[crypto/ec] Remove unreachable AVX2 code in NISTZ256 implementation
[openssl.git] / crypto / ec / ecp_nistz256.c
index 02925616b15f5b75aa20518fd99019defb0078ff..0f1170dbad1e3e851b70728b0c6e947695b28a08 100644 (file)
@@ -1,9 +1,9 @@
 /*
- * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
  * Copyright (c) 2015, CloudFlare, Inc.
  *
- * Licensed under the OpenSSL license (the "License").  You may not use
+ * Licensed under the Apache License 2.0 (the "License").  You may not use
  * this file except in compliance with the License.  You can obtain a copy
  * in the file LICENSE in the source distribution or at
  * https://www.openssl.org/source/license.html
  *                          256 Bit Primes"
  */
 
+/*
+ * ECDSA low level APIs are deprecated for public use, but still ok for
+ * internal use.
+ */
+#include "internal/deprecated.h"
+
 #include <string.h>
 
 #include "internal/cryptlib.h"
-#include "internal/bn_int.h"
-#include "ec_lcl.h"
+#include "crypto/bn.h"
+#include "ec_local.h"
 #include "internal/refcount.h"
 
 #if BN_BITS2 != 64
@@ -358,16 +364,47 @@ static void ecp_nistz256_point_add(P256_POINT *r,
     ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
 
     /*
-     * This should not happen during sign/ecdh, so no constant time violation
+     * The formulae are incorrect if the points are equal so we check for
+     * this and do doubling if this happens.
+     *
+     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
+     * that are bound to the affine coordinates (xi, yi) by the following
+     * equations:
+     *     - xi = Xi / (Zi)^2
+     *     - y1 = Yi / (Zi)^3
+     *
+     * For the sake of optimization, the algorithm operates over
+     * intermediate variables U1, U2 and S1, S2 that are derived from
+     * the projective coordinates:
+     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
+     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
+     *
+     * It is easy to prove that is_equal(U1, U2) implies that the affine
+     * x-coordinates are equal, or either point is at infinity.
+     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
+     * equal, or either point is at infinity.
+     *
+     * The special case of either point being the point at infinity (Z1 or Z2
+     * is zero), is handled separately later on in this function, so we avoid
+     * jumping to point_double here in those special cases.
+     *
+     * When both points are inverse of each other, we know that the affine
+     * x-coordinates are equal, and the y-coordinates have different sign.
+     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
+     * will equal 0, thus the result is infinity, if we simply let this
+     * function continue normally.
+     *
+     * We use bitwise operations to avoid potential side-channels introduced by
+     * the short-circuiting behaviour of boolean operators.
      */
-    if (is_equal(U1, U2) && !in1infty && !in2infty) {
-        if (is_equal(S1, S2)) {
-            ecp_nistz256_point_double(r, a);
-            return;
-        } else {
-            memset(r, 0, sizeof(*r));
-            return;
-        }
+    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
+        /*
+         * This is obviously not constant-time but it should never happen during
+         * single point multiplication, so there is no timing leak for ECDH or
+         * ECDSA signing.
+         */
+        ecp_nistz256_point_double(r, a);
+        return;
     }
 
     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
@@ -813,7 +850,7 @@ __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
         return 0;
 
     if (ctx == NULL) {
-        ctx = new_ctx = BN_CTX_new();
+        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
         if (ctx == NULL)
             goto err;
     }
@@ -860,7 +897,8 @@ __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
              * It would be faster to use EC_POINTs_make_affine and
              * make multiple points affine at the same time.
              */
-            if (!EC_POINT_make_affine(group, P, ctx))
+            if (group->meth->make_affine == NULL
+                || !group->meth->make_affine(group, P, ctx))
                 goto err;
             if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
                 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
@@ -888,8 +926,7 @@ __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
     ret = 1;
 
  err:
-    if (ctx != NULL)
-        BN_CTX_end(ctx);
+    BN_CTX_end(ctx);
     BN_CTX_free(new_ctx);
 
     EC_nistz256_pre_comp_free(pre_comp);
@@ -899,233 +936,16 @@ __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
     return ret;
 }
 
-/*
- * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
- * code processing 4 points in parallel, corresponding serial operation
- * is several times slower, because it uses 29x29=58-bit multiplication
- * as opposite to 64x64=128-bit in integer-only scalar case. As result
- * it doesn't provide *significant* performance improvement. Note that
- * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
- * you'd need to compile even asm/ecp_nistz256-avx.pl module.
- */
-#if defined(ECP_NISTZ256_AVX2)
-# if !(defined(__x86_64) || defined(__x86_64__) || \
-       defined(_M_AMD64) || defined(_M_X64)) || \
-     !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
-#  undef ECP_NISTZ256_AVX2
-# else
-/* Constant time access, loading four values, from four consecutive tables */
-void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
-                                       int index0, int index1, int index2,
-                                       int index3);
-void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
-void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
-void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
-                                           const void *Bx4);
-void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
-                                            const void *Bx4);
-void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
-void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
-void ecp_nistz256_avx2_set1(void *RESULTx4);
-int ecp_nistz_avx2_eligible(void);
-
-static void booth_recode_w7(unsigned char *sign,
-                            unsigned char *digit, unsigned char in)
-{
-    unsigned char s, d;
-
-    s = ~((in >> 7) - 1);
-    d = (1 << 8) - in - 1;
-    d = (d & s) | (in & ~s);
-    d = (d >> 1) + (d & 1);
-
-    *sign = s & 1;
-    *digit = d;
-}
-
-/*
- * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
- * precomputed table. It does 4 affine point additions in parallel,
- * significantly speeding up point multiplication for a fixed value.
- */
-static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
-                                    unsigned char p_str[33],
-                                    const P256_POINT_AFFINE(*preComputedTable)[64])
-{
-    const unsigned int window_size = 7;
-    const unsigned int mask = (1 << (window_size + 1)) - 1;
-    unsigned int wvalue;
-    /* Using 4 windows at a time */
-    unsigned char sign0, digit0;
-    unsigned char sign1, digit1;
-    unsigned char sign2, digit2;
-    unsigned char sign3, digit3;
-    unsigned int idx = 0;
-    BN_ULONG tmp[P256_LIMBS];
-    int i;
-
-    ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
-    ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
-    ALIGN32 P256_POINT_AFFINE point_arr[4];
-    ALIGN32 P256_POINT res_point_arr[4];
-
-    /* Initial four windows */
-    wvalue = *((u16 *) & p_str[0]);
-    wvalue = (wvalue << 1) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign0, &digit0, wvalue);
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign1, &digit1, wvalue);
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign2, &digit2, wvalue);
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign3, &digit3, wvalue);
-
-    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
-                                      digit0, digit1, digit2, digit3);
-
-    ecp_nistz256_neg(tmp, point_arr[0].Y);
-    copy_conditional(point_arr[0].Y, tmp, sign0);
-    ecp_nistz256_neg(tmp, point_arr[1].Y);
-    copy_conditional(point_arr[1].Y, tmp, sign1);
-    ecp_nistz256_neg(tmp, point_arr[2].Y);
-    copy_conditional(point_arr[2].Y, tmp, sign2);
-    ecp_nistz256_neg(tmp, point_arr[3].Y);
-    copy_conditional(point_arr[3].Y, tmp, sign3);
-
-    ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
-    ecp_nistz256_avx2_to_mont(aX4, aX4);
-    ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
-    ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
-
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign0, &digit0, wvalue);
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign1, &digit1, wvalue);
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign2, &digit2, wvalue);
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    idx += window_size;
-    booth_recode_w7(&sign3, &digit3, wvalue);
-
-    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
-                                      digit0, digit1, digit2, digit3);
-
-    ecp_nistz256_neg(tmp, point_arr[0].Y);
-    copy_conditional(point_arr[0].Y, tmp, sign0);
-    ecp_nistz256_neg(tmp, point_arr[1].Y);
-    copy_conditional(point_arr[1].Y, tmp, sign1);
-    ecp_nistz256_neg(tmp, point_arr[2].Y);
-    copy_conditional(point_arr[2].Y, tmp, sign2);
-    ecp_nistz256_neg(tmp, point_arr[3].Y);
-    copy_conditional(point_arr[3].Y, tmp, sign3);
-
-    ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
-    ecp_nistz256_avx2_to_mont(bX4, bX4);
-    ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
-    /* Optimized when both inputs are affine */
-    ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
-
-    for (i = 2; i < 9; i++) {
-        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-        idx += window_size;
-        booth_recode_w7(&sign0, &digit0, wvalue);
-        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-        idx += window_size;
-        booth_recode_w7(&sign1, &digit1, wvalue);
-        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-        idx += window_size;
-        booth_recode_w7(&sign2, &digit2, wvalue);
-        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-        idx += window_size;
-        booth_recode_w7(&sign3, &digit3, wvalue);
-
-        ecp_nistz256_avx2_multi_gather_w7(point_arr,
-                                          preComputedTable[4 * i],
-                                          digit0, digit1, digit2, digit3);
-
-        ecp_nistz256_neg(tmp, point_arr[0].Y);
-        copy_conditional(point_arr[0].Y, tmp, sign0);
-        ecp_nistz256_neg(tmp, point_arr[1].Y);
-        copy_conditional(point_arr[1].Y, tmp, sign1);
-        ecp_nistz256_neg(tmp, point_arr[2].Y);
-        copy_conditional(point_arr[2].Y, tmp, sign2);
-        ecp_nistz256_neg(tmp, point_arr[3].Y);
-        copy_conditional(point_arr[3].Y, tmp, sign3);
-
-        ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
-        ecp_nistz256_avx2_to_mont(bX4, bX4);
-        ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
-
-        ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
-    }
-
-    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
-    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
-    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
-
-    ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
-    /* Last window is performed serially */
-    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
-    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-    booth_recode_w7(&sign0, &digit0, wvalue);
-    ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
-                           preComputedTable[36], digit0);
-    ecp_nistz256_neg(tmp, r->Y);
-    copy_conditional(r->Y, tmp, sign0);
-    memcpy(r->Z, ONE, sizeof(ONE));
-    /* Sum the four windows */
-    ecp_nistz256_point_add(r, r, &res_point_arr[0]);
-    ecp_nistz256_point_add(r, r, &res_point_arr[1]);
-    ecp_nistz256_point_add(r, r, &res_point_arr[2]);
-    ecp_nistz256_point_add(r, r, &res_point_arr[3]);
-}
-# endif
-#endif
-
 __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
                                                const P256_POINT_AFFINE *in,
                                                BN_CTX *ctx)
 {
-    BIGNUM *x, *y;
-    BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS];
     int ret = 0;
 
-    x = BN_new();
-    if (x == NULL)
-        return 0;
-    y = BN_new();
-    if (y == NULL) {
-        BN_free(x);
-        return 0;
-    }
-    memcpy(d_x, in->X, sizeof(d_x));
-    bn_set_static_words(x, d_x, P256_LIMBS);
-
-    memcpy(d_y, in->Y, sizeof(d_y));
-    bn_set_static_words(y, d_y, P256_LIMBS);
-
-    ret = EC_POINT_set_affine_coordinates_GFp(group, out, x, y, ctx);
-
-    BN_free(x);
-    BN_free(y);
+    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
+        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
+        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
+        out->Z_is_one = 1;
 
     return ret;
 }
@@ -1139,12 +959,10 @@ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
                                           const BIGNUM *scalars[], BN_CTX *ctx)
 {
     int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
-    size_t j;
     unsigned char p_str[33] = { 0 };
     const PRECOMP256_ROW *preComputedTable = NULL;
     const NISTZ256_PRE_COMP *pre_comp = NULL;
     const EC_POINT *generator = NULL;
-    BN_CTX *new_ctx = NULL;
     const BIGNUM **new_scalars = NULL;
     const EC_POINT **new_points = NULL;
     unsigned int idx = 0;
@@ -1162,27 +980,6 @@ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
         return 0;
     }
 
-    if (!ec_point_is_compat(r, group)) {
-        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
-        return 0;
-    }
-
-    if ((scalar == NULL) && (num == 0))
-        return EC_POINT_set_to_infinity(group, r);
-
-    for (j = 0; j < num; j++) {
-        if (!ec_point_is_compat(points[j], group)) {
-            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
-            return 0;
-        }
-    }
-
-    if (ctx == NULL) {
-        ctx = new_ctx = BN_CTX_new();
-        if (ctx == NULL)
-            goto err;
-    }
-
     BN_CTX_start(ctx);
 
     if (scalar) {
@@ -1204,9 +1001,9 @@ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
             if (pre_comp_generator == NULL)
                 goto err;
 
+            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
             if (!ecp_nistz256_set_from_affine(pre_comp_generator,
-                                              group, pre_comp->precomp[0],
-                                              ctx)) {
+                                              group, &p.a, ctx)) {
                 EC_POINT_free(pre_comp_generator);
                 goto err;
             }
@@ -1228,6 +1025,8 @@ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
         }
 
         if (preComputedTable) {
+            BN_ULONG infty;
+
             if ((BN_num_bits(scalar) > 256)
                 || BN_is_negative(scalar)) {
                 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
@@ -1259,67 +1058,58 @@ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
             for (; i < 33; i++)
                 p_str[i] = 0;
 
-#if defined(ECP_NISTZ256_AVX2)
-            if (ecp_nistz_avx2_eligible()) {
-                ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
-            } else
-#endif
-            {
-                BN_ULONG infty;
+            /* First window */
+            wvalue = (p_str[0] << 1) & mask;
+            idx += window_size;
 
-                /* First window */
-                wvalue = (p_str[0] << 1) & mask;
-                idx += window_size;
+            wvalue = _booth_recode_w7(wvalue);
 
-                wvalue = _booth_recode_w7(wvalue);
+            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
+                                   wvalue >> 1);
 
-                ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
-                                       wvalue >> 1);
-
-                ecp_nistz256_neg(p.p.Z, p.p.Y);
-                copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
-
-                /*
-                 * Since affine infinity is encoded as (0,0) and
-                 * Jacobian ias (,,0), we need to harmonize them
-                 * by assigning "one" or zero to Z.
-                 */
-                infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
-                         p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
-                if (P256_LIMBS == 8)
-                    infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
-                              p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
-
-                infty = 0 - is_zero(infty);
-                infty = ~infty;
-
-                p.p.Z[0] = ONE[0] & infty;
-                p.p.Z[1] = ONE[1] & infty;
-                p.p.Z[2] = ONE[2] & infty;
-                p.p.Z[3] = ONE[3] & infty;
-                if (P256_LIMBS == 8) {
-                    p.p.Z[4] = ONE[4] & infty;
-                    p.p.Z[5] = ONE[5] & infty;
-                    p.p.Z[6] = ONE[6] & infty;
-                    p.p.Z[7] = ONE[7] & infty;
-                }
+            ecp_nistz256_neg(p.p.Z, p.p.Y);
+            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
+
+            /*
+             * Since affine infinity is encoded as (0,0) and
+             * Jacobian is (,,0), we need to harmonize them
+             * by assigning "one" or zero to Z.
+             */
+            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
+                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
+            if (P256_LIMBS == 8)
+                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
+                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
+
+            infty = 0 - is_zero(infty);
+            infty = ~infty;
+
+            p.p.Z[0] = ONE[0] & infty;
+            p.p.Z[1] = ONE[1] & infty;
+            p.p.Z[2] = ONE[2] & infty;
+            p.p.Z[3] = ONE[3] & infty;
+            if (P256_LIMBS == 8) {
+                p.p.Z[4] = ONE[4] & infty;
+                p.p.Z[5] = ONE[5] & infty;
+                p.p.Z[6] = ONE[6] & infty;
+                p.p.Z[7] = ONE[7] & infty;
+            }
 
-                for (i = 1; i < 37; i++) {
-                    unsigned int off = (idx - 1) / 8;
-                    wvalue = p_str[off] | p_str[off + 1] << 8;
-                    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
-                    idx += window_size;
+            for (i = 1; i < 37; i++) {
+                unsigned int off = (idx - 1) / 8;
+                wvalue = p_str[off] | p_str[off + 1] << 8;
+                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
+                idx += window_size;
 
-                    wvalue = _booth_recode_w7(wvalue);
+                wvalue = _booth_recode_w7(wvalue);
 
-                    ecp_nistz256_gather_w7(&t.a,
-                                           preComputedTable[i], wvalue >> 1);
+                ecp_nistz256_gather_w7(&t.a,
+                                       preComputedTable[i], wvalue >> 1);
 
-                    ecp_nistz256_neg(t.p.Z, t.a.Y);
-                    copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
+                ecp_nistz256_neg(t.p.Z, t.a.Y);
+                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
 
-                    ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
-                }
+                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
             }
         } else {
             p_is_infinity = 1;
@@ -1378,9 +1168,7 @@ __owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
     ret = 1;
 
 err:
-    if (ctx)
-        BN_CTX_end(ctx);
-    BN_CTX_free(new_ctx);
+    BN_CTX_end(ctx);
     OPENSSL_free(new_points);
     OPENSSL_free(new_scalars);
     return ret;
@@ -1473,7 +1261,7 @@ void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
         return;
 
     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
-    REF_PRINT_COUNT("EC_nistz256", x);
+    REF_PRINT_COUNT("EC_nistz256", pre);
     if (i > 0)
         return;
     REF_ASSERT_ISNT(i < 0);
@@ -1509,10 +1297,10 @@ void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
                                const BN_ULONG b[P256_LIMBS]);
 void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
                                const BN_ULONG a[P256_LIMBS],
-                               int rep);
+                               BN_ULONG rep);
 
 static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
-                                    BIGNUM *x, BN_CTX *ctx)
+                                    const BIGNUM *x, BN_CTX *ctx)
 {
     /* RR = 2^512 mod ord(p256) */
     static const BN_ULONG RR[P256_LIMBS]  = {
@@ -1699,8 +1487,6 @@ const EC_METHOD *EC_GFp_nistz256_method(void)
         ec_GFp_simple_point_clear_finish,
         ec_GFp_simple_point_copy,
         ec_GFp_simple_point_set_to_infinity,
-        ec_GFp_simple_set_Jprojective_coordinates_GFp,
-        ec_GFp_simple_get_Jprojective_coordinates_GFp,
         ec_GFp_simple_point_set_affine_coordinates,
         ecp_nistz256_get_affine,
         0, 0, 0,
@@ -1718,6 +1504,7 @@ const EC_METHOD *EC_GFp_nistz256_method(void)
         ec_GFp_mont_field_mul,
         ec_GFp_mont_field_sqr,
         0,                                          /* field_div */
+        ec_GFp_mont_field_inv,
         ec_GFp_mont_field_encode,
         ec_GFp_mont_field_decode,
         ec_GFp_mont_field_set_to_one,
@@ -1730,8 +1517,14 @@ const EC_METHOD *EC_GFp_nistz256_method(void)
         0, /* keycopy */
         0, /* keyfinish */
         ecdh_simple_compute_key,
+        ecdsa_simple_sign_setup,
+        ecdsa_simple_sign_sig,
+        ecdsa_simple_verify_sig,
         ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
-        0                                           /* blind_coordinates */
+        0,                                          /* blind_coordinates */
+        0,                                          /* ladder_pre */
+        0,                                          /* ladder_step */
+        0                                           /* ladder_post */
     };
 
     return &ret;