gcm128.c: fix AAD-only case with AAD length not divisible by 16.
[openssl.git] / crypto / modes / gcm128.c
index 920f5257893d9c85fafd853147d1a0d796c67394..f8dd497f872534de719734b80de2fe1256d52837 100644 (file)
@@ -47,6 +47,9 @@
  * ====================================================================
  */
 
+#define OPENSSL_FIPSAPI
+
+#include <openssl/crypto.h>
 #include "modes_lcl.h"
 #include <string.h>
 
@@ -57,8 +60,6 @@
 #endif
 #include <assert.h>
 
-typedef struct { u64 hi,lo; } u128;
-
 #if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
 /* redefine, because alignment is ensured */
 #undef GETU32
@@ -67,25 +68,54 @@ typedef struct { u64 hi,lo; } u128;
 #define        PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v)
 #endif
 
-#define        PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
-#ifdef TABLE_BITS
-#undef TABLE_BITS
-#endif
+#define        PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16))
+#define REDUCE1BIT(V)  do { \
+       if (sizeof(size_t)==8) { \
+               u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
+               V.lo  = (V.hi<<63)|(V.lo>>1); \
+               V.hi  = (V.hi>>1 )^T; \
+       } \
+       else { \
+               u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
+               V.lo  = (V.hi<<63)|(V.lo>>1); \
+               V.hi  = (V.hi>>1 )^((u64)T<<32); \
+       } \
+} while(0)
+
 /*
  * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
  * never be set to 8. 8 is effectively reserved for testing purposes.
- * Under ideal conditions "8-bit" version should be twice as fast as
- * "4-bit" one. But world is far from ideal. For gcc-generated x86 code,
- * "8-bit" was observed to run only ~50% faster. On x86_64 observed
- * improvement was ~75%, much closer to optimal, but the fact of
- * deviation means that references to pre-computed tables end up on
- * critical path and as tables are pretty big, 4KB per key+1KB shared,
- * execution time is sensitive to cache timing. It's not actually
- * proven, but 4-bit procedure is believed to provide adequate
- * all-round performance...
- */  
-#define        TABLE_BITS 4
-
+ * TABLE_BITS>1 are lookup-table-driven implementations referred to as
+ * "Shoup's" in GCM specification. In other words OpenSSL does not cover
+ * whole spectrum of possible table driven implementations. Why? In
+ * non-"Shoup's" case memory access pattern is segmented in such manner,
+ * that it's trivial to see that cache timing information can reveal
+ * fair portion of intermediate hash value. Given that ciphertext is
+ * always available to attacker, it's possible for him to attempt to
+ * deduce secret parameter H and if successful, tamper with messages
+ * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
+ * not as trivial, but there is no reason to believe that it's resistant
+ * to cache-timing attack. And the thing about "8-bit" implementation is
+ * that it consumes 16 (sixteen) times more memory, 4KB per individual
+ * key + 1KB shared. Well, on pros side it should be twice as fast as
+ * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
+ * was observed to run ~75% faster, closer to 100% for commercial
+ * compilers... Yet "4-bit" procedure is preferred, because it's
+ * believed to provide better security-performance balance and adequate
+ * all-round performance. "All-round" refers to things like:
+ *
+ * - shorter setup time effectively improves overall timing for
+ *   handling short messages;
+ * - larger table allocation can become unbearable because of VM
+ *   subsystem penalties (for example on Windows large enough free
+ *   results in VM working set trimming, meaning that consequent
+ *   malloc would immediately incur working set expansion);
+ * - larger table has larger cache footprint, which can affect
+ *   performance of other code paths (not necessarily even from same
+ *   thread in Hyper-Threading world);
+ *
+ * Value of 1 is not appropriate for performance reasons.
+ */
 #if    TABLE_BITS==8
 
 static void gcm_init_8bit(u128 Htable[256], u64 H[2])
@@ -99,16 +129,7 @@ static void gcm_init_8bit(u128 Htable[256], u64 H[2])
        V.lo = H[1];
 
        for (Htable[128]=V, i=64; i>0; i>>=1) {
-               if (sizeof(size_t)==8) {
-                       u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
-                       V.lo  = (V.hi<<63)|(V.lo>>1);
-                       V.hi  = (V.hi>>1 )^T;
-               }
-               else {
-                       u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
-                       V.lo  = (V.hi<<63)|(V.lo>>1);
-                       V.hi  = (V.hi>>1 )^((u64)T<<32);
-               }
+               REDUCE1BIT(V);
                Htable[i] = V;
        }
 
@@ -121,12 +142,13 @@ static void gcm_init_8bit(u128 Htable[256], u64 H[2])
        }
 }
 
-static void gcm_gmult_8bit(u64 Xi[2], u128 Htable[256])
+static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256])
 {
        u128 Z = { 0, 0};
        const u8 *xi = (const u8 *)Xi+15;
        size_t rem, n = *xi;
        const union { long one; char little; } is_endian = {1};
+       __fips_constseg
        static const size_t rem_8bit[256] = {
                PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246),
                PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E),
@@ -238,18 +260,6 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
 #if defined(OPENSSL_SMALL_FOOTPRINT)
        int  i;
 #endif
-#define REDUCE(V) do { \
-       if (sizeof(size_t)==8) { \
-               u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
-               V.lo  = (V.hi<<63)|(V.lo>>1); \
-               V.hi  = (V.hi>>1 )^T; \
-       } \
-       else { \
-               u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
-               V.lo  = (V.hi<<63)|(V.lo>>1); \
-               V.hi  = (V.hi>>1 )^((u64)T<<32); \
-       } \
-} while(0)
 
        Htable[0].hi = 0;
        Htable[0].lo = 0;
@@ -258,7 +268,7 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
 
 #if defined(OPENSSL_SMALL_FOOTPRINT)
        for (Htable[8]=V, i=4; i>0; i>>=1) {
-               REDUCE(V);
+               REDUCE1BIT(V);
                Htable[i] = V;
        }
 
@@ -272,11 +282,11 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
        }
 #else
        Htable[8] = V;
-       REDUCE(V);
+       REDUCE1BIT(V);
        Htable[4] = V;
-       REDUCE(V);
+       REDUCE1BIT(V);
        Htable[2] = V;
-       REDUCE(V);
+       REDUCE1BIT(V);
        Htable[1] = V;
        Htable[3].hi  = V.hi^Htable[2].hi, Htable[3].lo  = V.lo^Htable[2].lo;
        V=Htable[4];
@@ -314,10 +324,10 @@ static void gcm_init_4bit(u128 Htable[16], u64 H[2])
                }
        }
 #endif
-#undef REDUCE
 }
 
 #ifndef GHASH_ASM
+__fips_constseg
 static const size_t rem_4bit[16] = {
        PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
        PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
@@ -403,6 +413,7 @@ static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],
     size_t rem, nlo, nhi;
     const union { long one; char little; } is_endian = {1};
 
+#if 1
     do {
        cnt  = 15;
        nlo  = ((const u8 *)Xi)[15];
@@ -443,6 +454,100 @@ static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],
                Z.hi ^= Htable[nlo].hi;
                Z.lo ^= Htable[nlo].lo;
        }
+#else
+    /*
+     * Extra 256+16 bytes per-key plus 512 bytes shared tables
+     * [should] give ~50% improvement... One could have PACK()-ed
+     * the rem_8bit even here, but the priority is to minimize
+     * cache footprint...
+     */ 
+    u128 Hshr4[16];    /* Htable shifted right by 4 bits */
+    u8   Hshl4[16];    /* Htable shifted left  by 4 bits */
+    __fips_constseg
+    static const unsigned short rem_8bit[256] = {
+       0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E,
+       0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E,
+       0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E,
+       0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E,
+       0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E,
+       0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E,
+       0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E,
+       0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E,
+       0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
+       0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE,
+       0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE,
+       0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE,
+       0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E,
+       0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E,
+       0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE,
+       0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE,
+       0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E,
+       0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
+       0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E,
+       0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E,
+       0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E,
+       0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E,
+       0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E,
+       0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E,
+       0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE,
+       0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE,
+       0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
+       0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE,
+       0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E,
+       0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E,
+       0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE,
+       0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE };
+    /*
+     * This pre-processing phase slows down procedure by approximately
+     * same time as it makes each loop spin faster. In other words
+     * single block performance is approximately same as straightforward
+     * "4-bit" implementation, and then it goes only faster...
+     */
+    for (cnt=0; cnt<16; ++cnt) {
+       Z.hi = Htable[cnt].hi;
+       Z.lo = Htable[cnt].lo;
+       Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4);
+       Hshr4[cnt].hi = (Z.hi>>4);
+       Hshl4[cnt]    = (u8)(Z.lo<<4);
+    }
+
+    do {
+       for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) {
+               nlo  = ((const u8 *)Xi)[cnt];
+               nlo ^= inp[cnt];
+               nhi  = nlo>>4;
+               nlo &= 0xf;
+
+               Z.hi ^= Htable[nlo].hi;
+               Z.lo ^= Htable[nlo].lo;
+
+               rem = (size_t)Z.lo&0xff;
+
+               Z.lo = (Z.hi<<56)|(Z.lo>>8);
+               Z.hi = (Z.hi>>8);
+
+               Z.hi ^= Hshr4[nhi].hi;
+               Z.lo ^= Hshr4[nhi].lo;
+               Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48;
+       }
+
+       nlo  = ((const u8 *)Xi)[0];
+       nlo ^= inp[0];
+       nhi  = nlo>>4;
+       nlo &= 0xf;
+
+       Z.hi ^= Htable[nlo].hi;
+       Z.lo ^= Htable[nlo].lo;
+
+       rem = (size_t)Z.lo&0xf;
+
+       Z.lo = (Z.hi<<60)|(Z.lo>>4);
+       Z.hi = (Z.hi>>4);
+
+       Z.hi ^= Htable[nhi].hi;
+       Z.lo ^= Htable[nhi].lo;
+       Z.hi ^= ((u64)rem_8bit[rem<<4])<<48;
+#endif
 
        if (is_endian.little) {
 #ifdef BSWAP8
@@ -471,11 +576,11 @@ void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
 
 #define GCM_MUL(ctx,Xi)   gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
 #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
-#define GHASH(in,len,ctx) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
+#define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
 /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
  * trashing effect. In other words idea is to hash data while it's
  * still in L1 cache after encryption pass... */
-#define GHASH_CHUNK       1024
+#define GHASH_CHUNK       (3*1024)
 #endif
 
 #else  /* TABLE_BITS */
@@ -514,17 +619,7 @@ static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
                        Z.hi ^= V.hi&M;
                        Z.lo ^= V.lo&M;
 
-                       if (sizeof(size_t)==8) {
-                               u64 T = U64(0xe100000000000000) & (0-(V.lo&1));
-                               V.lo  = (V.hi<<63)|(V.lo>>1);
-                               V.hi  = (V.hi>>1 )^T;
-                       }
-                       else {
-                               u32 T = 0xe1000000U & (0-(u32)(V.lo&1));
-                               V.lo  = (V.hi<<63)|(V.lo>>1);
-                               V.hi  = (V.hi>>1 )^((u64)T<<32);
-                       }
-                               
+                       REDUCE1BIT(V);
                }
        }
 
@@ -550,20 +645,46 @@ static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
 
 #endif
 
-struct gcm128_context {
-       /* Following 6 names follow names in GCM specification */
-       union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0,
-                                               Xi,H,len;
-       /* Pre-computed table used by gcm_gmult_* */
-#if TABLE_BITS==8
-       u128 Htable[256];
-#else
-       u128 Htable[16];
+#if    TABLE_BITS==4 && defined(GHASH_ASM)
+# if   !defined(I386_ONLY) && \
+       (defined(__i386)        || defined(__i386__)    || \
+        defined(__x86_64)      || defined(__x86_64__)  || \
+        defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64))
+#  define GHASH_ASM_X86_OR_64
+#  define GCM_FUNCREF_4BIT
+extern unsigned int OPENSSL_ia32cap_P[2];
+
+void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]);
+void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+
+#  if  defined(__i386) || defined(__i386__) || defined(_M_IX86)
+#   define GHASH_ASM_X86
+void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+
+void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+#  endif
+# elif defined(__arm__) || defined(__arm)
+#  include "arm_arch.h"
+#  if __ARM_ARCH__>=7
+#   define GHASH_ASM_ARM
+#   define GCM_FUNCREF_4BIT
+void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]);
+void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+#  endif
+# endif
+#endif
+
+#ifdef GCM_FUNCREF_4BIT
+# undef  GCM_MUL
+# define GCM_MUL(ctx,Xi)       (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable)
+# ifdef GHASH
+#  undef  GHASH
+#  define GHASH(ctx,in,len)    (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len)
+# endif
 #endif
-       unsigned int res, pad;
-       block128_f block;
-       void *key;
-};
 
 void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
 {
@@ -593,7 +714,45 @@ void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
 #if    TABLE_BITS==8
        gcm_init_8bit(ctx->Htable,ctx->H.u);
 #elif  TABLE_BITS==4
+# if   defined(GHASH_ASM_X86_OR_64)
+#  if  !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
+       if (OPENSSL_ia32cap_P[0]&(1<<24) &&     /* check FXSR bit */
+           OPENSSL_ia32cap_P[1]&(1<<1) ) {     /* check PCLMULQDQ bit */
+               gcm_init_clmul(ctx->Htable,ctx->H.u);
+               ctx->gmult = gcm_gmult_clmul;
+               ctx->ghash = gcm_ghash_clmul;
+               return;
+       }
+#  endif
        gcm_init_4bit(ctx->Htable,ctx->H.u);
+#  if  defined(GHASH_ASM_X86)                  /* x86 only */
+#   if defined(OPENSSL_IA32_SSE2)
+       if (OPENSSL_ia32cap_P[0]&(1<<25)) {     /* check SSE bit */
+#   else
+       if (OPENSSL_ia32cap_P[0]&(1<<23)) {     /* check MMX bit */
+#   endif
+               ctx->gmult = gcm_gmult_4bit_mmx;
+               ctx->ghash = gcm_ghash_4bit_mmx;
+       } else {
+               ctx->gmult = gcm_gmult_4bit_x86;
+               ctx->ghash = gcm_ghash_4bit_x86;
+       }
+#  else
+       ctx->gmult = gcm_gmult_4bit;
+       ctx->ghash = gcm_ghash_4bit;
+#  endif
+# elif defined(GHASH_ASM_ARM)
+       if (OPENSSL_armcap_P & ARMV7_NEON) {
+               ctx->gmult = gcm_gmult_neon;
+               ctx->ghash = gcm_ghash_neon;
+       } else {
+               gcm_init_4bit(ctx->Htable,ctx->H.u);
+               ctx->gmult = gcm_gmult_4bit;
+               ctx->ghash = gcm_ghash_4bit;
+       }
+# else
+       gcm_init_4bit(ctx->Htable,ctx->H.u);
+# endif
 #endif
 }
 
@@ -601,14 +760,18 @@ void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
 {
        const union { long one; char little; } is_endian = {1};
        unsigned int ctr;
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+#endif
 
        ctx->Yi.u[0]  = 0;
        ctx->Yi.u[1]  = 0;
        ctx->Xi.u[0]  = 0;
        ctx->Xi.u[1]  = 0;
-       ctx->len.u[0] = 0;
-       ctx->len.u[1] = 0;
-       ctx->res = 0;
+       ctx->len.u[0] = 0;      /* AAD length */
+       ctx->len.u[1] = 0;      /* message length */
+       ctx->ares = 0;
+       ctx->mres = 0;
 
        if (len==12) {
                memcpy(ctx->Yi.c,iv,12);
@@ -663,15 +826,43 @@ void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
                ctx->Yi.d[3] = ctr;
 }
 
-void CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
+int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
 {
        size_t i;
+       unsigned int n;
+       u64 alen = ctx->len.u[0];
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+# ifdef GHASH
+       void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
+                               const u8 *inp,size_t len)       = ctx->ghash;
+# endif
+#endif
 
-       ctx->len.u[0] += len;
+       if (ctx->len.u[1]) return -2;
+
+       alen += len;
+       if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len))
+               return -1;
+       ctx->len.u[0] = alen;
+
+       n = ctx->ares;
+       if (n) {
+               while (n && len) {
+                       ctx->Xi.c[n] ^= *(aad++);
+                       --len;
+                       n = (n+1)%16;
+               }
+               if (n==0) GCM_MUL(ctx,Xi);
+               else {
+                       ctx->ares = n;
+                       return 0;
+               }
+       }
 
 #ifdef GHASH
        if ((i = (len&(size_t)-16))) {
-               GHASH(aad,i,ctx);
+               GHASH(ctx,aad,i);
                aad += i;
                len -= i;
        }
@@ -684,26 +875,52 @@ void CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
        }
 #endif
        if (len) {
+               n = (unsigned int)len;
                for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i];
-               GCM_MUL(ctx,Xi);
        }
+
+       ctx->ares = n;
+       return 0;
 }
 
-void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
+int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                const unsigned char *in, unsigned char *out,
                size_t len)
 {
        const union { long one; char little; } is_endian = {1};
        unsigned int n, ctr;
        size_t i;
+       u64        mlen  = ctx->len.u[1];
+       block128_f block = ctx->block;
+       void      *key   = ctx->key;
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+# ifdef GHASH
+       void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
+                               const u8 *inp,size_t len)       = ctx->ghash;
+# endif
+#endif
+
+#if 0
+       n = (unsigned int)mlen%16; /* alternative to ctx->mres */
+#endif
+       mlen += len;
+       if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
+               return -1;
+       ctx->len.u[1] = mlen;
+
+       if (ctx->ares) {
+               /* First call to encrypt finalizes GHASH(AAD) */
+               GCM_MUL(ctx,Xi);
+               ctx->ares = 0;
+       }
 
-       ctx->len.u[1] += len;
-       n   = ctx->res;
        if (is_endian.little)
                ctr = GETU32(ctx->Yi.c+12);
        else
                ctr = ctx->Yi.d[3];
 
+       n = ctx->mres;
 #if !defined(OPENSSL_SMALL_FOOTPRINT)
        if (16%sizeof(size_t) == 0) do {        /* always true actually */
                if (n) {
@@ -714,8 +931,8 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        }
                        if (n==0) GCM_MUL(ctx,Xi);
                        else {
-                               ctx->res = n;
-                               return;
+                               ctx->mres = n;
+                               return 0;
                        }
                }
 #if defined(STRICT_ALIGNMENT)
@@ -727,7 +944,7 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                    size_t j=GHASH_CHUNK;
 
                    while (j) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -740,14 +957,14 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        in  += 16;
                        j   -= 16;
                    }
-                   GHASH(out-GHASH_CHUNK,GHASH_CHUNK,ctx);
+                   GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK);
                    len -= GHASH_CHUNK;
                }
                if ((i = (len&(size_t)-16))) {
                    size_t j=i;
 
                    while (len>=16) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -760,11 +977,11 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        in  += 16;
                        len -= 16;
                    }
-                   GHASH(out-j,j,ctx);
+                   GHASH(ctx,out-j,j);
                }
 #else
                while (len>=16) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -781,7 +998,7 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                }
 #endif
                if (len) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -793,13 +1010,13 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        }
                }
 
-               ctx->res = n;
-               return;
+               ctx->mres = n;
+               return 0;
        } while(0);
 #endif
        for (i=0;i<len;++i) {
                if (n==0) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -812,24 +1029,45 @@ void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                        GCM_MUL(ctx,Xi);
        }
 
-       ctx->res = n;
+       ctx->mres = n;
+       return 0;
 }
 
-void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
+int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                const unsigned char *in, unsigned char *out,
                size_t len)
 {
        const union { long one; char little; } is_endian = {1};
        unsigned int n, ctr;
        size_t i;
+       u64        mlen  = ctx->len.u[1];
+       block128_f block = ctx->block;
+       void      *key   = ctx->key;
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+# ifdef GHASH
+       void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
+                               const u8 *inp,size_t len)       = ctx->ghash;
+# endif
+#endif
+
+       mlen += len;
+       if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
+               return -1;
+       ctx->len.u[1] = mlen;
+
+       if (ctx->ares) {
+               /* First call to decrypt finalizes GHASH(AAD) */
+               GCM_MUL(ctx,Xi);
+               ctx->ares = 0;
+       }
 
-       ctx->len.u[1] += len;
-       n   = ctx->res;
        if (is_endian.little)
                ctr = GETU32(ctx->Yi.c+12);
        else
                ctr = ctx->Yi.d[3];
 
+       n = ctx->mres;
 #if !defined(OPENSSL_SMALL_FOOTPRINT)
        if (16%sizeof(size_t) == 0) do {        /* always true actually */
                if (n) {
@@ -842,8 +1080,8 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                        }
                        if (n==0) GCM_MUL (ctx,Xi);
                        else {
-                               ctx->res = n;
-                               return;
+                               ctx->mres = n;
+                               return 0;
                        }
                }
 #if defined(STRICT_ALIGNMENT)
@@ -854,9 +1092,9 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                while (len>=GHASH_CHUNK) {
                    size_t j=GHASH_CHUNK;
 
-                   GHASH(in,GHASH_CHUNK,ctx);
+                   GHASH(ctx,in,GHASH_CHUNK);
                    while (j) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -872,9 +1110,9 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                    len -= GHASH_CHUNK;
                }
                if ((i = (len&(size_t)-16))) {
-                   GHASH(in,i,ctx);
+                   GHASH(ctx,in,i);
                    while (len>=16) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -890,7 +1128,7 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                }
 #else
                while (len>=16) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -908,7 +1146,7 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                }
 #endif
                if (len) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -922,14 +1160,14 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                        }
                }
 
-               ctx->res = n;
-               return;
+               ctx->mres = n;
+               return 0;
        } while(0);
 #endif
        for (i=0;i<len;++i) {
                u8 c;
                if (n==0) {
-                       (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key);
+                       (*block)(ctx->Yi.c,ctx->EKi.c,key);
                        ++ctr;
                        if (is_endian.little)
                                PUTU32(ctx->Yi.c+12,ctr);
@@ -937,23 +1175,233 @@ void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                                ctx->Yi.d[3] = ctr;
                }
                c = in[i];
-               out[i] ^= ctx->EKi.c[n];
+               out[i] = c^ctx->EKi.c[n];
                ctx->Xi.c[n] ^= c;
                n = (n+1)%16;
                if (n==0)
                        GCM_MUL(ctx,Xi);
        }
 
-       ctx->res = n;
+       ctx->mres = n;
+       return 0;
+}
+
+int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
+               const unsigned char *in, unsigned char *out,
+               size_t len, ctr128_f stream)
+{
+       const union { long one; char little; } is_endian = {1};
+       unsigned int n, ctr;
+       size_t i;
+       u64   mlen = ctx->len.u[1];
+       void *key  = ctx->key;
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+# ifdef GHASH
+       void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
+                               const u8 *inp,size_t len)       = ctx->ghash;
+# endif
+#endif
+
+       mlen += len;
+       if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
+               return -1;
+       ctx->len.u[1] = mlen;
+
+       if (ctx->ares) {
+               /* First call to encrypt finalizes GHASH(AAD) */
+               GCM_MUL(ctx,Xi);
+               ctx->ares = 0;
+       }
+
+       if (is_endian.little)
+               ctr = GETU32(ctx->Yi.c+12);
+       else
+               ctr = ctx->Yi.d[3];
+
+       n = ctx->mres;
+       if (n) {
+               while (n && len) {
+                       ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n];
+                       --len;
+                       n = (n+1)%16;
+               }
+               if (n==0) GCM_MUL(ctx,Xi);
+               else {
+                       ctx->mres = n;
+                       return 0;
+               }
+       }
+#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
+       while (len>=GHASH_CHUNK) {
+               (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c);
+               ctr += GHASH_CHUNK/16;
+               if (is_endian.little)
+                       PUTU32(ctx->Yi.c+12,ctr);
+               else
+                       ctx->Yi.d[3] = ctr;
+               GHASH(ctx,out,GHASH_CHUNK);
+               out += GHASH_CHUNK;
+               in  += GHASH_CHUNK;
+               len -= GHASH_CHUNK;
+       }
+#endif
+       if ((i = (len&(size_t)-16))) {
+               size_t j=i/16;
+
+               (*stream)(in,out,j,key,ctx->Yi.c);
+               ctr += (unsigned int)j;
+               if (is_endian.little)
+                       PUTU32(ctx->Yi.c+12,ctr);
+               else
+                       ctx->Yi.d[3] = ctr;
+               in  += i;
+               len -= i;
+#if defined(GHASH)
+               GHASH(ctx,out,i);
+               out += i;
+#else
+               while (j--) {
+                       for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i];
+                       GCM_MUL(ctx,Xi);
+                       out += 16;
+               }
+#endif
+       }
+       if (len) {
+               (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key);
+               ++ctr;
+               if (is_endian.little)
+                       PUTU32(ctx->Yi.c+12,ctr);
+               else
+                       ctx->Yi.d[3] = ctr;
+               while (len--) {
+                       ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n];
+                       ++n;
+               }
+       }
+
+       ctx->mres = n;
+       return 0;
+}
+
+int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
+               const unsigned char *in, unsigned char *out,
+               size_t len,ctr128_f stream)
+{
+       const union { long one; char little; } is_endian = {1};
+       unsigned int n, ctr;
+       size_t i;
+       u64   mlen = ctx->len.u[1];
+       void *key  = ctx->key;
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+# ifdef GHASH
+       void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
+                               const u8 *inp,size_t len)       = ctx->ghash;
+# endif
+#endif
+
+       mlen += len;
+       if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
+               return -1;
+       ctx->len.u[1] = mlen;
+
+       if (ctx->ares) {
+               /* First call to decrypt finalizes GHASH(AAD) */
+               GCM_MUL(ctx,Xi);
+               ctx->ares = 0;
+       }
+
+       if (is_endian.little)
+               ctr = GETU32(ctx->Yi.c+12);
+       else
+               ctr = ctx->Yi.d[3];
+
+       n = ctx->mres;
+       if (n) {
+               while (n && len) {
+                       u8 c = *(in++);
+                       *(out++) = c^ctx->EKi.c[n];
+                       ctx->Xi.c[n] ^= c;
+                       --len;
+                       n = (n+1)%16;
+               }
+               if (n==0) GCM_MUL (ctx,Xi);
+               else {
+                       ctx->mres = n;
+                       return 0;
+               }
+       }
+#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
+       while (len>=GHASH_CHUNK) {
+               GHASH(ctx,in,GHASH_CHUNK);
+               (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c);
+               ctr += GHASH_CHUNK/16;
+               if (is_endian.little)
+                       PUTU32(ctx->Yi.c+12,ctr);
+               else
+                       ctx->Yi.d[3] = ctr;
+               out += GHASH_CHUNK;
+               in  += GHASH_CHUNK;
+               len -= GHASH_CHUNK;
+       }
+#endif
+       if ((i = (len&(size_t)-16))) {
+               size_t j=i/16;
+
+#if defined(GHASH)
+               GHASH(ctx,in,i);
+#else
+               while (j--) {
+                       size_t k;
+                       for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k];
+                       GCM_MUL(ctx,Xi);
+                       in += 16;
+               }
+               j   = i/16;
+               in -= i;
+#endif
+               (*stream)(in,out,j,key,ctx->Yi.c);
+               ctr += (unsigned int)j;
+               if (is_endian.little)
+                       PUTU32(ctx->Yi.c+12,ctr);
+               else
+                       ctx->Yi.d[3] = ctr;
+               out += i;
+               in  += i;
+               len -= i;
+       }
+       if (len) {
+               (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key);
+               ++ctr;
+               if (is_endian.little)
+                       PUTU32(ctx->Yi.c+12,ctr);
+               else
+                       ctx->Yi.d[3] = ctr;
+               while (len--) {
+                       u8 c = in[n];
+                       ctx->Xi.c[n] ^= c;
+                       out[n] = c^ctx->EKi.c[n];
+                       ++n;
+               }
+       }
+
+       ctx->mres = n;
+       return 0;
 }
 
-void CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx)
+int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag,
+                       size_t len)
 {
        const union { long one; char little; } is_endian = {1};
        u64 alen = ctx->len.u[0]<<3;
        u64 clen = ctx->len.u[1]<<3;
+#ifdef GCM_FUNCREF_4BIT
+       void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])    = ctx->gmult;
+#endif
 
-       if (ctx->res)
+       if (ctx->mres || ctx->ares)
                GCM_MUL(ctx,Xi);
 
        if (is_endian.little) {
@@ -977,6 +1425,35 @@ void CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx)
 
        ctx->Xi.u[0] ^= ctx->EK0.u[0];
        ctx->Xi.u[1] ^= ctx->EK0.u[1];
+
+       if (tag && len<=sizeof(ctx->Xi))
+               return memcmp(ctx->Xi.c,tag,len);
+       else
+               return -1;
+}
+
+void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
+{
+       CRYPTO_gcm128_finish(ctx, NULL, 0);
+       memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c));
+}
+
+GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
+{
+       GCM128_CONTEXT *ret;
+
+       if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT))))
+               CRYPTO_gcm128_init(ret,key,block);
+
+       return ret;
+}
+
+void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
+{
+       if (ctx) {
+               OPENSSL_cleanse(ctx,sizeof(*ctx));
+               OPENSSL_free(ctx);
+       }
 }
 
 #if defined(SELFTEST)
@@ -1011,7 +1488,7 @@ static const u8   K3[]=  {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0
                        0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e,
                        0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05,
                        0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85},
-               T3[]=  {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4,};
+               T3[]=  {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4};
 
 /* Test Case 4 */
 #define K4 K3
@@ -1031,9 +1508,8 @@ static const u8   P4[]=  {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
 /* Test Case 5 */
 #define K5 K4
 #define P5 P4
-static const u8        A5[]=  {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,
-                       0xab,0xad,0xda,0xd2},
-               IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
+#define A5 A4
+static const u8        IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
                C5[]=  {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55,
                        0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23,
                        0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42,
@@ -1201,17 +1677,19 @@ static const u8 IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0
        AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key);          \
        CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);  \
        CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n));          \
+       memset(out,0,sizeof(out));                              \
        if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n));    \
        if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out));     \
-       CRYPTO_gcm128_finish(&ctx);                             \
-       if (memcmp(ctx.Xi.c,T##n,16) || (C##n && memcmp(out,C##n,sizeof(out)))) \
-               ret++, printf ("encrypt test#%d failed.\n",n);\
+       if (CRYPTO_gcm128_finish(&ctx,T##n,16) ||               \
+           (C##n && memcmp(out,C##n,sizeof(out))))             \
+               ret++, printf ("encrypt test#%d failed.\n",n);  \
        CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n));          \
+       memset(out,0,sizeof(out));                              \
        if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n));    \
        if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out));     \
-       CRYPTO_gcm128_finish(&ctx);                             \
-       if (memcmp(ctx.Xi.c,T##n,16) || (P##n && memcmp(out,P##n,sizeof(out)))) \
-               ret++, printf ("decrypt test#%d failed.\n",n);\
+       if (CRYPTO_gcm128_finish(&ctx,T##n,16) ||               \
+           (P##n && memcmp(out,P##n,sizeof(out))))             \
+               ret++, printf ("decrypt test#%d failed.\n",n);  \
        } while(0)
 
 int main()
@@ -1243,6 +1721,7 @@ int main()
        {
        size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc();
        union { u64 u; u8 c[1024]; } buf;
+       int i;
 
        AES_set_encrypt_key(K1,sizeof(K1)*8,&key);
        CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);
@@ -1254,11 +1733,11 @@ int main()
        gcm_t = OPENSSL_rdtsc() - start;
 
        CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
-                       &key,ctx.Yi.c,ctx.EKi.c,&ctx.res,
+                       &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres,
                        (block128_f)AES_encrypt);
        start = OPENSSL_rdtsc();
        CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
-                       &key,ctx.Yi.c,ctx.EKi.c,&ctx.res,
+                       &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres,
                        (block128_f)AES_encrypt);
        ctr_t = OPENSSL_rdtsc() - start;
 
@@ -1267,11 +1746,16 @@ int main()
                        ctr_t/(double)sizeof(buf),
                        (gcm_t-ctr_t)/(double)sizeof(buf));
 #ifdef GHASH
-       GHASH(buf.c,sizeof(buf),&ctx);
+       {
+       void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
+                               const u8 *inp,size_t len)       = ctx.ghash;
+
+       GHASH((&ctx),buf.c,sizeof(buf));
        start = OPENSSL_rdtsc();
-       GHASH(buf.c,sizeof(buf),&ctx);
+       for (i=0;i<100;++i) GHASH((&ctx),buf.c,sizeof(buf));
        gcm_t = OPENSSL_rdtsc() - start;
-       printf("%.2f\n",gcm_t/(double)sizeof(buf));
+       printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i);
+       }
 #endif
        }
 #endif