X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=crypto%2Fbn%2Fbn_mul.c;h=b848c8cc60f4d69ab60468c3090385318930a40a;hp=fd598b8b3d61fd1212890bcc583a1a98f3f2ce8f;hb=6343829a391df59e46e513c84b6264ee71ad9518;hpb=9cdf87f19431b32a50b12e468cf2a9557cfc3568 diff --git a/crypto/bn/bn_mul.c b/crypto/bn/bn_mul.c index fd598b8b3d..b848c8cc60 100644 --- a/crypto/bn/bn_mul.c +++ b/crypto/bn/bn_mul.c @@ -66,7 +66,7 @@ #include "cryptlib.h" #include "bn_lcl.h" -#if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__))/* Assembler implementation exists only for x86 */ +#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) /* Here follows specialised variants of bn_add_words() and bn_sub_words(). They have the property performing operations on arrays of different sizes. The sizes of those arrays is expressed through @@ -389,6 +389,7 @@ BN_ULONG bn_add_part_words(BN_ULONG *r, * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ +/* dnX may not be positive, but n2/2+dnX has to be */ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, int dnb, BN_ULONG *t) { @@ -398,7 +399,7 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG ln,lo,*p; # ifdef BN_COUNT - fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2); + fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); # endif # ifdef BN_MUL_COMBA # if 0 @@ -545,16 +546,17 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, /* n+tn is the word length * t needs to be n*4 is size, as does r */ +/* tnX may not be negative but less than n */ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, int tnb, BN_ULONG *t) { int i,j,n2=n*2; - unsigned int c1,c2,neg,zero; + int c1,c2,neg,zero; BN_ULONG ln,lo,*p; # ifdef BN_COUNT - fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n", - tna, n, tnb, n); + fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n", + n, tna, n, tnb); # endif if (n < 8) { @@ -655,14 +657,17 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, for (;;) { i/=2; - if (i < tna && i < tnb) + /* these simplified conditions work + * exclusively because difference + * between tna and tnb is 1 or 0 */ + if (i < tna || i < tnb) { bn_mul_part_recursive(&(r[n2]), &(a[n]),&(b[n]), i,tna-i,tnb-i,p); break; } - else if (i <= tna && i <= tnb) + else if (i == tna || i == tnb) { bn_mul_recursive(&(r[n2]), &(a[n]),&(b[n]), @@ -706,7 +711,7 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, /* The overflow will stop before we over write * words we should not overwrite */ - if (ln < c1) + if (ln < (BN_ULONG)c1) { do { p++; @@ -964,7 +969,7 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) if ((al == 0) || (bl == 0)) { - if (!BN_zero(r)) goto err; + BN_zero(r); return(1); } top=al+bl; @@ -1090,10 +1095,11 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) end: #endif - bn_fix_top(rr); + bn_correct_top(rr); if (r != rr) BN_copy(r,rr); ret=1; err: + bn_check_top(r); BN_CTX_end(ctx); return(ret); }