X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fmd5%2Fmd5_locl.h;h=9c7aade840aa419d1af59d4b4c78e610cad36e38;hp=cc96bf50d588dfca9a2ee210c8b02d574b4d3cfd;hb=624265c60e07f8e5f251d0f5b79e34cf0221af73;hpb=9dff4cc05100b9989998e4fe061e58d0fbfd6d8e diff --git a/crypto/md5/md5_locl.h b/crypto/md5/md5_locl.h index cc96bf50d5..9c7aade840 100644 --- a/crypto/md5/md5_locl.h +++ b/crypto/md5/md5_locl.h @@ -1,168 +1,80 @@ -/* crypto/md5/md5_locl.h */ -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) - * All rights reserved. +/* + * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * - * This package is an SSL implementation written - * by Eric Young (eay@cryptsoft.com). - * The implementation was written so as to conform with Netscapes SSL. - * - * This library is free for commercial and non-commercial use as long as - * the following conditions are aheared to. The following conditions - * apply to all code found in this distribution, be it the RC4, RSA, - * lhash, DES, etc., code; not just the SSL code. The SSL documentation - * included with this distribution is covered by the same copyright terms - * except that the holder is Tim Hudson (tjh@cryptsoft.com). - * - * Copyright remains Eric Young's, and as such any Copyright notices in - * the code are not to be removed. - * If this package is used in a product, Eric Young should be given attribution - * as the author of the parts of the library used. - * This can be in the form of a textual message at program startup or - * in documentation (online or textual) provided with the package. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * "This product includes cryptographic software written by - * Eric Young (eay@cryptsoft.com)" - * The word 'cryptographic' can be left out if the rouines from the library - * being used are not cryptographic related :-). - * 4. If you include any Windows specific code (or a derivative thereof) from - * the apps directory (application code) you must include an acknowledgement: - * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" - * - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * The licence and distribution terms for any publically available version or - * derivative of this code cannot be changed. i.e. this code cannot simply be - * copied and put under another distribution licence - * [including the GNU Public Licence.] + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html */ #include #include +#include #include -#ifndef MD5_LONG_LOG2 -#define MD5_LONG_LOG2 2 /* default to 32 bits */ -#endif - #ifdef MD5_ASM -# if defined(__i386) || defined(WIN32) -# define md5_block_host_order md5_block_asm_host_order -# elif defined(__sparc) && defined(ULTRASPARC) - void md5_block_asm_data_order_aligned (MD5_CTX *c, const MD5_LONG *p,int num); -# define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned +# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ + defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) +# define md5_block_data_order md5_block_asm_data_order +# elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64) +# define md5_block_data_order md5_block_asm_data_order +# elif defined(__sparc) || defined(__sparc__) +# define md5_block_data_order md5_block_asm_data_order # endif #endif -void md5_block_host_order (MD5_CTX *c, const void *p,int num); -void md5_block_data_order (MD5_CTX *c, const void *p,int num); - -#if defined(__i386) -/* - * *_block_host_order is expected to handle aligned data while - * *_block_data_order - unaligned. As algorithm and host (x86) - * are in this case of the same "endianess" these two are - * otherwise indistinguishable. But normally you don't want to - * call the same function because unaligned access in places - * where alignment is expected is usually a "Bad Thing". Indeed, - * on RISCs you get punished with BUS ERROR signal or *severe* - * performance degradation. Intel CPUs are in turn perfectly - * capable of loading unaligned data without such drastic side - * effect. Yes, they say it's slower than aligned load, but no - * exception is generated and therefore performance degradation - * is *incomparable* with RISCs. What we should weight here is - * costs of unaligned access against costs of aligning data. - * According to my measurements allowing unaligned access results - * in ~9% performance improvement on Pentium II operating at - * 266MHz. I won't be surprised if the difference will be higher - * on faster systems:-) - * - * - */ -#define md5_block_data_order md5_block_host_order -#endif +void md5_block_data_order(MD5_CTX *c, const void *p, size_t num); #define DATA_ORDER_IS_LITTLE_ENDIAN -#define HASH_LONG MD5_LONG -#define HASH_LONG_LOG2 MD5_LONG_LOG2 -#define HASH_CTX MD5_CTX -#define HASH_CBLOCK MD5_CBLOCK -#define HASH_LBLOCK MD5_LBLOCK -#define HASH_UPDATE MD5_Update -#define HASH_TRANSFORM MD5_Transform -#define HASH_FINAL MD5_Final -#define HASH_BLOCK_HOST_ORDER md5_block_host_order -#if !defined(L_ENDIAN) || defined(md5_block_data_order) -#define HASH_BLOCK_DATA_ORDER md5_block_data_order -/* - * Little-endians (Intel and Alpha) feel better without this. - * It looks like memcpy does better job than generic - * md5_block_data_order on copying-n-aligning input data. - * But franlky speaking I didn't expect such result on Alpha. - * On the other hand I've got this with egcs-1.0.2 and if - * program is compiled with another (better?) compiler it - * might turn out other way around. - * - * - */ -#endif +#define HASH_LONG MD5_LONG +#define HASH_CTX MD5_CTX +#define HASH_CBLOCK MD5_CBLOCK +#define HASH_UPDATE MD5_Update +#define HASH_TRANSFORM MD5_Transform +#define HASH_FINAL MD5_Final +#define HASH_MAKE_STRING(c,s) do { \ + unsigned long ll; \ + ll=(c)->A; (void)HOST_l2c(ll,(s)); \ + ll=(c)->B; (void)HOST_l2c(ll,(s)); \ + ll=(c)->C; (void)HOST_l2c(ll,(s)); \ + ll=(c)->D; (void)HOST_l2c(ll,(s)); \ + } while (0) +#define HASH_BLOCK_DATA_ORDER md5_block_data_order -#ifndef FLAT_INC -#include "../md32_common.h" -#else -#include "md32_common.h" -#endif +#include "internal/md32_common.h" -/* -#define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) -#define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) +/*- +#define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) +#define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) */ -/* As pointed out by Wei Dai , the above can be - * simplified to the code below. Wei attributes these optimisations - * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. +/* + * As pointed out by Wei Dai , the above can be simplified + * to the code below. Wei attributes these optimizations to Peter Gutmann's + * SHS code, and he attributes it to Rich Schroeppel. */ -#define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) -#define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) -#define H(b,c,d) ((b) ^ (c) ^ (d)) -#define I(b,c,d) (((~(d)) | (b)) ^ (c)) +#define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) +#define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) +#define H(b,c,d) ((b) ^ (c) ^ (d)) +#define I(b,c,d) (((~(d)) | (b)) ^ (c)) #define R0(a,b,c,d,k,s,t) { \ - a+=((k)+(t)+F((b),(c),(d))); \ - a=ROTATE(a,s); \ - a+=b; };\ + a+=((k)+(t)+F((b),(c),(d))); \ + a=ROTATE(a,s); \ + a+=b; };\ #define R1(a,b,c,d,k,s,t) { \ - a+=((k)+(t)+G((b),(c),(d))); \ - a=ROTATE(a,s); \ - a+=b; }; + a+=((k)+(t)+G((b),(c),(d))); \ + a=ROTATE(a,s); \ + a+=b; }; #define R2(a,b,c,d,k,s,t) { \ - a+=((k)+(t)+H((b),(c),(d))); \ - a=ROTATE(a,s); \ - a+=b; }; + a+=((k)+(t)+H((b),(c),(d))); \ + a=ROTATE(a,s); \ + a+=b; }; #define R3(a,b,c,d,k,s,t) { \ - a+=((k)+(t)+I((b),(c),(d))); \ - a=ROTATE(a,s); \ - a+=b; }; + a+=((k)+(t)+I((b),(c),(d))); \ + a=ROTATE(a,s); \ + a+=b; };