my @insns = (&$body,&$body,&$body,&$body); + my ($a,$b,$c,$d,$e,$f,$g,$h); + + eval(shift(@insns)); + eval(shift(@insns)); + &ld1_8 ("{@X[0]}","[$inp],#16"); + eval(shift(@insns)); + eval(shift(@insns)); + &ld1_32 ("{$T0}","[$Ktbl],#16"); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &rev32 (@X[0],@X[0]); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + eval(shift(@insns)); + &add_32 ($T0,$T0,@X[0]); + foreach (@insns) { eval; } # remaining instructions + &st1_32 ("{$T0}","[$Xfer], #16"); + + push(@X,shift(@X)); # "rotate" X[] +} + +sub body_00_15 () { + ( + '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'. + '&add ($h,$h,$t1)', # h+=X[i]+K[i] + '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past + '&and ($t1,$f,$e)', + '&bic ($t4,$g,$e)', + '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))', + '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past + '&orr ($t1,$t1,$t4)', # Ch(e,f,g) + '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e) + '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))', + '&add ($h,$h,$t1)', # h+=Ch(e,f,g) + '&ror ($t0,$t0,"#$Sigma1[0]")', + '&eor ($t2,$a,$b)', # a^b, b^c in next round + '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a) + '&add ($h,$h,$t0)', # h+=Sigma1(e) + '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'. + '&ldr ($t1,"[$Ktbl]") if ($j==15);'. + '&and ($t3,$t3,$t2)', # (b^c)&=(a^b) + '&ror ($t4,$t4,"#$Sigma0[0]")', + '&add ($d,$d,$h)', # d+=h + '&eor ($t3,$t3,$b)', # Maj(a,b,c) + '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);' + ) +} + +$code.=<<___; +#ifdef __KERNEL__ +.globl sha256_block_neon +#endif +.type sha256_block_neon,%function +.align 4 +sha256_block_neon: +.Lneon_entry: + stp x29, x30, [sp, #-16]! + mov x29, sp + sub sp,sp,#16*4 + + adr $Ktbl,.LK256 + add $num,$inp,$num,lsl#6 // len to point at the end of inp + + ld1.8 {@X[0]},[$inp], #16 + ld1.8 {@X[1]},[$inp], #16 + ld1.8 {@X[2]},[$inp], #16 + ld1.8 {@X[3]},[$inp], #16 + ld1.32 {$T0},[$Ktbl], #16 + ld1.32 {$T1},[$Ktbl], #16 + ld1.32 {$T2},[$Ktbl], #16 + ld1.32 {$T3},[$Ktbl], #16 + rev32 @X[0],@X[0] // yes, even on + rev32 @X[1],@X[1] // big-endian + rev32 @X[2],@X[2] + rev32 @X[3],@X[3] + mov $Xfer,sp + add.32 $T0,$T0,@X[0] + add.32 $T1,$T1,@X[1] + add.32 $T2,$T2,@X[2] + st1.32 {$T0-$T1},[$Xfer], #32 + add.32 $T3,$T3,@X[3] + st1.32 {$T2-$T3},[$Xfer] + sub $Xfer,$Xfer,#32 + + ldp $A,$B,[$ctx] + ldp $C,$D,[$ctx,#8] + ldp $E,$F,[$ctx,#16] + ldp $G,$H,[$ctx,#24] + ldr $t1,[sp,#0] + mov $t2,wzr + eor $t3,$B,$C + mov $t4,wzr + b .L_00_48 + +.align 4 +.L_00_48: +___ + &Xupdate(\&body_00_15); + &Xupdate(\&body_00_15); + &Xupdate(\&body_00_15); + &Xupdate(\&body_00_15); +$code.=<<___; + cmp $t1,#0 // check for K256 terminator + ldr $t1,[sp,#0] + sub $Xfer,$Xfer,#64 + bne .L_00_48 + + sub $Ktbl,$Ktbl,#256 // rewind $Ktbl + cmp $inp,$num + mov $Xfer, #64 + csel $Xfer, $Xfer, xzr, eq + sub $inp,$inp,$Xfer // avoid SEGV + mov $Xfer,sp +___ + &Xpreload(\&body_00_15); + &Xpreload(\&body_00_15); + &Xpreload(\&body_00_15); + &Xpreload(\&body_00_15); +$code.=<<___; + add $A,$A,$t4 // h+=Sigma0(a) from the past + ldp $t0,$t1,[$ctx,#0] + add $A,$A,$t2 // h+=Maj(a,b,c) from the past + ldp $t2,$t3,[$ctx,#8] + add $A,$A,$t0 // accumulate + add $B,$B,$t1 + ldp $t0,$t1,[$ctx,#16] + add $C,$C,$t2 + add $D,$D,$t3 + ldp $t2,$t3,[$ctx,#24] + add $E,$E,$t0 + add $F,$F,$t1 + ldr $t1,[sp,#0] + stp $A,$B,[$ctx,#0] + add $G,$G,$t2 + mov $t2,wzr + stp $C,$D,[$ctx,#8] + add $H,$H,$t3 + stp $E,$F,[$ctx,#16] + eor $t3,$B,$C + stp $G,$H,[$ctx,#24] + mov $t4,wzr + mov $Xfer,sp + b.ne .L_00_48 + + ldr x29,[x29] + add sp,sp,#16*4+16 + ret +.size sha256_block_neon,.-sha256_block_neon +___ +} + +if ($SZ==8) { +my $Ktbl="x3"; + +my @H = map("v$_.16b",(0..4)); +my ($fg,$de,$m9_10)=map("v$_.16b",(5..7)); +my @MSG=map("v$_.16b",(16..23)); +my ($W0,$W1)=("v24.2d","v25.2d"); +my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29)); + +$code.=<<___; +#ifndef __KERNEL__ +.type sha512_block_armv8,%function +.align 6 +sha512_block_armv8: +.Lv8_entry: + stp x29,x30,[sp,#-16]! + add x29,sp,#0 + + ld1 {@MSG[0]-@MSG[3]},[$inp],#64 // load input + ld1 {@MSG[4]-@MSG[7]},[$inp],#64 + + ld1.64 {@H[0]-@H[3]},[$ctx] // load context + adr $Ktbl,.LK512 + + rev64 @MSG[0],@MSG[0] + rev64 @MSG[1],@MSG[1] + rev64 @MSG[2],@MSG[2] + rev64 @MSG[3],@MSG[3] + rev64 @MSG[4],@MSG[4] + rev64 @MSG[5],@MSG[5] + rev64 @MSG[6],@MSG[6] + rev64 @MSG[7],@MSG[7] + b .Loop_hw + +.align 4 +.Loop_hw: + ld1.64 {$W0},[$Ktbl],#16 + subs $num,$num,#1 + sub x4,$inp,#128 + orr $AB,@H[0],@H[0] // offload + orr $CD,@H[1],@H[1] + orr $EF,@H[2],@H[2] + orr $GH,@H[3],@H[3] + csel $inp,$inp,x4,ne // conditional rewind +___ +for($i=0;$i<32;$i++) { +$code.=<<___; + add.i64 $W0,$W0,@MSG[0] + ld1.64 {$W1},[$Ktbl],#16 + ext $W0,$W0,$W0,#8 + ext $fg,@H[2],@H[3],#8 + ext $de,@H[1],@H[2],#8 + add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]" + sha512su0 @MSG[0],@MSG[1] + ext $m9_10,@MSG[4],@MSG[5],#8 + sha512h @H[3],$fg,$de + sha512su1 @MSG[0],@MSG[7],$m9_10 + add.i64 @H[4],@H[1],@H[3] // "D + T1" + sha512h2 @H[3],$H[1],@H[0] +___ + ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); + @H = (@H[3],@H[0],@H[4],@H[2],@H[1]); +} +for(;$i<40;$i++) { +$code.=<<___ if ($i<39); + ld1.64 {$W1},[$Ktbl],#16 +___ +$code.=<<___ if ($i==39); + sub $Ktbl,$Ktbl,#$rounds*$SZ // rewind +___ +$code.=<<___; + add.i64 $W0,$W0,@MSG[0] + ld1 {@MSG[0]},[$inp],#16 // load next input + ext $W0,$W0,$W0,#8 + ext $fg,@H[2],@H[3],#8 + ext $de,@H[1],@H[2],#8 + add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]" + sha512h @H[3],$fg,$de + rev64 @MSG[0],@MSG[0] + add.i64 @H[4],@H[1],@H[3] // "D + T1" + sha512h2 @H[3],$H[1],@H[0] +___ + ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG)); + @H = (@H[3],@H[0],@H[4],@H[2],@H[1]); +} +$code.=<<___; + add.i64 @H[0],@H[0],$AB // accumulate + add.i64 @H[1],@H[1],$CD + add.i64 @H[2],@H[2],$EF + add.i64 @H[3],@H[3],$GH + + cbnz $num,.Loop_hw + + st1.64 {@H[0]-@H[3]},[$ctx] // store context + + ldr x29,[sp],#16 + ret +.size sha512_block_armv8,.-sha512_block_armv8 +#endif ___ } $code.=<<___; +#if !defined(__KERNEL__) && !defined(_WIN64) .comm OPENSSL_armcap_P,4,4 +#endif ___ { my %opcode = ( @@ -415,14 +846,43 @@ ___ } } +{ my %opcode = ( + "sha512h" => 0xce608000, "sha512h2" => 0xce608400, + "sha512su0" => 0xcec08000, "sha512su1" => 0xce608800 ); + + sub unsha512 { + my ($mnemonic,$arg)=@_; + + $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o + && + sprintf ".inst\t0x%08x\t//%s %s", + $opcode{$mnemonic}|$1|($2<<5)|($3<<16), + $mnemonic,$arg; + } +} + +open SELF,$0; +while() { + next if (/^#!/); + last if (!s/^#/\/\// and !/^$/); + print; +} +close SELF; + foreach(split("\n",$code)) { - s/\`([^\`]*)\`/eval($1)/geo; + s/\`([^\`]*)\`/eval($1)/ge; + + s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge or + s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge; - s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo; + s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers - s/\.\w?32\b//o and s/\.16b/\.4s/go; - m/(ld|st)1[^\[]+\[0\]/o and s/\.4s/\.s/go; + s/\.[ui]?8(\s)/$1/; + s/\.\w?64\b// and s/\.16b/\.2d/g or + s/\.\w?32\b// and s/\.16b/\.4s/g; + m/\bext\b/ and s/\.2d/\.16b/g or + m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g; print $_,"\n"; }