X-Git-Url: https://git.openssl.org/?p=openssl.git;a=blobdiff_plain;f=apps%2Fspeed.c;h=68e232a94c97200490485f84fc7cd37079b10fb3;hp=5b3db90cd68e67c152c5c45c97c7f3f334ffc43e;hb=79438087fe48a72f8b62a77956436fd0c4c3d8e4;hpb=55b09fe69aebe862777b9797c7334bbf2fc07fba diff --git a/apps/speed.c b/apps/speed.c index 5b3db90cd6..68e232a94c 100644 --- a/apps/speed.c +++ b/apps/speed.c @@ -144,9 +144,6 @@ static volatile int run = 0; static int mr = 0; static int usertime = 1; -typedef void *(*kdf_fn) ( - const void *in, size_t inlen, void *out, size_t *xoutlen); - typedef struct loopargs_st { ASYNC_JOB *inprogress_job; ASYNC_WAIT_CTX *wait_ctx; @@ -154,7 +151,7 @@ typedef struct loopargs_st { unsigned char *buf2; unsigned char *buf_malloc; unsigned char *buf2_malloc; - unsigned int *siglen; + unsigned int siglen; #ifndef OPENSSL_NO_RSA RSA *rsa_key[RSA_NUM]; #endif @@ -163,12 +160,10 @@ typedef struct loopargs_st { #endif #ifndef OPENSSL_NO_EC EC_KEY *ecdsa[EC_NUM]; - EC_KEY *ecdh_a[EC_NUM]; - EC_KEY *ecdh_b[EC_NUM]; + EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; unsigned char *secret_a; unsigned char *secret_b; - int outlen; - kdf_fn kdf; + size_t outlen[EC_NUM]; #endif EVP_CIPHER_CTX *ctx; HMAC_CTX *hctx; @@ -225,9 +220,9 @@ static int DSA_verify_loop(void *args); #ifndef OPENSSL_NO_EC static int ECDSA_sign_loop(void *args); static int ECDSA_verify_loop(void *args); -static int ECDH_compute_key_loop(void *args); #endif -static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs); +static int run_benchmark(int async_jobs, int (*loop_function) (void *), + loopargs_t * loopargs); static double Time_F(int s); static void print_message(const char *s, long num, int length); @@ -347,7 +342,7 @@ static double Time_F(int s) static void multiblock_speed(const EVP_CIPHER *evp_cipher); -static int found(const char *name, const OPT_PAIR * pairs, int *result) +static int found(const char *name, const OPT_PAIR *pairs, int *result) { for (; pairs->name; pairs++) if (strcmp(name, pairs->name) == 0) { @@ -363,7 +358,7 @@ typedef enum OPTION_choice { OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS } OPTION_CHOICE; -OPTIONS speed_options[] = { +const OPTIONS speed_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, {"help", OPT_HELP, '-', "Display this summary"}, @@ -371,8 +366,8 @@ OPTIONS speed_options[] = { {"decrypt", OPT_DECRYPT, '-', "Time decryption instead of encryption (only EVP)"}, {"mr", OPT_MR, '-', "Produce machine readable output"}, - {"mb", OPT_MB, '-', - "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"}, + {"mb", OPT_MB, '-', + "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"}, {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"}, {"elapsed", OPT_ELAPSED, '-', "Measure time in real time instead of CPU user time"}, @@ -380,7 +375,8 @@ OPTIONS speed_options[] = { {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, #endif #ifndef OPENSSL_NO_ASYNC - {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"}, + {"async_jobs", OPT_ASYNCJOBS, 'p', + "Enable async mode and start pnum jobs"}, #endif #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, @@ -430,8 +426,6 @@ static OPT_PAIR doit_choices[] = { #endif #ifndef OPENSSL_NO_MD5 {"md5", D_MD5}, -#endif -#ifndef OPENSSL_NO_MD5 {"hmac", D_HMAC}, #endif {"sha1", D_SHA1}, @@ -555,6 +549,7 @@ static OPT_PAIR ecdsa_choices[] = { {"ecdsab571", R_EC_B571}, {NULL} }; + static OPT_PAIR ecdh_choices[] = { {"ecdhp160", R_EC_P160}, {"ecdhp192", R_EC_P192}, @@ -583,7 +578,7 @@ static OPT_PAIR ecdh_choices[] = { #else # define COND(unused_cond) (run && count<0x7fffffff) # define COUNT(d) (count) -#endif /* SIGALRM */ +#endif /* SIGALRM */ static int testnum; @@ -593,14 +588,14 @@ static long c[ALGOR_NUM][SIZE_NUM]; #ifndef OPENSSL_NO_MD2 static int EVP_Digest_MD2_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md2[MD2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), - NULL)) + NULL)) return -1; } return count; @@ -610,14 +605,14 @@ static int EVP_Digest_MD2_loop(void *args) #ifndef OPENSSL_NO_MDC2 static int EVP_Digest_MDC2_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char mdc2[MDC2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MDC2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), - NULL)) + NULL)) return -1; } return count; @@ -627,14 +622,14 @@ static int EVP_Digest_MDC2_loop(void *args) #ifndef OPENSSL_NO_MD4 static int EVP_Digest_MD4_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md4[MD4_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD4][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), - NULL)) + NULL)) return -1; } return count; @@ -644,7 +639,7 @@ static int EVP_Digest_MD4_loop(void *args) #ifndef OPENSSL_NO_MD5 static int MD5_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md5[MD5_DIGEST_LENGTH]; int count; @@ -655,7 +650,7 @@ static int MD5_loop(void *args) static int HMAC_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; HMAC_CTX *hctx = tempargs->hctx; unsigned char hmac[MD5_DIGEST_LENGTH]; @@ -672,7 +667,7 @@ static int HMAC_loop(void *args) static int SHA1_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha[SHA_DIGEST_LENGTH]; int count; @@ -683,7 +678,7 @@ static int SHA1_loop(void *args) static int SHA256_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha256[SHA256_DIGEST_LENGTH]; int count; @@ -694,7 +689,7 @@ static int SHA256_loop(void *args) static int SHA512_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha512[SHA512_DIGEST_LENGTH]; int count; @@ -706,7 +701,7 @@ static int SHA512_loop(void *args) #ifndef OPENSSL_NO_WHIRLPOOL static int WHIRLPOOL_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; int count; @@ -719,13 +714,13 @@ static int WHIRLPOOL_loop(void *args) #ifndef OPENSSL_NO_RMD160 static int EVP_Digest_RMD160_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_RMD160][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), - NULL, EVP_ripemd160(), NULL)) + NULL, EVP_ripemd160(), NULL)) return -1; } return count; @@ -736,7 +731,7 @@ static int EVP_Digest_RMD160_loop(void *args) static RC4_KEY rc4_ks; static int RC4_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RC4][testnum]); count++) @@ -752,24 +747,23 @@ static DES_key_schedule sch2; static DES_key_schedule sch3; static int DES_ncbc_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_DES][testnum]); count++) DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, - &DES_iv, DES_ENCRYPT); + &DES_iv, DES_ENCRYPT); return count; } static int DES_ede3_cbc_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], - &sch, &sch2, &sch3, - &DES_iv, DES_ENCRYPT); + &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT); return count; } #endif @@ -780,82 +774,76 @@ static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; static AES_KEY aes_ks1, aes_ks2, aes_ks3; static int AES_cbc_128_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, - (size_t)lengths[testnum], &aes_ks1, - iv, AES_ENCRYPT); + (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_cbc_192_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, - (size_t)lengths[testnum], &aes_ks2, - iv, AES_ENCRYPT); + (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_cbc_256_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, - (size_t)lengths[testnum], &aes_ks3, - iv, AES_ENCRYPT); + (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int AES_ige_128_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, - (size_t)lengths[testnum], &aes_ks1, - iv, AES_ENCRYPT); + (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_ige_192_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, - (size_t)lengths[testnum], &aes_ks2, - iv, AES_ENCRYPT); + (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_ige_256_encrypt_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, - (size_t)lengths[testnum], &aes_ks3, - iv, AES_ENCRYPT); + (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int CRYPTO_gcm128_aad_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; int count; @@ -868,7 +856,7 @@ static long save_count = 0; static int decrypt = 0; static int EVP_Update_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; @@ -891,7 +879,7 @@ static int EVP_Update_loop(void *args) static const EVP_MD *evp_md = NULL; static int EVP_Digest_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md[EVP_MAX_MD_SIZE]; int count; @@ -911,10 +899,10 @@ static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */ static int RSA_sign_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; - unsigned int *rsa_num = tempargs->siglen; + unsigned int *rsa_num = &tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][0]); count++) { @@ -931,14 +919,15 @@ static int RSA_sign_loop(void *args) static int RSA_verify_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; - unsigned int rsa_num = *(tempargs->siglen); + unsigned int rsa_num = tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][1]); count++) { - ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); + ret = + RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "RSA verify failure\n"); ERR_print_errors(bio_err); @@ -954,11 +943,11 @@ static int RSA_verify_loop(void *args) static long dsa_c[DSA_NUM][2]; static int DSA_sign_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; - unsigned int *siglen = tempargs->siglen; + unsigned int *siglen = &tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][0]); count++) { ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); @@ -974,11 +963,11 @@ static int DSA_sign_loop(void *args) static int DSA_verify_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; - unsigned int siglen = *(tempargs->siglen); + unsigned int siglen = tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][1]); count++) { ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); @@ -997,15 +986,14 @@ static int DSA_verify_loop(void *args) static long ecdsa_c[EC_NUM][2]; static int ECDSA_sign_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; - unsigned int *ecdsasiglen = tempargs->siglen; + unsigned int *ecdsasiglen = &tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][0]); count++) { - ret = ECDSA_sign(0, buf, 20, - ecdsasig, ecdsasiglen, ecdsa[testnum]); + ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret == 0) { BIO_printf(bio_err, "ECDSA sign failure\n"); ERR_print_errors(bio_err); @@ -1018,15 +1006,14 @@ static int ECDSA_sign_loop(void *args) static int ECDSA_verify_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; + loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; - unsigned int ecdsasiglen = *(tempargs->siglen); + unsigned int ecdsasiglen = tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][1]); count++) { - ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, - ecdsa[testnum]); + ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret != 1) { BIO_printf(bio_err, "ECDSA verify failure\n"); ERR_print_errors(bio_err); @@ -1040,73 +1027,62 @@ static int ECDSA_verify_loop(void *args) /* ******************************************************************** */ static long ecdh_c[EC_NUM][1]; -static int ECDH_compute_key_loop(void *args) +static int ECDH_EVP_derive_key_loop(void *args) { - loopargs_t *tempargs = (loopargs_t *)args; - EC_KEY **ecdh_a = tempargs->ecdh_a; - EC_KEY **ecdh_b = tempargs->ecdh_b; - unsigned char *secret_a = tempargs->secret_a; - int count, outlen = tempargs->outlen; - kdf_fn kdf = tempargs->kdf; - - for (count = 0; COND(ecdh_c[testnum][0]); count++) { - ECDH_compute_key(secret_a, outlen, - EC_KEY_get0_public_key(ecdh_b[testnum]), - ecdh_a[testnum], kdf); - } - return count; -} + loopargs_t *tempargs = *(loopargs_t **) args; + EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; + unsigned char *derived_secret = tempargs->secret_a; + int count; + size_t *outlen = &(tempargs->outlen[testnum]); -static const int KDF1_SHA1_len = 20; -static void *KDF1_SHA1(const void *in, size_t inlen, void *out, - size_t *outlen) -{ - if (*outlen < SHA_DIGEST_LENGTH) - return NULL; - *outlen = SHA_DIGEST_LENGTH; - return SHA1(in, inlen, out); -} + for (count = 0; COND(ecdh_c[testnum][0]); count++) + EVP_PKEY_derive(ctx, derived_secret, outlen); -#endif /* ndef OPENSSL_NO_EC */ + return count; +} +#endif /* OPENSSL_NO_EC */ -static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs) +static int run_benchmark(int async_jobs, + int (*loop_function) (void *), loopargs_t * loopargs) { int job_op_count = 0; int total_op_count = 0; int num_inprogress = 0; - int error = 0; - int i = 0; + int error = 0, i = 0, ret = 0; OSSL_ASYNC_FD job_fd = 0; size_t num_job_fds = 0; run = 1; if (async_jobs == 0) { - return loop_function((void *)loopargs); + return loop_function((void *)&loopargs); } - for (i = 0; i < async_jobs && !error; i++) { - switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx, - &job_op_count, loop_function, - (void *)(loopargs + i), sizeof(loopargs_t))) { - case ASYNC_PAUSE: - ++num_inprogress; - break; - case ASYNC_FINISH: - if (job_op_count == -1) { - error = 1; - } else { - total_op_count += job_op_count; - } - break; - case ASYNC_NO_JOBS: - case ASYNC_ERR: - BIO_printf(bio_err, "Failure in the job\n"); - ERR_print_errors(bio_err); + loopargs_t *looparg_item = loopargs + i; + + /* Copy pointer content (looparg_t item address) into async context */ + ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, + &job_op_count, loop_function, + (void *)&looparg_item, sizeof(looparg_item)); + switch (ret) { + case ASYNC_PAUSE: + ++num_inprogress; + break; + case ASYNC_FINISH: + if (job_op_count == -1) { error = 1; - break; + } else { + total_op_count += job_op_count; + } + break; + case ASYNC_NO_JOBS: + case ASYNC_ERR: + BIO_printf(bio_err, "Failure in the job\n"); + ERR_print_errors(bio_err); + error = 1; + break; } } @@ -1124,14 +1100,16 @@ static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_ if (loopargs[i].inprogress_job == NULL) continue; - if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds) - || num_job_fds > 1) { + if (!ASYNC_WAIT_CTX_get_all_fds + (loopargs[i].wait_ctx, NULL, &num_job_fds) + || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } - ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); + ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, + &num_job_fds); FD_SET(job_fd, &waitfdset); if (job_fd > max_fd) max_fd = job_fd; @@ -1139,9 +1117,9 @@ static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_ if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { BIO_printf(bio_err, - "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " - "Decrease the value of async_jobs\n", - max_fd, FD_SETSIZE); + "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " + "Decrease the value of async_jobs\n", + max_fd, FD_SETSIZE); ERR_print_errors(bio_err); error = 1; break; @@ -1166,46 +1144,51 @@ static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_ if (loopargs[i].inprogress_job == NULL) continue; - if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds) - || num_job_fds > 1) { + if (!ASYNC_WAIT_CTX_get_all_fds + (loopargs[i].wait_ctx, NULL, &num_job_fds) + || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } - ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); + ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, + &num_job_fds); #if defined(OPENSSL_SYS_UNIX) if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) continue; #elif defined(OPENSSL_SYS_WINDOWS) - if (num_job_fds == 1 && - !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0) + if (num_job_fds == 1 + && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) + && avail > 0) continue; #endif - switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx, - &job_op_count, loop_function, (void *)(loopargs + i), - sizeof(loopargs_t))) { - case ASYNC_PAUSE: - break; - case ASYNC_FINISH: - if (job_op_count == -1) { - error = 1; - } else { - total_op_count += job_op_count; - } - --num_inprogress; - loopargs[i].inprogress_job = NULL; - break; - case ASYNC_NO_JOBS: - case ASYNC_ERR: - --num_inprogress; - loopargs[i].inprogress_job = NULL; - BIO_printf(bio_err, "Failure in the job\n"); - ERR_print_errors(bio_err); + ret = ASYNC_start_job(&loopargs[i].inprogress_job, + loopargs[i].wait_ctx, &job_op_count, + loop_function, (void *)(loopargs + i), + sizeof(loopargs_t)); + switch (ret) { + case ASYNC_PAUSE: + break; + case ASYNC_FINISH: + if (job_op_count == -1) { error = 1; - break; + } else { + total_op_count += job_op_count; + } + --num_inprogress; + loopargs[i].inprogress_job = NULL; + break; + case ASYNC_NO_JOBS: + case ASYNC_ERR: + --num_inprogress; + loopargs[i].inprogress_job = NULL; + BIO_printf(bio_err, "Failure in the job\n"); + ERR_print_errors(bio_err); + error = 1; + break; } } } @@ -1215,13 +1198,12 @@ static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_ int speed_main(int argc, char **argv) { + ENGINE *e = NULL; loopargs_t *loopargs = NULL; int async_init = 0; int loopargs_len = 0; char *prog; -#ifndef OPENSSL_NO_ENGINE const char *engine_id = NULL; -#endif const EVP_CIPHER *evp_cipher = NULL; double d = 0.0; OPTION_CHOICE o; @@ -1352,12 +1334,12 @@ int speed_main(int argc, char **argv) 163, 233, 283, 409, 571, 163, 233, 283, 409, - 571, 253 /* X25519 */ + 571, 253 /* X25519 */ }; int ecdsa_doit[EC_NUM] = { 0 }; int ecdh_doit[EC_NUM] = { 0 }; -#endif /* ndef OPENSSL_NO_EC */ +#endif /* ndef OPENSSL_NO_EC */ prog = opt_init(argc, argv, speed_options); while ((o = opt_next()) != OPT_EOF) { @@ -1395,9 +1377,7 @@ int speed_main(int argc, char **argv) * initialised by each child process, not by the parent. * So store the name here and run setup_engine() later on. */ -#ifndef OPENSSL_NO_ENGINE engine_id = opt_arg(); -#endif break; case OPT_MULTI: #ifndef NO_FORK @@ -1429,6 +1409,12 @@ int speed_main(int argc, char **argv) break; case OPT_MB: multiblock = 1; +#ifdef OPENSSL_NO_MULTIBLOCK + BIO_printf(bio_err, + "%s: -mb specified but multi-block support is disabled\n", + prog); + goto end; +#endif break; } } @@ -1436,7 +1422,7 @@ int speed_main(int argc, char **argv) argv = opt_rest(); /* Remaining arguments are algorithms. */ - for ( ; *argv; argv++) { + for (; *argv; argv++) { if (found(*argv, doit_choices, &i)) { doit[i] = 1; continue; @@ -1482,14 +1468,12 @@ int speed_main(int argc, char **argv) } #endif if (strcmp(*argv, "aes") == 0) { - doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = - doit[D_CBC_256_AES] = 1; + doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; continue; } #ifndef OPENSSL_NO_CAMELLIA if (strcmp(*argv, "camellia") == 0) { - doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = - doit[D_CBC_256_CML] = 1; + doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; continue; } #endif @@ -1527,7 +1511,8 @@ int speed_main(int argc, char **argv) } loopargs_len = (async_jobs == 0 ? 1 : async_jobs); - loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); + loopargs = + app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); for (i = 0; i < loopargs_len; i++) { @@ -1539,12 +1524,13 @@ int speed_main(int argc, char **argv) } } - loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); - loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); + loopargs[i].buf_malloc = + app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); + loopargs[i].buf2_malloc = + app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); /* Align the start of buffers on a 64 byte boundary */ loopargs[i].buf = loopargs[i].buf_malloc + misalign; loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; - loopargs[i].siglen = app_malloc(sizeof(unsigned int), "signature length"); #ifndef OPENSSL_NO_EC loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); @@ -1557,15 +1543,17 @@ int speed_main(int argc, char **argv) #endif /* Initialize the engine after the fork */ - (void)setup_engine(engine_id, 0); + e = setup_engine(engine_id, 0); /* No parameters; turn on everything. */ if ((argc == 0) && !doit[D_EVP]) { for (i = 0; i < ALGOR_NUM; i++) if (i != D_EVP) doit[i] = 1; +#ifndef OPENSSL_NO_RSA for (i = 0; i < RSA_NUM; i++) rsa_doit[i] = 1; +#endif #ifndef OPENSSL_NO_DSA for (i = 0; i < DSA_NUM; i++) dsa_doit[i] = 1; @@ -1592,10 +1580,11 @@ int speed_main(int argc, char **argv) const unsigned char *p; p = rsa_data[k]; - loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); + loopargs[i].rsa_key[k] = + d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); if (loopargs[i].rsa_key[k] == NULL) { - BIO_printf(bio_err, "internal error loading RSA key number %d\n", - k); + BIO_printf(bio_err, + "internal error loading RSA key number %d\n", k); goto end; } } @@ -1736,7 +1725,7 @@ int speed_main(int argc, char **argv) rsa_doit[i] = 0; else { if (rsa_c[i][0] == 0) { - rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ + rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ rsa_c[i][1] = 20; } } @@ -1753,7 +1742,7 @@ int speed_main(int argc, char **argv) dsa_doit[i] = 0; else { if (dsa_c[i][0] == 0) { - dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ + dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ dsa_c[i][1] = 1; } } @@ -1842,12 +1831,12 @@ int speed_main(int argc, char **argv) # else /* not worth fixing */ # error "You cannot disable DES on systems without SIGALRM." -# endif /* OPENSSL_NO_DES */ +# endif /* OPENSSL_NO_DES */ #else # ifndef _WIN32 signal(SIGALRM, sig_done); # endif -#endif /* SIGALRM */ +#endif /* SIGALRM */ #ifndef OPENSSL_NO_MD2 if (doit[D_MD2]) { @@ -1894,11 +1883,9 @@ int speed_main(int argc, char **argv) print_result(D_MD5, testnum, count, d); } } -#endif -#ifndef OPENSSL_NO_MD5 if (doit[D_HMAC]) { - char hmac_key[] = "This is a key..."; + static const char hmac_key[] = "This is a key..."; int len = strlen(hmac_key); for (i = 0; i < loopargs_len; i++) { @@ -1933,7 +1920,8 @@ int speed_main(int argc, char **argv) } if (doit[D_SHA256]) { for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]); + print_message(names[D_SHA256], c[D_SHA256][testnum], + lengths[testnum]); Time_F(START); count = run_benchmark(async_jobs, SHA256_loop, loopargs); d = Time_F(STOP); @@ -1942,18 +1930,19 @@ int speed_main(int argc, char **argv) } if (doit[D_SHA512]) { for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]); + print_message(names[D_SHA512], c[D_SHA512][testnum], + lengths[testnum]); Time_F(START); count = run_benchmark(async_jobs, SHA512_loop, loopargs); d = Time_F(STOP); print_result(D_SHA512, testnum, count, d); } } - #ifndef OPENSSL_NO_WHIRLPOOL if (doit[D_WHIRLPOOL]) { for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]); + print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], + lengths[testnum]); Time_F(START); count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); d = Time_F(STOP); @@ -1965,7 +1954,8 @@ int speed_main(int argc, char **argv) #ifndef OPENSSL_NO_RMD160 if (doit[D_RMD160]) { for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]); + print_message(names[D_RMD160], c[D_RMD160][testnum], + lengths[testnum]); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); d = Time_F(STOP); @@ -1987,7 +1977,8 @@ int speed_main(int argc, char **argv) #ifndef OPENSSL_NO_DES if (doit[D_CBC_DES]) { for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]); + print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], + lengths[testnum]); Time_F(START); count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); d = Time_F(STOP); @@ -1997,9 +1988,11 @@ int speed_main(int argc, char **argv) if (doit[D_EDE3_DES]) { for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]); + print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], + lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_EDE3_DES, testnum, count, d); } @@ -2011,7 +2004,8 @@ int speed_main(int argc, char **argv) print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_128_AES, testnum, count, d); } @@ -2021,7 +2015,8 @@ int speed_main(int argc, char **argv) print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_192_AES, testnum, count, d); } @@ -2031,7 +2026,8 @@ int speed_main(int argc, char **argv) print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_256_AES, testnum, count, d); } @@ -2042,7 +2038,8 @@ int speed_main(int argc, char **argv) print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_128_AES, testnum, count, d); } @@ -2052,7 +2049,8 @@ int speed_main(int argc, char **argv) print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_192_AES, testnum, count, d); } @@ -2062,19 +2060,23 @@ int speed_main(int argc, char **argv) print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], lengths[testnum]); Time_F(START); - count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); + count = + run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_256_AES, testnum, count, d); } } if (doit[D_GHASH]) { for (i = 0; i < loopargs_len; i++) { - loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); - CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12); + loopargs[i].gcm_ctx = + CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); + CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, + (unsigned char *)"0123456789ab", 12); } for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]); + print_message(names[D_GHASH], c[D_GHASH][testnum], + lengths[testnum]); Time_F(START); count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); d = Time_F(STOP); @@ -2083,16 +2085,16 @@ int speed_main(int argc, char **argv) for (i = 0; i < loopargs_len; i++) CRYPTO_gcm128_release(loopargs[i].gcm_ctx); } - #ifndef OPENSSL_NO_CAMELLIA if (doit[D_CBC_128_CML]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_128_CML]); + doit[D_CBC_128_CML] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], lengths[testnum]); - if (async_jobs > 0) { - BIO_printf(bio_err, "Async mode is not supported, exiting..."); - exit(1); - } Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, @@ -2103,7 +2105,12 @@ int speed_main(int argc, char **argv) } } if (doit[D_CBC_192_CML]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_192_CML]); + doit[D_CBC_192_CML] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], lengths[testnum]); if (async_jobs > 0) { @@ -2120,13 +2127,14 @@ int speed_main(int argc, char **argv) } } if (doit[D_CBC_256_CML]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_256_CML]); + doit[D_CBC_256_CML] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], lengths[testnum]); - if (async_jobs > 0) { - BIO_printf(bio_err, "Async mode is not supported, exiting..."); - exit(1); - } Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, @@ -2139,12 +2147,14 @@ int speed_main(int argc, char **argv) #endif #ifndef OPENSSL_NO_IDEA if (doit[D_CBC_IDEA]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]); - if (async_jobs > 0) { - BIO_printf(bio_err, "Async mode is not supported, exiting..."); - exit(1); - } + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_IDEA]); + doit[D_CBC_IDEA] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], + lengths[testnum]); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++) IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, @@ -2157,12 +2167,14 @@ int speed_main(int argc, char **argv) #endif #ifndef OPENSSL_NO_SEED if (doit[D_CBC_SEED]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]); - if (async_jobs > 0) { - BIO_printf(bio_err, "Async mode is not supported, exiting..."); - exit(1); - } + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_SEED]); + doit[D_CBC_SEED] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], + lengths[testnum]); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++) SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, @@ -2174,8 +2186,14 @@ int speed_main(int argc, char **argv) #endif #ifndef OPENSSL_NO_RC2 if (doit[D_CBC_RC2]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]); + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_RC2]); + doit[D_CBC_RC2] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], + lengths[testnum]); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); @@ -2192,8 +2210,14 @@ int speed_main(int argc, char **argv) #endif #ifndef OPENSSL_NO_RC5 if (doit[D_CBC_RC5]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]); + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_RC5]); + doit[D_CBC_RC5] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], + lengths[testnum]); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); @@ -2210,12 +2234,14 @@ int speed_main(int argc, char **argv) #endif #ifndef OPENSSL_NO_BF if (doit[D_CBC_BF]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]); - if (async_jobs > 0) { - BIO_printf(bio_err, "Async mode is not supported, exiting..."); - exit(1); - } + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_BF]); + doit[D_CBC_BF] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], + lengths[testnum]); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++) BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, @@ -2228,12 +2254,14 @@ int speed_main(int argc, char **argv) #endif #ifndef OPENSSL_NO_CAST if (doit[D_CBC_CAST]) { - for (testnum = 0; testnum < SIZE_NUM; testnum++) { - print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]); - if (async_jobs > 0) { - BIO_printf(bio_err, "Async mode is not supported, exiting..."); - exit(1); - } + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_CAST]); + doit[D_CBC_CAST] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], + lengths[testnum]); Time_F(START); for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++) CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, @@ -2277,9 +2305,11 @@ int speed_main(int argc, char **argv) for (k = 0; k < loopargs_len; k++) { loopargs[k].ctx = EVP_CIPHER_CTX_new(); if (decrypt) - EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv); + EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, + key16, iv); else - EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv); + EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, + key16, iv); EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); } @@ -2311,7 +2341,7 @@ int speed_main(int argc, char **argv) continue; for (i = 0; i < loopargs_len; i++) { st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, - loopargs[i].siglen, loopargs[i].rsa_key[testnum]); + &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st == 0) break; } @@ -2322,7 +2352,8 @@ int speed_main(int argc, char **argv) rsa_count = 1; } else { pkey_print_message("private", "rsa", - rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS); + rsa_c[testnum][0], rsa_bits[testnum], + RSA_SECONDS); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); @@ -2337,7 +2368,7 @@ int speed_main(int argc, char **argv) for (i = 0; i < loopargs_len; i++) { st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, - *(loopargs[i].siglen), loopargs[i].rsa_key[testnum]); + loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st <= 0) break; } @@ -2348,7 +2379,8 @@ int speed_main(int argc, char **argv) rsa_doit[testnum] = 0; } else { pkey_print_message("public", "rsa", - rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS); + rsa_c[testnum][1], rsa_bits[testnum], + RSA_SECONDS); Time_F(START); count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); d = Time_F(STOP); @@ -2365,7 +2397,7 @@ int speed_main(int argc, char **argv) rsa_doit[testnum] = 0; } } -#endif +#endif /* OPENSSL_NO_RSA */ for (i = 0; i < loopargs_len; i++) RAND_bytes(loopargs[i].buf, 36); @@ -2383,7 +2415,7 @@ int speed_main(int argc, char **argv) /* DSA_sign_setup(dsa_key[testnum],NULL); */ for (i = 0; i < loopargs_len; i++) { st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, - loopargs[i].siglen, loopargs[i].dsa_key[testnum]); + &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st == 0) break; } @@ -2394,7 +2426,8 @@ int speed_main(int argc, char **argv) rsa_count = 1; } else { pkey_print_message("sign", "dsa", - dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS); + dsa_c[testnum][0], dsa_bits[testnum], + DSA_SECONDS); Time_F(START); count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); d = Time_F(STOP); @@ -2408,7 +2441,7 @@ int speed_main(int argc, char **argv) for (i = 0; i < loopargs_len; i++) { st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, - *(loopargs[i].siglen), loopargs[i].dsa_key[testnum]); + loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st <= 0) break; } @@ -2419,7 +2452,8 @@ int speed_main(int argc, char **argv) dsa_doit[testnum] = 0; } else { pkey_print_message("verify", "dsa", - dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS); + dsa_c[testnum][1], dsa_bits[testnum], + DSA_SECONDS); Time_F(START); count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); d = Time_F(STOP); @@ -2436,7 +2470,7 @@ int speed_main(int argc, char **argv) dsa_doit[testnum] = 0; } } -#endif +#endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_EC if (RAND_status() != 1) { @@ -2448,7 +2482,8 @@ int speed_main(int argc, char **argv) if (!ecdsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { - loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); + loopargs[i].ecdsa[testnum] = + EC_KEY_new_by_curve_name(test_curves[testnum]); if (loopargs[i].ecdsa[testnum] == NULL) { st = 0; break; @@ -2464,7 +2499,8 @@ int speed_main(int argc, char **argv) /* Perform ECDSA signature test */ EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, - loopargs[i].siglen, loopargs[i].ecdsa[testnum]); + &loopargs[i].siglen, + loopargs[i].ecdsa[testnum]); if (st == 0) break; } @@ -2492,7 +2528,8 @@ int speed_main(int argc, char **argv) /* Perform ECDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, - *(loopargs[i].siglen), loopargs[i].ecdsa[testnum]); + loopargs[i].siglen, + loopargs[i].ecdsa[testnum]); if (st != 1) break; } @@ -2531,85 +2568,120 @@ int speed_main(int argc, char **argv) if (!ecdh_doit[testnum]) continue; + for (i = 0; i < loopargs_len; i++) { - loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); - loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); - if (loopargs[i].ecdh_a[testnum] == NULL || - loopargs[i].ecdh_b[testnum] == NULL) { - ecdh_checks = 0; - break; - } - } - if (ecdh_checks == 0) { - BIO_printf(bio_err, "ECDH failure.\n"); - ERR_print_errors(bio_err); - rsa_count = 1; - } else { - for (i = 0; i < loopargs_len; i++) { - /* generate two ECDH key pairs */ - if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) || - !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) { - BIO_printf(bio_err, "ECDH key generation failure.\n"); - ERR_print_errors(bio_err); + EVP_PKEY_CTX *kctx = NULL; + EVP_PKEY_CTX *test_ctx = NULL; + EVP_PKEY_CTX *ctx = NULL; + EVP_PKEY *key_A = NULL; + EVP_PKEY *key_B = NULL; + size_t outlen; + size_t test_outlen; + + if (testnum == R_EC_X25519) { + kctx = EVP_PKEY_CTX_new_id(test_curves[testnum], NULL); /* keygen ctx from NID */ + } else { + EVP_PKEY_CTX *pctx = NULL; + EVP_PKEY *params = NULL; + + if ( /* Create the context for parameter generation */ + !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || + /* Initialise the parameter generation */ + !EVP_PKEY_paramgen_init(pctx) || + /* Set the curve by NID */ + !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, + test_curves + [testnum]) || + /* Create the parameter object params */ + !EVP_PKEY_paramgen(pctx, ¶ms)) { ecdh_checks = 0; + BIO_printf(bio_err, "ECDH init failure.\n"); + ERR_print_errors(bio_err); rsa_count = 1; - } else { - int secret_size_a, secret_size_b; - /* - * If field size is not more than 24 octets, then use SHA-1 - * hash of result; otherwise, use result (see section 4.8 of - * draft-ietf-tls-ecc-03.txt). - */ - int field_size = EC_GROUP_get_degree( - EC_KEY_get0_group(loopargs[i].ecdh_a[testnum])); - - if (field_size <= 24 * 8) { /* 192 bits */ - loopargs[i].outlen = KDF1_SHA1_len; - loopargs[i].kdf = KDF1_SHA1; - } else { - loopargs[i].outlen = (field_size + 7) / 8; - loopargs[i].kdf = NULL; - } - secret_size_a = - ECDH_compute_key(loopargs[i].secret_a, loopargs[i].outlen, - EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]), - loopargs[i].ecdh_a[testnum], loopargs[i].kdf); - secret_size_b = - ECDH_compute_key(loopargs[i].secret_b, loopargs[i].outlen, - EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]), - loopargs[i].ecdh_b[testnum], loopargs[i].kdf); - if (secret_size_a != secret_size_b) - ecdh_checks = 0; - else - ecdh_checks = 1; - - for (k = 0; k < secret_size_a && ecdh_checks == 1; k++) { - if (loopargs[i].secret_a[k] != loopargs[i].secret_b[k]) - ecdh_checks = 0; - } - - if (ecdh_checks == 0) { - BIO_printf(bio_err, "ECDH computations don't match.\n"); - ERR_print_errors(bio_err); - rsa_count = 1; - break; - } + break; } + /* Create the context for the key generation */ + kctx = EVP_PKEY_CTX_new(params, NULL); + + EVP_PKEY_free(params); + params = NULL; + EVP_PKEY_CTX_free(pctx); + pctx = NULL; } - if (ecdh_checks != 0) { - pkey_print_message("", "ecdh", - ecdh_c[testnum][0], - test_curves_bits[testnum], ECDH_SECONDS); - Time_F(START); - count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs); - d = Time_F(STOP); - BIO_printf(bio_err, - mr ? "+R7:%ld:%d:%.2f\n" : - "%ld %d-bit ECDH ops in %.2fs\n", count, - test_curves_bits[testnum], d); - ecdh_results[testnum][0] = d / (double)count; - rsa_count = count; + if (!kctx || /* keygen ctx is not null */ + !EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) { + ecdh_checks = 0; + BIO_printf(bio_err, "ECDH keygen failure.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + break; + } + + if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */ + !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */ + !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ + !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */ + !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */ + !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */ + outlen == 0 || /* ensure outlen is a valid size */ + outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { + ecdh_checks = 0; + BIO_printf(bio_err, "ECDH key generation failure.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + break; } + + /* Here we perform a test run, comparing the output of a*B and b*A; + * we try this here and assume that further EVP_PKEY_derive calls + * never fail, so we can skip checks in the actually benchmarked + * code, for maximum performance. */ + if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ + !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ + !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ + !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ + !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ + !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ + test_outlen != outlen /* compare output length */ ) { + ecdh_checks = 0; + BIO_printf(bio_err, "ECDH computation failure.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + break; + } + + /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ + if (CRYPTO_memcmp(loopargs[i].secret_a, + loopargs[i].secret_b, outlen)) { + ecdh_checks = 0; + BIO_printf(bio_err, "ECDH computations don't match.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + break; + } + + loopargs[i].ecdh_ctx[testnum] = ctx; + loopargs[i].outlen[testnum] = outlen; + + EVP_PKEY_CTX_free(kctx); + kctx = NULL; + EVP_PKEY_CTX_free(test_ctx); + test_ctx = NULL; + } + if (ecdh_checks != 0) { + pkey_print_message("", "ecdh", + ecdh_c[testnum][0], + test_curves_bits[testnum], ECDH_SECONDS); + Time_F(START); + count = + run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R7:%ld:%d:%.2f\n" : + "%ld %d-bit ECDH ops in %.2fs\n", count, + test_curves_bits[testnum], d); + ecdh_results[testnum][0] = d / (double)count; + rsa_count = count; } if (rsa_count <= 1) { @@ -2618,7 +2690,7 @@ int speed_main(int argc, char **argv) ecdh_doit[testnum] = 0; } } -#endif +#endif /* OPENSSL_NO_EC */ #ifndef NO_FORK show_res: #endif @@ -2760,7 +2832,6 @@ int speed_main(int argc, char **argv) for (i = 0; i < loopargs_len; i++) { OPENSSL_free(loopargs[i].buf_malloc); OPENSSL_free(loopargs[i].buf2_malloc); - OPENSSL_free(loopargs[i].siglen); #ifndef OPENSSL_NO_RSA for (k = 0; k < RSA_NUM; k++) @@ -2773,8 +2844,7 @@ int speed_main(int argc, char **argv) #ifndef OPENSSL_NO_EC for (k = 0; k < EC_NUM; k++) { EC_KEY_free(loopargs[i].ecdsa[k]); - EC_KEY_free(loopargs[i].ecdh_a[k]); - EC_KEY_free(loopargs[i].ecdh_b[k]); + EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); } OPENSSL_free(loopargs[i].secret_a); OPENSSL_free(loopargs[i].secret_b); @@ -2790,6 +2860,7 @@ int speed_main(int argc, char **argv) ASYNC_cleanup_thread(); } OPENSSL_free(loopargs); + release_engine(e); return (ret); } @@ -2913,8 +2984,9 @@ static int do_multi(int multi) if (p) *p = '\0'; if (buf[0] != '+') { - BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", - buf, n); + BIO_printf(bio_err, + "Don't understand line '%s' from child %d\n", buf, + n); continue; } printf("Got: %s from %d\n", buf, n); @@ -2980,22 +3052,16 @@ static int do_multi(int multi) d = atof(sstrsep(&p, sep)); if (n) - ecdsa_results[k][0] = - 1 / (1 / ecdsa_results[k][0] + 1 / d); + ecdsa_results[k][0] = 1 / (1 / ecdsa_results[k][0] + 1 / d); else ecdsa_results[k][0] = d; d = atof(sstrsep(&p, sep)); if (n) - ecdsa_results[k][1] = - 1 / (1 / ecdsa_results[k][1] + 1 / d); + ecdsa_results[k][1] = 1 / (1 / ecdsa_results[k][1] + 1 / d); else ecdsa_results[k][1] = d; - } -# endif - -# ifndef OPENSSL_NO_EC - else if (strncmp(buf, "+F5:", 4) == 0) { + } else if (strncmp(buf, "+F5:", 4) == 0) { int k; double d; @@ -3015,7 +3081,8 @@ static int do_multi(int multi) else if (strncmp(buf, "+H:", 3) == 0) { ; } else - BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); + BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, + n); } fclose(f); @@ -3039,8 +3106,7 @@ static void multiblock_speed(const EVP_CIPHER *evp_cipher) out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv); - EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), - no_key); + EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); for (j = 0; j < num; j++) {