Precomputation will not necessarily be LIm-Lee precomputation.
[openssl.git] / crypto / ec / ec_mult.c
index 0a749e8..651de97 100644 (file)
 
 /* TODO: width-m NAFs */
 
-/* TODO: optional Lim-Lee precomputation for the generator */
+/* TODO: optional precomputation of multiples of the generator */
 
 
-/* this is just BN_window_bits_for_exponent_size from bn_lcl.h for now;
- * the table should be updated for EC */ /* TODO */
 #define EC_window_bits_for_scalar_size(b) \
-               ((b) > 671 ? 6 : \
-                (b) > 239 ? 5 : \
-                (b) >  79 ? 4 : \
-                (b) >  23 ? 3 : 1)
+               ((b) >= 2000 ? 6 : \
+                (b) >=  800 ? 5 : \
+                (b) >=  300 ? 4 : \
+                (b) >=   70 ? 3 : \
+                (b) >=   20 ? 2 : \
+                 1)
+/* For window size 'w' (w >= 2), we compute the odd multiples
+ *      1*P .. (2^w-1)*P.
+ * This accounts for  2^(w-1)  point additions (neglecting constants),
+ * each of which requires 16 field multiplications (4 squarings
+ * and 12 general multiplications) in the case of curves defined
+ * over GF(p), which are the only curves we have so far.
+ *
+ * Converting these precomputed points into affine form takes
+ * three field multiplications for inverting Z and one squaring
+ * and three multiplications for adjusting X and Y, i.e.
+ * 7 multiplications in total (1 squaring and 6 general multiplications),
+ * again except for constants.
+ *
+ * The average number of windows for a 'b' bit scalar is roughly
+ *          b/(w+1).
+ * Each of these windows (except possibly for the first one, but
+ * we are ignoring constants anyway) requires one point addition.
+ * As the precomputed table stores points in affine form, these
+ * additions take only 11 field multiplications each (3 squarings
+ * and 8 general multiplications).
+ *
+ * So the total workload, except for constants, is
+ *
+ *        2^(w-1)*[5 squarings + 18 multiplications]
+ *      + (b/(w+1))*[3 squarings + 8 multiplications]
+ *
+ * If we assume that 10 squarings are as costly as 9 multiplications,
+ * our task is to find the 'w' that, given 'b', minimizes
+ *
+ *        2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
+ *      = 2^(w-1)*225 +           (b/(w+1))*107.
+ *
+ * Thus optimal window sizes should be roughly as follows:
+ *
+ *    w >= 6  if         b >= 1414
+ *     w = 5  if 1413 >= b >=  505
+ *     w = 4  if  504 >= b >=  169
+ *     w = 3  if  168 >= b >=   51
+ *     w = 2  if   50 >= b >=   13
+ *     w = 1  if   12 >= b
+ *
+ * If we assume instead that squarings are exactly as costly as
+ * multiplications, we have to minimize
+ *      2^(w-1)*23 + (b/(w+1))*11.
+ *
+ * This gives us the following (nearly unchanged) table of optimal
+ * windows sizes:
+ *
+ *    w >= 6  if         b >= 1406
+ *     w = 5  if 1405 >= b >=  502
+ *     w = 4  if  501 >= b >=  168
+ *     w = 3  if  167 >= b >=   51
+ *     w = 2  if   50 >= b >=   13
+ *     w = 1  if   12 >= b
+ *
+ * Note that neither table tries to take into account memory usage
+ * (allocation overhead, code locality etc.).  Actual timings with
+ * NIST curves P-192, P-224, and P-256 with scalars of 192, 224,
+ * and 256 bits, respectively, show that  w = 3  (instead of 4) is
+ * preferrable; timings with NIST curve P-384 and 384-bit scalars
+ * confirm that  w = 4  is optimal for this case; and timings with
+ * NIST curve P-521 and 521-bit scalars show that  w = 4  (instead
+ * of 5) is preferrable.  So we generously round up all the
+ * boundaries and use the following table:
+ *
+ *    w >= 6  if         b >= 2000
+ *     w = 5  if 1999 >= b >=  800
+ *     w = 4  if  799 >= b >=  300
+ *     w = 3  if  299 >= b >=   70
+ *     w = 2  if   69 >= b >=   20
+ *     w = 1  if   19 >= b
+ */
+
+
 
 /* Compute
  *      \sum scalars[i]*points[i]
@@ -132,7 +206,7 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
 
                bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
                wsize[i] = EC_window_bits_for_scalar_size(bits);
-               num_val += 1 << (wsize[i] - 1);
+               num_val += 1u << (wsize[i] - 1);
                if (bits > max_bits)
                        max_bits = bits;
                wbits[i] = 0;
@@ -153,7 +227,7 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
        for (i = 0; i < totalnum; i++)
                {
                val_sub[i] = v;
-               for (j = 0; j < (1 << (wsize[i] - 1)); j++)
+               for (j = 0; j < (1u << (wsize[i] - 1)); j++)
                        {
                        *v = EC_POINT_new(group);
                        if (*v == NULL) goto err;
@@ -204,14 +278,14 @@ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                if (wsize[i] > 1)
                        {
                        if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
-                       for (j = 1; j < (1 << (wsize[i] - 1)); j++)
+                       for (j = 1; j < (1u << (wsize[i] - 1)); j++)
                                {
                                if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
                                }
                        }
                }
 
-#if 1 /* optional, maybe we should only do this if total_num > 1 */
+#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
        if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
 #endif
 
@@ -309,7 +383,7 @@ int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, con
        }
 
 
-int EC_GROUP_precompute(EC_GROUP *group, BN_CTX *ctx)
+int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
        {
        const EC_POINT *generator;
        BN_CTX *new_ctx = NULL;
@@ -319,7 +393,7 @@ int EC_GROUP_precompute(EC_GROUP *group, BN_CTX *ctx)
        generator = EC_GROUP_get0_generator(group);
        if (generator == NULL)
                {
-               ECerr(EC_F_EC_GROUP_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
+               ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
                return 0;
                }
 
@@ -337,7 +411,7 @@ int EC_GROUP_precompute(EC_GROUP *group, BN_CTX *ctx)
        if (!EC_GROUP_get_order(group, order, ctx)) return 0;
        if (BN_is_zero(order))
                {
-               ECerr(EC_F_EC_GROUP_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
+               ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
                goto err;
                }