X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fec%2Fecp_nistp256.c;h=dd3c5d5878d8a0533929ebadbe4ff3ebb7585534;hp=5a21a3c13ddb481482aebcacd528e8932843027f;hb=705536e2b5c4167dbda2e0046d83f9e0f4a65514;hpb=0f113f3ee4d629ef9a4a30911b22b224772085e5 diff --git a/crypto/ec/ecp_nistp256.c b/crypto/ec/ecp_nistp256.c index 5a21a3c13d..dd3c5d5878 100644 --- a/crypto/ec/ecp_nistp256.c +++ b/crypto/ec/ecp_nistp256.c @@ -1,7 +1,12 @@ -/* crypto/ec/ecp_nistp256.c */ /* - * Written by Adam Langley (Google) for the OpenSSL project + * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the Apache License 2.0 (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html */ + /* Copyright 2011 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); @@ -18,6 +23,12 @@ * limitations under the License. */ +/* + * ECDSA low level APIs are deprecated for public use, but still ok for + * internal use. + */ +#include "internal/deprecated.h" + /* * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication * @@ -27,26 +38,24 @@ */ #include -#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 -# include -# include -# include -# include "ec_lcl.h" +#include +#include +#include +#include "ec_local.h" -# if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) +#if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 /* even with gcc, the typedef won't work for 32-bit platforms */ typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit * platforms */ typedef __int128_t int128_t; -# else -# error "Need GCC 3.1 or later to define type uint128_t" -# endif +#else +# error "Your compiler doesn't appear to support 128-bit integer types" +#endif typedef uint8_t u8; typedef uint32_t u32; typedef uint64_t u64; -typedef int64_t s64; /* * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We @@ -68,8 +77,8 @@ static const felem_bytearray nistp256_curve_params[5] = { {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */ - {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, + {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */ 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, @@ -104,7 +113,7 @@ static const felem_bytearray nistp256_curve_params[5] = { * values are used as intermediate values before multiplication. */ -# define NLIMBS 4 +#define NLIMBS 4 typedef uint128_t limb; typedef limb felem[NLIMBS]; @@ -140,34 +149,21 @@ static void smallfelem_to_bin32(u8 out[32], const smallfelem in) *((u64 *)&out[24]) = in[3]; } -/* To preserve endianness when using BN_bn2bin and BN_bin2bn */ -static void flip_endian(u8 *out, const u8 *in, unsigned len) -{ - unsigned i; - for (i = 0; i < len; ++i) - out[i] = in[len - 1 - i]; -} - /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ static int BN_to_felem(felem out, const BIGNUM *bn) { - felem_bytearray b_in; felem_bytearray b_out; - unsigned num_bytes; + int num_bytes; - /* BN_bn2bin eats leading zeroes */ - memset(b_out, 0, sizeof b_out); - num_bytes = BN_num_bytes(bn); - if (num_bytes > sizeof b_out) { + if (BN_is_negative(bn)) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } - if (BN_is_negative(bn)) { + num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); + if (num_bytes < 0) { ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); return 0; } - num_bytes = BN_bn2bin(bn, b_in); - flip_endian(b_out, b_in, num_bytes); bin32_to_felem(out, b_out); return 1; } @@ -175,10 +171,9 @@ static int BN_to_felem(felem out, const BIGNUM *bn) /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) { - felem_bytearray b_in, b_out; - smallfelem_to_bin32(b_in, in); - flip_endian(b_out, b_in, sizeof b_out); - return BN_bin2bn(b_out, sizeof b_out, out); + felem_bytearray b_out; + smallfelem_to_bin32(b_out, in); + return BN_lebin2bn(b_out, sizeof(b_out), out); } /*- @@ -250,9 +245,9 @@ static void longfelem_scalar(longfelem out, const u64 scalar) out[7] *= scalar; } -# define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) -# define two105 (((limb)1) << 105) -# define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) +#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) +#define two105 (((limb)1) << 105) +#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) /* zero105 is 0 mod p */ static const felem zero105 = @@ -295,9 +290,9 @@ static void felem_diff(felem out, const felem in) out[3] -= in[3]; } -# define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) -# define two107 (((limb)1) << 107) -# define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) +#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) +#define two107 (((limb)1) << 107) +#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) /* zero107 is 0 mod p */ static const felem zero107 = @@ -366,10 +361,10 @@ static void longfelem_diff(longfelem out, const longfelem in) out[7] -= in[7]; } -# define two64m0 (((limb)1) << 64) - 1 -# define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 -# define two64m46 (((limb)1) << 64) - (((limb)1) << 46) -# define two64m32 (((limb)1) << 64) - (((limb)1) << 32) +#define two64m0 (((limb)1) << 64) - 1 +#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 +#define two64m46 (((limb)1) << 64) - (((limb)1) << 46) +#define two64m32 (((limb)1) << 64) - (((limb)1) << 32) /* zero110 is 0 mod p */ static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; @@ -387,7 +382,7 @@ static void felem_shrink(smallfelem out, const felem in) { felem tmp; u64 a, b, mask; - s64 high, low; + u64 high, low; static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ /* Carry 2->3 */ @@ -428,29 +423,31 @@ static void felem_shrink(smallfelem out, const felem in) * In order to make space in tmp[3] for the carry from 2 -> 3, we * conditionally subtract kPrime if tmp[3] is large enough. */ - high = tmp[3] >> 64; + high = (u64)(tmp[3] >> 64); /* As tmp[3] < 2^65, high is either 1 or 0 */ - high <<= 63; - high >>= 63; - /*- - * high is: - * all ones if the high word of tmp[3] is 1 - * all zeros if the high word of tmp[3] if 0 */ - low = tmp[3]; - mask = low >> 63; - /*- - * mask is: - * all ones if the MSB of low is 1 - * all zeros if the MSB of low if 0 */ + high = 0 - high; + /*- + * high is: + * all ones if the high word of tmp[3] is 1 + * all zeros if the high word of tmp[3] if 0 + */ + low = (u64)tmp[3]; + mask = 0 - (low >> 63); + /*- + * mask is: + * all ones if the MSB of low is 1 + * all zeros if the MSB of low if 0 + */ low &= bottom63bits; low -= kPrime3Test; /* if low was greater than kPrime3Test then the MSB is zero */ low = ~low; - low >>= 63; - /*- - * low is: - * all ones if low was > kPrime3Test - * all zeros if low was <= kPrime3Test */ + low = 0 - (low >> 63); + /*- + * low is: + * all ones if low was > kPrime3Test + * all zeros if low was <= kPrime3Test + */ mask = (mask & low) | high; tmp[0] -= mask & kPrime[0]; tmp[1] -= mask & kPrime[1]; @@ -717,9 +714,9 @@ static void felem_small_mul(longfelem out, const smallfelem small1, smallfelem_mul(out, small1, small2); } -# define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) -# define two100 (((limb)1) << 100) -# define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) +#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) +#define two100 (((limb)1) << 100) +#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) /* zero100 is 0 mod p */ static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 }; @@ -790,17 +787,17 @@ static void felem_reduce(felem out, const longfelem in) felem_reduce_(out, in); - /*- - * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 - * out[1] > 2^100 - 2^64 - 7*2^96 > 0 - * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 - * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 - * - * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 - * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 - * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 - * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 - */ + /*- + * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 + * out[1] > 2^100 - 2^64 - 7*2^96 > 0 + * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 + * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 + * + * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 + * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 + * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 + * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 + */ } /*- @@ -819,17 +816,17 @@ static void felem_reduce_zero105(felem out, const longfelem in) felem_reduce_(out, in); - /*- - * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 - * out[1] > 2^105 - 2^71 - 2^103 > 0 - * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 - * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 - * - * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 - * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 - * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 - * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 - */ + /*- + * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 + * out[1] > 2^105 - 2^71 - 2^103 > 0 + * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 + * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 + * + * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 + * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 + * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 + * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 + */ } /* @@ -884,7 +881,7 @@ static void felem_contract(smallfelem out, const felem in) equal &= equal << 4; equal &= equal << 2; equal &= equal << 1; - equal = ((s64) equal) >> 63; + equal = 0 - (equal >> 63); all_equal_so_far &= equal; } @@ -951,7 +948,7 @@ static limb smallfelem_is_zero(const smallfelem small) is_zero &= is_zero << 4; is_zero &= is_zero << 2; is_zero &= is_zero << 1; - is_zero = ((s64) is_zero) >> 63; + is_zero = 0 - (is_zero >> 63); is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | @@ -963,7 +960,7 @@ static limb smallfelem_is_zero(const smallfelem small) is_p &= is_p << 4; is_p &= is_p << 2; is_p &= is_p << 1; - is_p = ((s64) is_p) >> 63; + is_p = 0 - (is_p >> 63); is_zero |= is_p; @@ -972,7 +969,7 @@ static limb smallfelem_is_zero(const smallfelem small) return result; } -static int smallfelem_is_zero_int(const smallfelem small) +static int smallfelem_is_zero_int(const void *small) { return (int)(smallfelem_is_zero(small) & ((limb) 1)); } @@ -1094,7 +1091,8 @@ static void smallfelem_inv_contract(smallfelem out, const smallfelem in) * * Building on top of the field operations we have the operations on the * elliptic curve group itself. Points on the curve are represented in Jacobian - * coordinates */ + * coordinates + */ /*- * point_double calculates 2*(x_in, y_in, z_in) @@ -1103,7 +1101,8 @@ static void smallfelem_inv_contract(smallfelem out, const smallfelem in) * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b * * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. - * while x_out == y_in is not (maybe this works, but it's not tested). */ + * while x_out == y_in is not (maybe this works, but it's not tested). + */ static void point_double(felem x_out, felem y_out, felem z_out, const felem x_in, const felem y_in, const felem z_in) @@ -1225,7 +1224,7 @@ static void copy_small_conditional(felem out, const smallfelem in, limb mask) } /*- - * point_add calcuates (x1, y1, z1) + (x2, y2, z2) + * point_add calculates (x1, y1, z1) + (x2, y2, z2) * * The method is taken from: * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, @@ -1234,7 +1233,8 @@ static void copy_small_conditional(felem out, const smallfelem in, limb mask) * This function includes a branch for checking whether the two input points * are equal, (while not equal to the point at infinity). This case never * happens during single point multiplication, so there is no timing leak for - * ECDH or ECDSA signing. */ + * ECDH or ECDSA signing. + */ static void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const smallfelem x2, @@ -1244,6 +1244,7 @@ static void point_add(felem x3, felem y3, felem z3, longfelem tmp, tmp2; smallfelem small1, small2, small3, small4, small5; limb x_equal, y_equal, z1_is_zero, z2_is_zero; + limb points_equal; felem_shrink(small3, z1); @@ -1343,7 +1344,26 @@ static void point_add(felem x3, felem y3, felem z3, felem_shrink(small1, ftmp5); y_equal = smallfelem_is_zero(small1); - if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { + /* + * The formulae are incorrect if the points are equal, in affine coordinates + * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this + * happens. + * + * We use bitwise operations to avoid potential side-channels introduced by + * the short-circuiting behaviour of boolean operators. + * + * The special case of either point being the point at infinity (z1 and/or + * z2 are zero), is handled separately later on in this function, so we + * avoid jumping to point_double here in those special cases. + */ + points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); + + if (points_equal) { + /* + * This is obviously not constant-time but, as mentioned before, this + * case never happens during single point multiplication, so there is no + * timing leak for ECDH or ECDSA signing. + */ point_double(x3, y3, z3, x1, y1, z1); return; } @@ -1621,7 +1641,8 @@ static void select_point(const u64 idx, unsigned int size, { unsigned i, j; u64 *outlimbs = &out[0][0]; - memset(outlimbs, 0, 3 * sizeof(smallfelem)); + + memset(out, 0, sizeof(*out) * 3); for (i = 0; i < size; i++) { const u64 *inlimbs = (u64 *)&pre_comp[i][0][0]; @@ -1665,7 +1686,7 @@ static void batch_mul(felem x_out, felem y_out, felem z_out, u8 sign, digit; /* set nq to the point at infinity */ - memset(nq, 0, 3 * sizeof(felem)); + memset(nq, 0, sizeof(nq)); /* * Loop over all scalars msb-to-lsb, interleaving additions of multiples @@ -1752,10 +1773,11 @@ static void batch_mul(felem x_out, felem y_out, felem z_out, } /* Precomputation for the group generator. */ -typedef struct { +struct nistp256_pre_comp_st { smallfelem g_pre_comp[2][16][3]; - int references; -} NISTP256_PRE_COMP; + CRYPTO_REF_COUNT references; + CRYPTO_RWLOCK *lock; +}; const EC_METHOD *EC_GFp_nistp256_method(void) { @@ -1769,6 +1791,7 @@ const EC_METHOD *EC_GFp_nistp256_method(void) ec_GFp_nistp256_group_set_curve, ec_GFp_simple_group_get_curve, ec_GFp_simple_group_get_degree, + ec_group_simple_order_bits, ec_GFp_simple_group_check_discriminant, ec_GFp_simple_point_init, ec_GFp_simple_point_finish, @@ -1796,9 +1819,27 @@ const EC_METHOD *EC_GFp_nistp256_method(void) ec_GFp_nist_field_mul, ec_GFp_nist_field_sqr, 0 /* field_div */ , + ec_GFp_simple_field_inv, 0 /* field_encode */ , 0 /* field_decode */ , - 0 /* field_set_to_one */ + 0, /* field_set_to_one */ + ec_key_simple_priv2oct, + ec_key_simple_oct2priv, + 0, /* set private */ + ec_key_simple_generate_key, + ec_key_simple_check_key, + ec_key_simple_generate_public_key, + 0, /* keycopy */ + 0, /* keyfinish */ + ecdh_simple_compute_key, + ecdsa_simple_sign_setup, + ecdsa_simple_sign_sig, + ecdsa_simple_verify_sig, + 0, /* field_inverse_mod_ord */ + 0, /* blind_coordinates */ + 0, /* ladder_pre */ + 0, /* ladder_step */ + 0 /* ladder_post */ }; return &ret; @@ -1809,57 +1850,48 @@ const EC_METHOD *EC_GFp_nistp256_method(void) * FUNCTIONS TO MANAGE PRECOMPUTATION */ -static NISTP256_PRE_COMP *nistp256_pre_comp_new() +static NISTP256_PRE_COMP *nistp256_pre_comp_new(void) { - NISTP256_PRE_COMP *ret = NULL; - ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret); - if (!ret) { + NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); + + if (ret == NULL) { ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); return ret; } - memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); - ret->references = 1; - return ret; -} -static void *nistp256_pre_comp_dup(void *src_) -{ - NISTP256_PRE_COMP *src = src_; - - /* no need to actually copy, these objects never change! */ - CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); + ret->references = 1; - return src_; + ret->lock = CRYPTO_THREAD_lock_new(); + if (ret->lock == NULL) { + ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); + OPENSSL_free(ret); + return NULL; + } + return ret; } -static void nistp256_pre_comp_free(void *pre_) +NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p) { int i; - NISTP256_PRE_COMP *pre = pre_; - - if (!pre) - return; - - i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); - if (i > 0) - return; - - OPENSSL_free(pre); + if (p != NULL) + CRYPTO_UP_REF(&p->references, &i, p->lock); + return p; } -static void nistp256_pre_comp_clear_free(void *pre_) +void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre) { int i; - NISTP256_PRE_COMP *pre = pre_; - if (!pre) + if (pre == NULL) return; - i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); + CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); + REF_PRINT_COUNT("EC_nistp256", x); if (i > 0) return; + REF_ASSERT_ISNT(i < 0); - OPENSSL_cleanse(pre, sizeof *pre); + CRYPTO_THREAD_lock_free(pre->lock); OPENSSL_free(pre); } @@ -1881,16 +1913,21 @@ int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, BN_CTX *ctx) { int ret = 0; - BN_CTX *new_ctx = NULL; BIGNUM *curve_p, *curve_a, *curve_b; +#ifndef FIPS_MODE + BN_CTX *new_ctx = NULL; if (ctx == NULL) - if ((ctx = new_ctx = BN_CTX_new()) == NULL) - return 0; + ctx = new_ctx = BN_CTX_new(); +#endif + if (ctx == NULL) + return 0; + BN_CTX_start(ctx); - if (((curve_p = BN_CTX_get(ctx)) == NULL) || - ((curve_a = BN_CTX_get(ctx)) == NULL) || - ((curve_b = BN_CTX_get(ctx)) == NULL)) + curve_p = BN_CTX_get(ctx); + curve_a = BN_CTX_get(ctx); + curve_b = BN_CTX_get(ctx); + if (curve_b == NULL) goto err; BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); @@ -1904,8 +1941,9 @@ int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); err: BN_CTX_end(ctx); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); +#ifndef FIPS_MODE + BN_CTX_free(new_ctx); +#endif return ret; } @@ -1927,8 +1965,8 @@ int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, EC_R_POINT_AT_INFINITY); return 0; } - if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || - (!BN_to_felem(z1, &point->Z))) + if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || + (!BN_to_felem(z1, point->Z))) return 0; felem_inv(z2, z1); felem_square(tmp, z2); @@ -1971,7 +2009,6 @@ static void make_points_affine(size_t num, smallfelem points[][3], sizeof(smallfelem), tmp_smallfelems, (void (*)(void *))smallfelem_one, - (int (*)(const void *)) smallfelem_is_zero_int, (void (*)(void *, const void *)) smallfelem_assign, @@ -2000,14 +2037,13 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, int ret = 0; int j; int mixed = 0; - BN_CTX *new_ctx = NULL; BIGNUM *x, *y, *z, *tmp_scalar; felem_bytearray g_secret; felem_bytearray *secrets = NULL; - smallfelem(*pre_comp)[17][3] = NULL; + smallfelem (*pre_comp)[17][3] = NULL; smallfelem *tmp_smallfelems = NULL; - felem_bytearray tmp; - unsigned i, num_bytes; + unsigned i; + int num_bytes; int have_pre_comp = 0; size_t num_points = num; smallfelem x_in, y_in, z_in; @@ -2018,21 +2054,16 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const EC_POINT *p = NULL; const BIGNUM *p_scalar = NULL; - if (ctx == NULL) - if ((ctx = new_ctx = BN_CTX_new()) == NULL) - return 0; BN_CTX_start(ctx); - if (((x = BN_CTX_get(ctx)) == NULL) || - ((y = BN_CTX_get(ctx)) == NULL) || - ((z = BN_CTX_get(ctx)) == NULL) || - ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) + x = BN_CTX_get(ctx); + y = BN_CTX_get(ctx); + z = BN_CTX_get(ctx); + tmp_scalar = BN_CTX_get(ctx); + if (tmp_scalar == NULL) goto err; if (scalar != NULL) { - pre = EC_EX_DATA_get_data(group->extra_data, - nistp256_pre_comp_dup, - nistp256_pre_comp_free, - nistp256_pre_comp_clear_free); + pre = group->pre_comp.nistp256; if (pre) /* we have precomputation, try to use it */ g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp; @@ -2071,11 +2102,11 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, */ mixed = 1; } - secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); - pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem)); + secrets = OPENSSL_malloc(sizeof(*secrets) * num_points); + pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points); if (mixed) tmp_smallfelems = - OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem)); + OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1)); if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL))) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); @@ -2086,20 +2117,18 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, * we treat NULL scalars as 0, and NULL points as points at infinity, * i.e., they contribute nothing to the linear combination */ - memset(secrets, 0, num_points * sizeof(felem_bytearray)); - memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem)); + memset(secrets, 0, sizeof(*secrets) * num_points); + memset(pre_comp, 0, sizeof(*pre_comp) * num_points); for (i = 0; i < num_points; ++i) { - if (i == num) + if (i == num) { /* * we didn't have a valid precomputation, so we pick the * generator */ - { p = EC_GROUP_get0_generator(group); p_scalar = scalar; - } else + } else { /* the i^th point */ - { p = points[i]; p_scalar = scalars[i]; } @@ -2111,18 +2140,24 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, * this is an unusual input, and we don't guarantee * constant-timeness */ - if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { + if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } - num_bytes = BN_bn2bin(tmp_scalar, tmp); - } else - num_bytes = BN_bn2bin(p_scalar, tmp); - flip_endian(secrets[i], tmp, num_bytes); + num_bytes = BN_bn2lebinpad(tmp_scalar, + secrets[i], sizeof(secrets[i])); + } else { + num_bytes = BN_bn2lebinpad(p_scalar, + secrets[i], sizeof(secrets[i])); + } + if (num_bytes < 0) { + ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); + goto err; + } /* precompute multiples */ - if ((!BN_to_felem(x_out, &p->X)) || - (!BN_to_felem(y_out, &p->Y)) || - (!BN_to_felem(z_out, &p->Z))) + if ((!BN_to_felem(x_out, p->X)) || + (!BN_to_felem(y_out, p->Y)) || + (!BN_to_felem(z_out, p->Z))) goto err; felem_shrink(pre_comp[i][1][0], x_out); felem_shrink(pre_comp[i][1][1], y_out); @@ -2159,24 +2194,25 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, * this is an unusual input, and we don't guarantee * constant-timeness */ - if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { + if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); goto err; } - num_bytes = BN_bn2bin(tmp_scalar, tmp); - } else - num_bytes = BN_bn2bin(scalar, tmp); - flip_endian(g_secret, tmp, num_bytes); + num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); + } else { + num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); + } /* do the multiplication with generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, g_secret, mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp); - } else + } else { /* do the multiplication without generator precomputation */ batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets, num_points, NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL); + } /* reduce the output to its unique minimal representation */ felem_contract(x_in, x_out); felem_contract(y_in, y_out); @@ -2190,16 +2226,10 @@ int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, err: BN_CTX_end(ctx); - if (generator != NULL) - EC_POINT_free(generator); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - if (secrets != NULL) - OPENSSL_free(secrets); - if (pre_comp != NULL) - OPENSSL_free(pre_comp); - if (tmp_smallfelems != NULL) - OPENSSL_free(tmp_smallfelems); + EC_POINT_free(generator); + OPENSSL_free(secrets); + OPENSSL_free(pre_comp); + OPENSSL_free(tmp_smallfelems); return ret; } @@ -2208,21 +2238,28 @@ int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) int ret = 0; NISTP256_PRE_COMP *pre = NULL; int i, j; - BN_CTX *new_ctx = NULL; BIGNUM *x, *y; EC_POINT *generator = NULL; smallfelem tmp_smallfelems[32]; felem x_tmp, y_tmp, z_tmp; +#ifndef FIPS_MODE + BN_CTX *new_ctx = NULL; +#endif /* throw away old precomputation */ - EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup, - nistp256_pre_comp_free, - nistp256_pre_comp_clear_free); + EC_pre_comp_free(group); + +#ifndef FIPS_MODE if (ctx == NULL) - if ((ctx = new_ctx = BN_CTX_new()) == NULL) - return 0; + ctx = new_ctx = BN_CTX_new(); +#endif + if (ctx == NULL) + return 0; + BN_CTX_start(ctx); - if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL)) + x = BN_CTX_get(ctx); + y = BN_CTX_get(ctx); + if (y == NULL) goto err; /* get the generator */ if (group->generator == NULL) @@ -2232,7 +2269,7 @@ int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) goto err; BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); - if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) + if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) goto err; if ((pre = nistp256_pre_comp_new()) == NULL) goto err; @@ -2241,12 +2278,11 @@ int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) */ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); - ret = 1; - goto err; + goto done; } - if ((!BN_to_felem(x_tmp, &group->generator->X)) || - (!BN_to_felem(y_tmp, &group->generator->Y)) || - (!BN_to_felem(z_tmp, &group->generator->Z))) + if ((!BN_to_felem(x_tmp, group->generator->X)) || + (!BN_to_felem(y_tmp, group->generator->Y)) || + (!BN_to_felem(z_tmp, group->generator->Z))) goto err; felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); @@ -2329,33 +2365,22 @@ int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) } make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); - if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup, - nistp256_pre_comp_free, - nistp256_pre_comp_clear_free)) - goto err; - ret = 1; + done: + SETPRECOMP(group, nistp256, pre); pre = NULL; + ret = 1; + err: BN_CTX_end(ctx); - if (generator != NULL) - EC_POINT_free(generator); - if (new_ctx != NULL) - BN_CTX_free(new_ctx); - if (pre) - nistp256_pre_comp_free(pre); + EC_POINT_free(generator); +#ifndef FIPS_MODE + BN_CTX_free(new_ctx); +#endif + EC_nistp256_pre_comp_free(pre); return ret; } int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group) { - if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup, - nistp256_pre_comp_free, - nistp256_pre_comp_clear_free) - != NULL) - return 1; - else - return 0; + return HAVEPRECOMP(group, nistp256); } -#else -static void *dummy = &dummy; -#endif