OSSL_STORE: Add reference docs for the built-in Windows store implementation
[openssl.git] / providers / implementations / rands / seeding / rand_unix.c
1 /*
2  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #ifndef _GNU_SOURCE
11 # define _GNU_SOURCE
12 #endif
13 #include "internal/e_os.h"
14 #include <stdio.h>
15 #include "internal/cryptlib.h"
16 #include <openssl/rand.h>
17 #include <openssl/crypto.h>
18 #include "crypto/rand_pool.h"
19 #include "crypto/rand.h"
20 #include "internal/dso.h"
21 #include "internal/nelem.h"
22 #include "prov/seeding.h"
23
24 #ifdef __linux
25 # include <sys/syscall.h>
26 # ifdef DEVRANDOM_WAIT
27 #  include <sys/shm.h>
28 #  include <sys/utsname.h>
29 # endif
30 #endif
31 #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32 # include <sys/types.h>
33 # include <sys/sysctl.h>
34 # include <sys/param.h>
35 #endif
36 #if defined(__OpenBSD__)
37 # include <sys/param.h>
38 #endif
39 #if defined(__DragonFly__)
40 # include <sys/param.h>
41 # include <sys/random.h>
42 #endif
43
44 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45      || defined(__DJGPP__)
46 # include <sys/types.h>
47 # include <sys/stat.h>
48 # include <fcntl.h>
49 # include <unistd.h>
50 # include <sys/time.h>
51
52 static uint64_t get_time_stamp(void);
53
54 /* Macro to convert two thirty two bit values into a sixty four bit one */
55 # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
56
57 /*
58  * Check for the existence and support of POSIX timers.  The standard
59  * says that the _POSIX_TIMERS macro will have a positive value if they
60  * are available.
61  *
62  * However, we want an additional constraint: that the timer support does
63  * not require an extra library dependency.  Early versions of glibc
64  * require -lrt to be specified on the link line to access the timers,
65  * so this needs to be checked for.
66  *
67  * It is worse because some libraries define __GLIBC__ but don't
68  * support the version testing macro (e.g. uClibc).  This means
69  * an extra check is needed.
70  *
71  * The final condition is:
72  *      "have posix timers and either not glibc or glibc without -lrt"
73  *
74  * The nested #if sequences are required to avoid using a parameterised
75  * macro that might be undefined.
76  */
77 # undef OSSL_POSIX_TIMER_OKAY
78 /* On some systems, _POSIX_TIMERS is defined but empty.
79  * Subtracting by 0 when comparing avoids an error in this case. */
80 # if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
81 #  if defined(__GLIBC__)
82 #   if defined(__GLIBC_PREREQ)
83 #    if __GLIBC_PREREQ(2, 17)
84 #     define OSSL_POSIX_TIMER_OKAY
85 #    endif
86 #   endif
87 #  else
88 #   define OSSL_POSIX_TIMER_OKAY
89 #  endif
90 # endif
91 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
92           || defined(__DJGPP__) */
93
94 #if defined(OPENSSL_RAND_SEED_NONE)
95 /* none means none. this simplifies the following logic */
96 # undef OPENSSL_RAND_SEED_OS
97 # undef OPENSSL_RAND_SEED_GETRANDOM
98 # undef OPENSSL_RAND_SEED_LIBRANDOM
99 # undef OPENSSL_RAND_SEED_DEVRANDOM
100 # undef OPENSSL_RAND_SEED_RDTSC
101 # undef OPENSSL_RAND_SEED_RDCPU
102 # undef OPENSSL_RAND_SEED_EGD
103 #endif
104
105 #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
106 # error "UEFI only supports seeding NONE"
107 #endif
108
109 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
110     || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
111     || defined(OPENSSL_SYS_UEFI))
112
113 # if defined(OPENSSL_SYS_VOS)
114
115 #  ifndef OPENSSL_RAND_SEED_OS
116 #   error "Unsupported seeding method configured; must be os"
117 #  endif
118
119 #  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
120 #   error "Unsupported HP-PA and IA32 at the same time."
121 #  endif
122 #  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
123 #   error "Must have one of HP-PA or IA32"
124 #  endif
125
126 /*
127  * The following algorithm repeatedly samples the real-time clock (RTC) to
128  * generate a sequence of unpredictable data.  The algorithm relies upon the
129  * uneven execution speed of the code (due to factors such as cache misses,
130  * interrupts, bus activity, and scheduling) and upon the rather large
131  * relative difference between the speed of the clock and the rate at which
132  * it can be read.  If it is ported to an environment where execution speed
133  * is more constant or where the RTC ticks at a much slower rate, or the
134  * clock can be read with fewer instructions, it is likely that the results
135  * would be far more predictable.  This should only be used for legacy
136  * platforms.
137  *
138  * As a precaution, we assume only 2 bits of entropy per byte.
139  */
140 size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
141 {
142     short int code;
143     int i, k;
144     size_t bytes_needed;
145     struct timespec ts;
146     unsigned char v;
147 #  ifdef OPENSSL_SYS_VOS_HPPA
148     long duration;
149     extern void s$sleep(long *_duration, short int *_code);
150 #  else
151     long long duration;
152     extern void s$sleep2(long long *_duration, short int *_code);
153 #  endif
154
155     bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
156
157     for (i = 0; i < bytes_needed; i++) {
158         /*
159          * burn some cpu; hope for interrupts, cache collisions, bus
160          * interference, etc.
161          */
162         for (k = 0; k < 99; k++)
163             ts.tv_nsec = random();
164
165 #  ifdef OPENSSL_SYS_VOS_HPPA
166         /* sleep for 1/1024 of a second (976 us).  */
167         duration = 1;
168         s$sleep(&duration, &code);
169 #  else
170         /* sleep for 1/65536 of a second (15 us).  */
171         duration = 1;
172         s$sleep2(&duration, &code);
173 #  endif
174
175         /* Get wall clock time, take 8 bits. */
176         clock_gettime(CLOCK_REALTIME, &ts);
177         v = (unsigned char)(ts.tv_nsec & 0xFF);
178         ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2);
179     }
180     return ossl_rand_pool_entropy_available(pool);
181 }
182
183 void ossl_rand_pool_cleanup(void)
184 {
185 }
186
187 void ossl_rand_pool_keep_random_devices_open(int keep)
188 {
189 }
190
191 # else
192
193 #  if defined(OPENSSL_RAND_SEED_EGD) && \
194         (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
195 #   error "Seeding uses EGD but EGD is turned off or no device given"
196 #  endif
197
198 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
199 #   error "Seeding uses urandom but DEVRANDOM is not configured"
200 #  endif
201
202 #  if defined(OPENSSL_RAND_SEED_OS)
203 #   if !defined(DEVRANDOM)
204 #    error "OS seeding requires DEVRANDOM to be configured"
205 #   endif
206 #   define OPENSSL_RAND_SEED_GETRANDOM
207 #   define OPENSSL_RAND_SEED_DEVRANDOM
208 #  endif
209
210 #  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
211 #   error "librandom not (yet) supported"
212 #  endif
213
214 #  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
215 /*
216  * sysctl_random(): Use sysctl() to read a random number from the kernel
217  * Returns the number of bytes returned in buf on success, -1 on failure.
218  */
219 static ssize_t sysctl_random(char *buf, size_t buflen)
220 {
221     int mib[2];
222     size_t done = 0;
223     size_t len;
224
225     /*
226      * Note: sign conversion between size_t and ssize_t is safe even
227      * without a range check, see comment in syscall_random()
228      */
229
230     /*
231      * On FreeBSD old implementations returned longs, newer versions support
232      * variable sizes up to 256 byte. The code below would not work properly
233      * when the sysctl returns long and we want to request something not a
234      * multiple of longs, which should never be the case.
235      */
236 #if   defined(__FreeBSD__)
237     if (!ossl_assert(buflen % sizeof(long) == 0)) {
238         errno = EINVAL;
239         return -1;
240     }
241 #endif
242
243     /*
244      * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
245      * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
246      * it returns a variable number of bytes with the current version supporting
247      * up to 256 bytes.
248      * Just return an error on older NetBSD versions.
249      */
250 #if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
251     errno = ENOSYS;
252     return -1;
253 #endif
254
255     mib[0] = CTL_KERN;
256     mib[1] = KERN_ARND;
257
258     do {
259         len = buflen > 256 ? 256 : buflen;
260         if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
261             return done > 0 ? done : -1;
262         done += len;
263         buf += len;
264         buflen -= len;
265     } while (buflen > 0);
266
267     return done;
268 }
269 #  endif
270
271 #  if defined(OPENSSL_RAND_SEED_GETRANDOM)
272
273 #   if defined(__linux) && !defined(__NR_getrandom)
274 #    if defined(__arm__)
275 #     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
276 #    elif defined(__i386__)
277 #     define __NR_getrandom    355
278 #    elif defined(__x86_64__)
279 #     if defined(__ILP32__)
280 #      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
281 #     else
282 #      define __NR_getrandom   318
283 #     endif
284 #    elif defined(__xtensa__)
285 #     define __NR_getrandom    338
286 #    elif defined(__s390__) || defined(__s390x__)
287 #     define __NR_getrandom    349
288 #    elif defined(__bfin__)
289 #     define __NR_getrandom    389
290 #    elif defined(__powerpc__)
291 #     define __NR_getrandom    359
292 #    elif defined(__mips__) || defined(__mips64)
293 #     if _MIPS_SIM == _MIPS_SIM_ABI32
294 #      define __NR_getrandom   (__NR_Linux + 353)
295 #     elif _MIPS_SIM == _MIPS_SIM_ABI64
296 #      define __NR_getrandom   (__NR_Linux + 313)
297 #     elif _MIPS_SIM == _MIPS_SIM_NABI32
298 #      define __NR_getrandom   (__NR_Linux + 317)
299 #     endif
300 #    elif defined(__hppa__)
301 #     define __NR_getrandom    (__NR_Linux + 339)
302 #    elif defined(__sparc__)
303 #     define __NR_getrandom    347
304 #    elif defined(__ia64__)
305 #     define __NR_getrandom    1339
306 #    elif defined(__alpha__)
307 #     define __NR_getrandom    511
308 #    elif defined(__sh__)
309 #     if defined(__SH5__)
310 #      define __NR_getrandom   373
311 #     else
312 #      define __NR_getrandom   384
313 #     endif
314 #    elif defined(__avr32__)
315 #     define __NR_getrandom    317
316 #    elif defined(__microblaze__)
317 #     define __NR_getrandom    385
318 #    elif defined(__m68k__)
319 #     define __NR_getrandom    352
320 #    elif defined(__cris__)
321 #     define __NR_getrandom    356
322 #    else /* generic (f.e. aarch64, loongarch, loongarch64) */
323 #     define __NR_getrandom    278
324 #    endif
325 #   endif
326
327 /*
328  * syscall_random(): Try to get random data using a system call
329  * returns the number of bytes returned in buf, or < 0 on error.
330  */
331 static ssize_t syscall_random(void *buf, size_t buflen)
332 {
333     /*
334      * Note: 'buflen' equals the size of the buffer which is used by the
335      * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
336      *
337      *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
338      *
339      * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
340      * between size_t and ssize_t is safe even without a range check.
341      */
342
343     /*
344      * Do runtime detection to find getentropy().
345      *
346      * Known OSs that should support this:
347      * - Darwin since 16 (OSX 10.12, IOS 10.0).
348      * - Solaris since 11.3
349      * - OpenBSD since 5.6
350      * - Linux since 3.17 with glibc 2.25
351      * - FreeBSD since 12.0 (1200061)
352      *
353      * Note: Sometimes getentropy() can be provided but not implemented
354      * internally. So we need to check errno for ENOSYS
355      */
356 #  if !defined(__DragonFly__) && !defined(__NetBSD__)
357 #    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
358     extern int getentropy(void *buffer, size_t length) __attribute__((weak));
359
360     if (getentropy != NULL) {
361         if (getentropy(buf, buflen) == 0)
362             return (ssize_t)buflen;
363         if (errno != ENOSYS)
364             return -1;
365     }
366 #    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
367
368     if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
369             return (ssize_t)buflen;
370
371     return -1;
372 #    else
373     union {
374         void *p;
375         int (*f)(void *buffer, size_t length);
376     } p_getentropy;
377
378     /*
379      * We could cache the result of the lookup, but we normally don't
380      * call this function often.
381      */
382     ERR_set_mark();
383     p_getentropy.p = DSO_global_lookup("getentropy");
384     ERR_pop_to_mark();
385     if (p_getentropy.p != NULL)
386         return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
387 #    endif
388 #  endif /* !__DragonFly__ */
389
390     /* Linux supports this since version 3.17 */
391 #  if defined(__linux) && defined(__NR_getrandom)
392     return syscall(__NR_getrandom, buf, buflen, 0);
393 #  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
394     return sysctl_random(buf, buflen);
395 #  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
396      || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
397     return getrandom(buf, buflen, 0);
398 #  elif defined(__wasi__)
399     if (getentropy(buf, buflen) == 0)
400       return (ssize_t)buflen;
401     return -1;
402 #  else
403     errno = ENOSYS;
404     return -1;
405 #  endif
406 }
407 #  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
408
409 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
410 static const char *random_device_paths[] = { DEVRANDOM };
411 static struct random_device {
412     int fd;
413     dev_t dev;
414     ino_t ino;
415     mode_t mode;
416     dev_t rdev;
417 } random_devices[OSSL_NELEM(random_device_paths)];
418 static int keep_random_devices_open = 1;
419
420 #   if defined(__linux) && defined(DEVRANDOM_WAIT) \
421        && defined(OPENSSL_RAND_SEED_GETRANDOM)
422 static void *shm_addr;
423
424 static void cleanup_shm(void)
425 {
426     shmdt(shm_addr);
427 }
428
429 /*
430  * Ensure that the system randomness source has been adequately seeded.
431  * This is done by having the first start of libcrypto, wait until the device
432  * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
433  * of the library and later reseedings do not need to do this.
434  */
435 static int wait_random_seeded(void)
436 {
437     static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
438     static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
439     int kernel[2];
440     int shm_id, fd, r;
441     char c, *p;
442     struct utsname un;
443     fd_set fds;
444
445     if (!seeded) {
446         /* See if anything has created the global seeded indication */
447         if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
448             /*
449              * Check the kernel's version and fail if it is too recent.
450              *
451              * Linux kernels from 4.8 onwards do not guarantee that
452              * /dev/urandom is properly seeded when /dev/random becomes
453              * readable.  However, such kernels support the getentropy(2)
454              * system call and this should always succeed which renders
455              * this alternative but essentially identical source moot.
456              */
457             if (uname(&un) == 0) {
458                 kernel[0] = atoi(un.release);
459                 p = strchr(un.release, '.');
460                 kernel[1] = p == NULL ? 0 : atoi(p + 1);
461                 if (kernel[0] > kernel_version[0]
462                     || (kernel[0] == kernel_version[0]
463                         && kernel[1] >= kernel_version[1])) {
464                     return 0;
465                 }
466             }
467             /* Open /dev/random and wait for it to be readable */
468             if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
469                 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
470                     FD_ZERO(&fds);
471                     FD_SET(fd, &fds);
472                     while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
473                            && errno == EINTR);
474                 } else {
475                     while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
476                 }
477                 close(fd);
478                 if (r == 1) {
479                     seeded = 1;
480                     /* Create the shared memory indicator */
481                     shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
482                                     IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
483                 }
484             }
485         }
486         if (shm_id != -1) {
487             seeded = 1;
488             /*
489              * Map the shared memory to prevent its premature destruction.
490              * If this call fails, it isn't a big problem.
491              */
492             shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
493             if (shm_addr != (void *)-1)
494                 OPENSSL_atexit(&cleanup_shm);
495         }
496     }
497     return seeded;
498 }
499 #   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
500 static int wait_random_seeded(void)
501 {
502     return 1;
503 }
504 #   endif
505
506 /*
507  * Verify that the file descriptor associated with the random source is
508  * still valid. The rationale for doing this is the fact that it is not
509  * uncommon for daemons to close all open file handles when daemonizing.
510  * So the handle might have been closed or even reused for opening
511  * another file.
512  */
513 static int check_random_device(struct random_device *rd)
514 {
515     struct stat st;
516
517     return rd->fd != -1
518            && fstat(rd->fd, &st) != -1
519            && rd->dev == st.st_dev
520            && rd->ino == st.st_ino
521            && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
522            && rd->rdev == st.st_rdev;
523 }
524
525 /*
526  * Open a random device if required and return its file descriptor or -1 on error
527  */
528 static int get_random_device(size_t n)
529 {
530     struct stat st;
531     struct random_device *rd = &random_devices[n];
532
533     /* reuse existing file descriptor if it is (still) valid */
534     if (check_random_device(rd))
535         return rd->fd;
536
537     /* open the random device ... */
538     if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
539         return rd->fd;
540
541     /* ... and cache its relevant stat(2) data */
542     if (fstat(rd->fd, &st) != -1) {
543         rd->dev = st.st_dev;
544         rd->ino = st.st_ino;
545         rd->mode = st.st_mode;
546         rd->rdev = st.st_rdev;
547     } else {
548         close(rd->fd);
549         rd->fd = -1;
550     }
551
552     return rd->fd;
553 }
554
555 /*
556  * Close a random device making sure it is a random device
557  */
558 static void close_random_device(size_t n)
559 {
560     struct random_device *rd = &random_devices[n];
561
562     if (check_random_device(rd))
563         close(rd->fd);
564     rd->fd = -1;
565 }
566
567 int ossl_rand_pool_init(void)
568 {
569     size_t i;
570
571     for (i = 0; i < OSSL_NELEM(random_devices); i++)
572         random_devices[i].fd = -1;
573
574     return 1;
575 }
576
577 void ossl_rand_pool_cleanup(void)
578 {
579     size_t i;
580
581     for (i = 0; i < OSSL_NELEM(random_devices); i++)
582         close_random_device(i);
583 }
584
585 void ossl_rand_pool_keep_random_devices_open(int keep)
586 {
587     if (!keep)
588         ossl_rand_pool_cleanup();
589
590     keep_random_devices_open = keep;
591 }
592
593 #  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
594
595 int ossl_rand_pool_init(void)
596 {
597     return 1;
598 }
599
600 void ossl_rand_pool_cleanup(void)
601 {
602 }
603
604 void ossl_rand_pool_keep_random_devices_open(int keep)
605 {
606 }
607
608 #  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
609
610 /*
611  * Try the various seeding methods in turn, exit when successful.
612  *
613  * If more than one entropy source is available, is it
614  * preferable to stop as soon as enough entropy has been collected
615  * (as favored by @rsalz) or should one rather be defensive and add
616  * more entropy than requested and/or from different sources?
617  *
618  * Currently, the user can select multiple entropy sources in the
619  * configure step, yet in practice only the first available source
620  * will be used. A more flexible solution has been requested, but
621  * currently it is not clear how this can be achieved without
622  * overengineering the problem. There are many parameters which
623  * could be taken into account when selecting the order and amount
624  * of input from the different entropy sources (trust, quality,
625  * possibility of blocking).
626  */
627 size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
628 {
629 #  if defined(OPENSSL_RAND_SEED_NONE)
630     return ossl_rand_pool_entropy_available(pool);
631 #  else
632     size_t entropy_available = 0;
633
634     (void)entropy_available;    /* avoid compiler warning */
635
636 #   if defined(OPENSSL_RAND_SEED_GETRANDOM)
637     {
638         size_t bytes_needed;
639         unsigned char *buffer;
640         ssize_t bytes;
641         /* Maximum allowed number of consecutive unsuccessful attempts */
642         int attempts = 3;
643
644         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
645         while (bytes_needed != 0 && attempts-- > 0) {
646             buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
647             bytes = syscall_random(buffer, bytes_needed);
648             if (bytes > 0) {
649                 ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
650                 bytes_needed -= bytes;
651                 attempts = 3; /* reset counter after successful attempt */
652             } else if (bytes < 0 && errno != EINTR) {
653                 break;
654             }
655         }
656     }
657     entropy_available = ossl_rand_pool_entropy_available(pool);
658     if (entropy_available > 0)
659         return entropy_available;
660 #   endif
661
662 #   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
663     {
664         /* Not yet implemented. */
665     }
666 #   endif
667
668 #   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
669     if (wait_random_seeded()) {
670         size_t bytes_needed;
671         unsigned char *buffer;
672         size_t i;
673
674         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
675         for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
676              i++) {
677             ssize_t bytes = 0;
678             /* Maximum number of consecutive unsuccessful attempts */
679             int attempts = 3;
680             const int fd = get_random_device(i);
681
682             if (fd == -1)
683                 continue;
684
685             while (bytes_needed != 0 && attempts-- > 0) {
686                 buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
687                 bytes = read(fd, buffer, bytes_needed);
688
689                 if (bytes > 0) {
690                     ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
691                     bytes_needed -= bytes;
692                     attempts = 3; /* reset counter on successful attempt */
693                 } else if (bytes < 0 && errno != EINTR) {
694                     break;
695                 }
696             }
697             if (bytes < 0 || !keep_random_devices_open)
698                 close_random_device(i);
699
700             bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
701         }
702         entropy_available = ossl_rand_pool_entropy_available(pool);
703         if (entropy_available > 0)
704             return entropy_available;
705     }
706 #   endif
707
708 #   if defined(OPENSSL_RAND_SEED_RDTSC)
709     entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
710     if (entropy_available > 0)
711         return entropy_available;
712 #   endif
713
714 #   if defined(OPENSSL_RAND_SEED_RDCPU)
715     entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
716     if (entropy_available > 0)
717         return entropy_available;
718 #   endif
719
720 #   if defined(OPENSSL_RAND_SEED_EGD)
721     {
722         static const char *paths[] = { DEVRANDOM_EGD, NULL };
723         size_t bytes_needed;
724         unsigned char *buffer;
725         int i;
726
727         bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
728         for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
729             size_t bytes = 0;
730             int num;
731
732             buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
733             num = RAND_query_egd_bytes(paths[i],
734                                        buffer, (int)bytes_needed);
735             if (num == (int)bytes_needed)
736                 bytes = bytes_needed;
737
738             ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
739             bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
740         }
741         entropy_available = ossl_rand_pool_entropy_available(pool);
742         if (entropy_available > 0)
743             return entropy_available;
744     }
745 #   endif
746
747     return ossl_rand_pool_entropy_available(pool);
748 #  endif
749 }
750 # endif
751 #endif
752
753 #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
754      || defined(__DJGPP__)
755 int ossl_pool_add_nonce_data(RAND_POOL *pool)
756 {
757     struct {
758         pid_t pid;
759         CRYPTO_THREAD_ID tid;
760         uint64_t time;
761     } data;
762
763     /* Erase the entire structure including any padding */
764     memset(&data, 0, sizeof(data));
765
766     /*
767      * Add process id, thread id, and a high resolution timestamp to
768      * ensure that the nonce is unique with high probability for
769      * different process instances.
770      */
771     data.pid = getpid();
772     data.tid = CRYPTO_THREAD_get_current_id();
773     data.time = get_time_stamp();
774
775     return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776 }
777
778 /*
779  * Get the current time with the highest possible resolution
780  *
781  * The time stamp is added to the nonce, so it is optimized for not repeating.
782  * The current time is ideal for this purpose, provided the computer's clock
783  * is synchronized.
784  */
785 static uint64_t get_time_stamp(void)
786 {
787 # if defined(OSSL_POSIX_TIMER_OKAY)
788     {
789         struct timespec ts;
790
791         if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
792             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
793     }
794 # endif
795 # if defined(__unix__) \
796      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
797     {
798         struct timeval tv;
799
800         if (gettimeofday(&tv, NULL) == 0)
801             return TWO32TO64(tv.tv_sec, tv.tv_usec);
802     }
803 # endif
804     return time(NULL);
805 }
806
807 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
808           || defined(__DJGPP__) */