Remove bsd_cryptodev engine
[openssl.git] / include / openssl / engine.h
1 /*
2  * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /* ====================================================================
11  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12  * ECDH support in OpenSSL originally developed by
13  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
14  */
15
16 #ifndef HEADER_ENGINE_H
17 # define HEADER_ENGINE_H
18
19 # include <openssl/opensslconf.h>
20
21 # ifndef OPENSSL_NO_ENGINE
22 # if OPENSSL_API_COMPAT < 0x10100000L
23 #  include <openssl/bn.h>
24 #  include <openssl/rsa.h>
25 #  include <openssl/dsa.h>
26 #  include <openssl/dh.h>
27 #  include <openssl/ec.h>
28 #  include <openssl/rand.h>
29 #  include <openssl/ui.h>
30 #  include <openssl/err.h>
31 # endif
32 # include <openssl/ossl_typ.h>
33 # include <openssl/symhacks.h>
34 # include <openssl/x509.h>
35 # include <openssl/engineerr.h>
36 # ifdef  __cplusplus
37 extern "C" {
38 # endif
39
40 /*
41  * These flags are used to control combinations of algorithm (methods) by
42  * bitwise "OR"ing.
43  */
44 # define ENGINE_METHOD_RSA               (unsigned int)0x0001
45 # define ENGINE_METHOD_DSA               (unsigned int)0x0002
46 # define ENGINE_METHOD_DH                (unsigned int)0x0004
47 # define ENGINE_METHOD_RAND              (unsigned int)0x0008
48 # define ENGINE_METHOD_CIPHERS           (unsigned int)0x0040
49 # define ENGINE_METHOD_DIGESTS           (unsigned int)0x0080
50 # define ENGINE_METHOD_PKEY_METHS        (unsigned int)0x0200
51 # define ENGINE_METHOD_PKEY_ASN1_METHS   (unsigned int)0x0400
52 # define ENGINE_METHOD_EC                (unsigned int)0x0800
53 /* Obvious all-or-nothing cases. */
54 # define ENGINE_METHOD_ALL               (unsigned int)0xFFFF
55 # define ENGINE_METHOD_NONE              (unsigned int)0x0000
56
57 /*
58  * This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used
59  * internally to control registration of ENGINE implementations, and can be
60  * set by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to
61  * initialise registered ENGINEs if they are not already initialised.
62  */
63 # define ENGINE_TABLE_FLAG_NOINIT        (unsigned int)0x0001
64
65 /* ENGINE flags that can be set by ENGINE_set_flags(). */
66 /* Not used */
67 /* #define ENGINE_FLAGS_MALLOCED        0x0001 */
68
69 /*
70  * This flag is for ENGINEs that wish to handle the various 'CMD'-related
71  * control commands on their own. Without this flag, ENGINE_ctrl() handles
72  * these control commands on behalf of the ENGINE using their "cmd_defns"
73  * data.
74  */
75 # define ENGINE_FLAGS_MANUAL_CMD_CTRL    (int)0x0002
76
77 /*
78  * This flag is for ENGINEs who return new duplicate structures when found
79  * via "ENGINE_by_id()". When an ENGINE must store state (eg. if
80  * ENGINE_ctrl() commands are called in sequence as part of some stateful
81  * process like key-generation setup and execution), it can set this flag -
82  * then each attempt to obtain the ENGINE will result in it being copied into
83  * a new structure. Normally, ENGINEs don't declare this flag so
84  * ENGINE_by_id() just increments the existing ENGINE's structural reference
85  * count.
86  */
87 # define ENGINE_FLAGS_BY_ID_COPY         (int)0x0004
88
89 /*
90  * This flag if for an ENGINE that does not want its methods registered as
91  * part of ENGINE_register_all_complete() for example if the methods are not
92  * usable as default methods.
93  */
94
95 # define ENGINE_FLAGS_NO_REGISTER_ALL    (int)0x0008
96
97 /*
98  * ENGINEs can support their own command types, and these flags are used in
99  * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input
100  * each command expects. Currently only numeric and string input is
101  * supported. If a control command supports none of the _NUMERIC, _STRING, or
102  * _NO_INPUT options, then it is regarded as an "internal" control command -
103  * and not for use in config setting situations. As such, they're not
104  * available to the ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl()
105  * access. Changes to this list of 'command types' should be reflected
106  * carefully in ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string().
107  */
108
109 /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */
110 # define ENGINE_CMD_FLAG_NUMERIC         (unsigned int)0x0001
111 /*
112  * accepts string input (cast from 'void*' to 'const char *', 4th parameter
113  * to ENGINE_ctrl)
114  */
115 # define ENGINE_CMD_FLAG_STRING          (unsigned int)0x0002
116 /*
117  * Indicates that the control command takes *no* input. Ie. the control
118  * command is unparameterised.
119  */
120 # define ENGINE_CMD_FLAG_NO_INPUT        (unsigned int)0x0004
121 /*
122  * Indicates that the control command is internal. This control command won't
123  * be shown in any output, and is only usable through the ENGINE_ctrl_cmd()
124  * function.
125  */
126 # define ENGINE_CMD_FLAG_INTERNAL        (unsigned int)0x0008
127
128 /*
129  * NB: These 3 control commands are deprecated and should not be used.
130  * ENGINEs relying on these commands should compile conditional support for
131  * compatibility (eg. if these symbols are defined) but should also migrate
132  * the same functionality to their own ENGINE-specific control functions that
133  * can be "discovered" by calling applications. The fact these control
134  * commands wouldn't be "executable" (ie. usable by text-based config)
135  * doesn't change the fact that application code can find and use them
136  * without requiring per-ENGINE hacking.
137  */
138
139 /*
140  * These flags are used to tell the ctrl function what should be done. All
141  * command numbers are shared between all engines, even if some don't make
142  * sense to some engines.  In such a case, they do nothing but return the
143  * error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED.
144  */
145 # define ENGINE_CTRL_SET_LOGSTREAM               1
146 # define ENGINE_CTRL_SET_PASSWORD_CALLBACK       2
147 # define ENGINE_CTRL_HUP                         3/* Close and reinitialise
148                                                    * any handles/connections
149                                                    * etc. */
150 # define ENGINE_CTRL_SET_USER_INTERFACE          4/* Alternative to callback */
151 # define ENGINE_CTRL_SET_CALLBACK_DATA           5/* User-specific data, used
152                                                    * when calling the password
153                                                    * callback and the user
154                                                    * interface */
155 # define ENGINE_CTRL_LOAD_CONFIGURATION          6/* Load a configuration,
156                                                    * given a string that
157                                                    * represents a file name
158                                                    * or so */
159 # define ENGINE_CTRL_LOAD_SECTION                7/* Load data from a given
160                                                    * section in the already
161                                                    * loaded configuration */
162
163 /*
164  * These control commands allow an application to deal with an arbitrary
165  * engine in a dynamic way. Warn: Negative return values indicate errors FOR
166  * THESE COMMANDS because zero is used to indicate 'end-of-list'. Other
167  * commands, including ENGINE-specific command types, return zero for an
168  * error. An ENGINE can choose to implement these ctrl functions, and can
169  * internally manage things however it chooses - it does so by setting the
170  * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise
171  * the ENGINE_ctrl() code handles this on the ENGINE's behalf using the
172  * cmd_defns data (set using ENGINE_set_cmd_defns()). This means an ENGINE's
173  * ctrl() handler need only implement its own commands - the above "meta"
174  * commands will be taken care of.
175  */
176
177 /*
178  * Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not",
179  * then all the remaining control commands will return failure, so it is
180  * worth checking this first if the caller is trying to "discover" the
181  * engine's capabilities and doesn't want errors generated unnecessarily.
182  */
183 # define ENGINE_CTRL_HAS_CTRL_FUNCTION           10
184 /*
185  * Returns a positive command number for the first command supported by the
186  * engine. Returns zero if no ctrl commands are supported.
187  */
188 # define ENGINE_CTRL_GET_FIRST_CMD_TYPE          11
189 /*
190  * The 'long' argument specifies a command implemented by the engine, and the
191  * return value is the next command supported, or zero if there are no more.
192  */
193 # define ENGINE_CTRL_GET_NEXT_CMD_TYPE           12
194 /*
195  * The 'void*' argument is a command name (cast from 'const char *'), and the
196  * return value is the command that corresponds to it.
197  */
198 # define ENGINE_CTRL_GET_CMD_FROM_NAME           13
199 /*
200  * The next two allow a command to be converted into its corresponding string
201  * form. In each case, the 'long' argument supplies the command. In the
202  * NAME_LEN case, the return value is the length of the command name (not
203  * counting a trailing EOL). In the NAME case, the 'void*' argument must be a
204  * string buffer large enough, and it will be populated with the name of the
205  * command (WITH a trailing EOL).
206  */
207 # define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD       14
208 # define ENGINE_CTRL_GET_NAME_FROM_CMD           15
209 /* The next two are similar but give a "short description" of a command. */
210 # define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD       16
211 # define ENGINE_CTRL_GET_DESC_FROM_CMD           17
212 /*
213  * With this command, the return value is the OR'd combination of
214  * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given
215  * engine-specific ctrl command expects.
216  */
217 # define ENGINE_CTRL_GET_CMD_FLAGS               18
218
219 /*
220  * ENGINE implementations should start the numbering of their own control
221  * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc).
222  */
223 # define ENGINE_CMD_BASE                         200
224
225 /*
226  * NB: These 2 nCipher "chil" control commands are deprecated, and their
227  * functionality is now available through ENGINE-specific control commands
228  * (exposed through the above-mentioned 'CMD'-handling). Code using these 2
229  * commands should be migrated to the more general command handling before
230  * these are removed.
231  */
232
233 /* Flags specific to the nCipher "chil" engine */
234 # define ENGINE_CTRL_CHIL_SET_FORKCHECK          100
235         /*
236          * Depending on the value of the (long)i argument, this sets or
237          * unsets the SimpleForkCheck flag in the CHIL API to enable or
238          * disable checking and workarounds for applications that fork().
239          */
240 # define ENGINE_CTRL_CHIL_NO_LOCKING             101
241         /*
242          * This prevents the initialisation function from providing mutex
243          * callbacks to the nCipher library.
244          */
245
246 /*
247  * If an ENGINE supports its own specific control commands and wishes the
248  * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on
249  * its behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN
250  * entries to ENGINE_set_cmd_defns(). It should also implement a ctrl()
251  * handler that supports the stated commands (ie. the "cmd_num" entries as
252  * described by the array). NB: The array must be ordered in increasing order
253  * of cmd_num. "null-terminated" means that the last ENGINE_CMD_DEFN element
254  * has cmd_num set to zero and/or cmd_name set to NULL.
255  */
256 typedef struct ENGINE_CMD_DEFN_st {
257     unsigned int cmd_num;       /* The command number */
258     const char *cmd_name;       /* The command name itself */
259     const char *cmd_desc;       /* A short description of the command */
260     unsigned int cmd_flags;     /* The input the command expects */
261 } ENGINE_CMD_DEFN;
262
263 /* Generic function pointer */
264 typedef int (*ENGINE_GEN_FUNC_PTR) (void);
265 /* Generic function pointer taking no arguments */
266 typedef int (*ENGINE_GEN_INT_FUNC_PTR) (ENGINE *);
267 /* Specific control function pointer */
268 typedef int (*ENGINE_CTRL_FUNC_PTR) (ENGINE *, int, long, void *,
269                                      void (*f) (void));
270 /* Generic load_key function pointer */
271 typedef EVP_PKEY *(*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *,
272                                          UI_METHOD *ui_method,
273                                          void *callback_data);
274 typedef int (*ENGINE_SSL_CLIENT_CERT_PTR) (ENGINE *, SSL *ssl,
275                                            STACK_OF(X509_NAME) *ca_dn,
276                                            X509 **pcert, EVP_PKEY **pkey,
277                                            STACK_OF(X509) **pother,
278                                            UI_METHOD *ui_method,
279                                            void *callback_data);
280 /*-
281  * These callback types are for an ENGINE's handler for cipher and digest logic.
282  * These handlers have these prototypes;
283  *   int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
284  *   int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid);
285  * Looking at how to implement these handlers in the case of cipher support, if
286  * the framework wants the EVP_CIPHER for 'nid', it will call;
287  *   foo(e, &p_evp_cipher, NULL, nid);    (return zero for failure)
288  * If the framework wants a list of supported 'nid's, it will call;
289  *   foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error)
290  */
291 /*
292  * Returns to a pointer to the array of supported cipher 'nid's. If the
293  * second parameter is non-NULL it is set to the size of the returned array.
294  */
295 typedef int (*ENGINE_CIPHERS_PTR) (ENGINE *, const EVP_CIPHER **,
296                                    const int **, int);
297 typedef int (*ENGINE_DIGESTS_PTR) (ENGINE *, const EVP_MD **, const int **,
298                                    int);
299 typedef int (*ENGINE_PKEY_METHS_PTR) (ENGINE *, EVP_PKEY_METHOD **,
300                                       const int **, int);
301 typedef int (*ENGINE_PKEY_ASN1_METHS_PTR) (ENGINE *, EVP_PKEY_ASN1_METHOD **,
302                                            const int **, int);
303 /*
304  * STRUCTURE functions ... all of these functions deal with pointers to
305  * ENGINE structures where the pointers have a "structural reference". This
306  * means that their reference is to allowed access to the structure but it
307  * does not imply that the structure is functional. To simply increment or
308  * decrement the structural reference count, use ENGINE_by_id and
309  * ENGINE_free. NB: This is not required when iterating using ENGINE_get_next
310  * as it will automatically decrement the structural reference count of the
311  * "current" ENGINE and increment the structural reference count of the
312  * ENGINE it returns (unless it is NULL).
313  */
314
315 /* Get the first/last "ENGINE" type available. */
316 ENGINE *ENGINE_get_first(void);
317 ENGINE *ENGINE_get_last(void);
318 /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
319 ENGINE *ENGINE_get_next(ENGINE *e);
320 ENGINE *ENGINE_get_prev(ENGINE *e);
321 /* Add another "ENGINE" type into the array. */
322 int ENGINE_add(ENGINE *e);
323 /* Remove an existing "ENGINE" type from the array. */
324 int ENGINE_remove(ENGINE *e);
325 /* Retrieve an engine from the list by its unique "id" value. */
326 ENGINE *ENGINE_by_id(const char *id);
327
328 #if OPENSSL_API_COMPAT < 0x10100000L
329 # define ENGINE_load_openssl() \
330     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_OPENSSL, NULL)
331 # define ENGINE_load_dynamic() \
332     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_DYNAMIC, NULL)
333 # ifndef OPENSSL_NO_STATIC_ENGINE
334 #  define ENGINE_load_padlock() \
335     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_PADLOCK, NULL)
336 #  define ENGINE_load_capi() \
337     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CAPI, NULL)
338 #  define ENGINE_load_afalg() \
339     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_AFALG, NULL)
340 # endif
341 # define ENGINE_load_cryptodev() \
342     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CRYPTODEV, NULL)
343 # define ENGINE_load_rdrand() \
344     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_RDRAND, NULL)
345 #endif
346 void ENGINE_load_builtin_engines(void);
347
348 /*
349  * Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation
350  * "registry" handling.
351  */
352 unsigned int ENGINE_get_table_flags(void);
353 void ENGINE_set_table_flags(unsigned int flags);
354
355 /*- Manage registration of ENGINEs per "table". For each type, there are 3
356  * functions;
357  *   ENGINE_register_***(e) - registers the implementation from 'e' (if it has one)
358  *   ENGINE_unregister_***(e) - unregister the implementation from 'e'
359  *   ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list
360  * Cleanup is automatically registered from each table when required.
361  */
362
363 int ENGINE_register_RSA(ENGINE *e);
364 void ENGINE_unregister_RSA(ENGINE *e);
365 void ENGINE_register_all_RSA(void);
366
367 int ENGINE_register_DSA(ENGINE *e);
368 void ENGINE_unregister_DSA(ENGINE *e);
369 void ENGINE_register_all_DSA(void);
370
371 int ENGINE_register_EC(ENGINE *e);
372 void ENGINE_unregister_EC(ENGINE *e);
373 void ENGINE_register_all_EC(void);
374
375 int ENGINE_register_DH(ENGINE *e);
376 void ENGINE_unregister_DH(ENGINE *e);
377 void ENGINE_register_all_DH(void);
378
379 int ENGINE_register_RAND(ENGINE *e);
380 void ENGINE_unregister_RAND(ENGINE *e);
381 void ENGINE_register_all_RAND(void);
382
383 int ENGINE_register_ciphers(ENGINE *e);
384 void ENGINE_unregister_ciphers(ENGINE *e);
385 void ENGINE_register_all_ciphers(void);
386
387 int ENGINE_register_digests(ENGINE *e);
388 void ENGINE_unregister_digests(ENGINE *e);
389 void ENGINE_register_all_digests(void);
390
391 int ENGINE_register_pkey_meths(ENGINE *e);
392 void ENGINE_unregister_pkey_meths(ENGINE *e);
393 void ENGINE_register_all_pkey_meths(void);
394
395 int ENGINE_register_pkey_asn1_meths(ENGINE *e);
396 void ENGINE_unregister_pkey_asn1_meths(ENGINE *e);
397 void ENGINE_register_all_pkey_asn1_meths(void);
398
399 /*
400  * These functions register all support from the above categories. Note, use
401  * of these functions can result in static linkage of code your application
402  * may not need. If you only need a subset of functionality, consider using
403  * more selective initialisation.
404  */
405 int ENGINE_register_complete(ENGINE *e);
406 int ENGINE_register_all_complete(void);
407
408 /*
409  * Send parametrised control commands to the engine. The possibilities to
410  * send down an integer, a pointer to data or a function pointer are
411  * provided. Any of the parameters may or may not be NULL, depending on the
412  * command number. In actuality, this function only requires a structural
413  * (rather than functional) reference to an engine, but many control commands
414  * may require the engine be functional. The caller should be aware of trying
415  * commands that require an operational ENGINE, and only use functional
416  * references in such situations.
417  */
418 int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
419
420 /*
421  * This function tests if an ENGINE-specific command is usable as a
422  * "setting". Eg. in an application's config file that gets processed through
423  * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to
424  * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl().
425  */
426 int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
427
428 /*
429  * This function works like ENGINE_ctrl() with the exception of taking a
430  * command name instead of a command number, and can handle optional
431  * commands. See the comment on ENGINE_ctrl_cmd_string() for an explanation
432  * on how to use the cmd_name and cmd_optional.
433  */
434 int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
435                     long i, void *p, void (*f) (void), int cmd_optional);
436
437 /*
438  * This function passes a command-name and argument to an ENGINE. The
439  * cmd_name is converted to a command number and the control command is
440  * called using 'arg' as an argument (unless the ENGINE doesn't support such
441  * a command, in which case no control command is called). The command is
442  * checked for input flags, and if necessary the argument will be converted
443  * to a numeric value. If cmd_optional is non-zero, then if the ENGINE
444  * doesn't support the given cmd_name the return value will be success
445  * anyway. This function is intended for applications to use so that users
446  * (or config files) can supply engine-specific config data to the ENGINE at
447  * run-time to control behaviour of specific engines. As such, it shouldn't
448  * be used for calling ENGINE_ctrl() functions that return data, deal with
449  * binary data, or that are otherwise supposed to be used directly through
450  * ENGINE_ctrl() in application code. Any "return" data from an ENGINE_ctrl()
451  * operation in this function will be lost - the return value is interpreted
452  * as failure if the return value is zero, success otherwise, and this
453  * function returns a boolean value as a result. In other words, vendors of
454  * 'ENGINE'-enabled devices should write ENGINE implementations with
455  * parameterisations that work in this scheme, so that compliant ENGINE-based
456  * applications can work consistently with the same configuration for the
457  * same ENGINE-enabled devices, across applications.
458  */
459 int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
460                            int cmd_optional);
461
462 /*
463  * These functions are useful for manufacturing new ENGINE structures. They
464  * don't address reference counting at all - one uses them to populate an
465  * ENGINE structure with personalised implementations of things prior to
466  * using it directly or adding it to the builtin ENGINE list in OpenSSL.
467  * These are also here so that the ENGINE structure doesn't have to be
468  * exposed and break binary compatibility!
469  */
470 ENGINE *ENGINE_new(void);
471 int ENGINE_free(ENGINE *e);
472 int ENGINE_up_ref(ENGINE *e);
473 int ENGINE_set_id(ENGINE *e, const char *id);
474 int ENGINE_set_name(ENGINE *e, const char *name);
475 int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
476 int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
477 int ENGINE_set_EC(ENGINE *e, const EC_KEY_METHOD *ecdsa_meth);
478 int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
479 int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
480 int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
481 int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
482 int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
483 int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
484 int ENGINE_set_load_privkey_function(ENGINE *e,
485                                      ENGINE_LOAD_KEY_PTR loadpriv_f);
486 int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
487 int ENGINE_set_load_ssl_client_cert_function(ENGINE *e,
488                                              ENGINE_SSL_CLIENT_CERT_PTR
489                                              loadssl_f);
490 int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
491 int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
492 int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f);
493 int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f);
494 int ENGINE_set_flags(ENGINE *e, int flags);
495 int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
496 /* These functions allow control over any per-structure ENGINE data. */
497 #define ENGINE_get_ex_new_index(l, p, newf, dupf, freef) \
498     CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ENGINE, l, p, newf, dupf, freef)
499 int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
500 void *ENGINE_get_ex_data(const ENGINE *e, int idx);
501
502 #if OPENSSL_API_COMPAT < 0x10100000L
503 /*
504  * This function previously cleaned up anything that needs it. Auto-deinit will
505  * now take care of it so it is no longer required to call this function.
506  */
507 # define ENGINE_cleanup() while(0) continue
508 #endif
509
510 /*
511  * These return values from within the ENGINE structure. These can be useful
512  * with functional references as well as structural references - it depends
513  * which you obtained. Using the result for functional purposes if you only
514  * obtained a structural reference may be problematic!
515  */
516 const char *ENGINE_get_id(const ENGINE *e);
517 const char *ENGINE_get_name(const ENGINE *e);
518 const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
519 const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
520 const EC_KEY_METHOD *ENGINE_get_EC(const ENGINE *e);
521 const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
522 const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
523 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
524 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
525 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
526 ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
527 ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
528 ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
529 ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE
530                                                                *e);
531 ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
532 ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
533 ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e);
534 ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e);
535 const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
536 const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
537 const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid);
538 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid);
539 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e,
540                                                           const char *str,
541                                                           int len);
542 const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe,
543                                                       const char *str,
544                                                       int len);
545 const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
546 int ENGINE_get_flags(const ENGINE *e);
547
548 /*
549  * FUNCTIONAL functions. These functions deal with ENGINE structures that
550  * have (or will) be initialised for use. Broadly speaking, the structural
551  * functions are useful for iterating the list of available engine types,
552  * creating new engine types, and other "list" operations. These functions
553  * actually deal with ENGINEs that are to be used. As such these functions
554  * can fail (if applicable) when particular engines are unavailable - eg. if
555  * a hardware accelerator is not attached or not functioning correctly. Each
556  * ENGINE has 2 reference counts; structural and functional. Every time a
557  * functional reference is obtained or released, a corresponding structural
558  * reference is automatically obtained or released too.
559  */
560
561 /*
562  * Initialise a engine type for use (or up its reference count if it's
563  * already in use). This will fail if the engine is not currently operational
564  * and cannot initialise.
565  */
566 int ENGINE_init(ENGINE *e);
567 /*
568  * Free a functional reference to a engine type. This does not require a
569  * corresponding call to ENGINE_free as it also releases a structural
570  * reference.
571  */
572 int ENGINE_finish(ENGINE *e);
573
574 /*
575  * The following functions handle keys that are stored in some secondary
576  * location, handled by the engine.  The storage may be on a card or
577  * whatever.
578  */
579 EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
580                                   UI_METHOD *ui_method, void *callback_data);
581 EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
582                                  UI_METHOD *ui_method, void *callback_data);
583 int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s,
584                                 STACK_OF(X509_NAME) *ca_dn, X509 **pcert,
585                                 EVP_PKEY **ppkey, STACK_OF(X509) **pother,
586                                 UI_METHOD *ui_method, void *callback_data);
587
588 /*
589  * This returns a pointer for the current ENGINE structure that is (by
590  * default) performing any RSA operations. The value returned is an
591  * incremented reference, so it should be free'd (ENGINE_finish) before it is
592  * discarded.
593  */
594 ENGINE *ENGINE_get_default_RSA(void);
595 /* Same for the other "methods" */
596 ENGINE *ENGINE_get_default_DSA(void);
597 ENGINE *ENGINE_get_default_EC(void);
598 ENGINE *ENGINE_get_default_DH(void);
599 ENGINE *ENGINE_get_default_RAND(void);
600 /*
601  * These functions can be used to get a functional reference to perform
602  * ciphering or digesting corresponding to "nid".
603  */
604 ENGINE *ENGINE_get_cipher_engine(int nid);
605 ENGINE *ENGINE_get_digest_engine(int nid);
606 ENGINE *ENGINE_get_pkey_meth_engine(int nid);
607 ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid);
608
609 /*
610  * This sets a new default ENGINE structure for performing RSA operations. If
611  * the result is non-zero (success) then the ENGINE structure will have had
612  * its reference count up'd so the caller should still free their own
613  * reference 'e'.
614  */
615 int ENGINE_set_default_RSA(ENGINE *e);
616 int ENGINE_set_default_string(ENGINE *e, const char *def_list);
617 /* Same for the other "methods" */
618 int ENGINE_set_default_DSA(ENGINE *e);
619 int ENGINE_set_default_EC(ENGINE *e);
620 int ENGINE_set_default_DH(ENGINE *e);
621 int ENGINE_set_default_RAND(ENGINE *e);
622 int ENGINE_set_default_ciphers(ENGINE *e);
623 int ENGINE_set_default_digests(ENGINE *e);
624 int ENGINE_set_default_pkey_meths(ENGINE *e);
625 int ENGINE_set_default_pkey_asn1_meths(ENGINE *e);
626
627 /*
628  * The combination "set" - the flags are bitwise "OR"d from the
629  * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()"
630  * function, this function can result in unnecessary static linkage. If your
631  * application requires only specific functionality, consider using more
632  * selective functions.
633  */
634 int ENGINE_set_default(ENGINE *e, unsigned int flags);
635
636 void ENGINE_add_conf_module(void);
637
638 /* Deprecated functions ... */
639 /* int ENGINE_clear_defaults(void); */
640
641 /**************************/
642 /* DYNAMIC ENGINE SUPPORT */
643 /**************************/
644
645 /* Binary/behaviour compatibility levels */
646 # define OSSL_DYNAMIC_VERSION            (unsigned long)0x00030000
647 /*
648  * Binary versions older than this are too old for us (whether we're a loader
649  * or a loadee)
650  */
651 # define OSSL_DYNAMIC_OLDEST             (unsigned long)0x00030000
652
653 /*
654  * When compiling an ENGINE entirely as an external shared library, loadable
655  * by the "dynamic" ENGINE, these types are needed. The 'dynamic_fns'
656  * structure type provides the calling application's (or library's) error
657  * functionality and memory management function pointers to the loaded
658  * library. These should be used/set in the loaded library code so that the
659  * loading application's 'state' will be used/changed in all operations. The
660  * 'static_state' pointer allows the loaded library to know if it shares the
661  * same static data as the calling application (or library), and thus whether
662  * these callbacks need to be set or not.
663  */
664 typedef void *(*dyn_MEM_malloc_fn) (size_t, const char *, int);
665 typedef void *(*dyn_MEM_realloc_fn) (void *, size_t, const char *, int);
666 typedef void (*dyn_MEM_free_fn) (void *, const char *, int);
667 typedef struct st_dynamic_MEM_fns {
668     dyn_MEM_malloc_fn malloc_fn;
669     dyn_MEM_realloc_fn realloc_fn;
670     dyn_MEM_free_fn free_fn;
671 } dynamic_MEM_fns;
672 /*
673  * FIXME: Perhaps the memory and locking code (crypto.h) should declare and
674  * use these types so we (and any other dependent code) can simplify a bit??
675  */
676 /* The top-level structure */
677 typedef struct st_dynamic_fns {
678     void *static_state;
679     dynamic_MEM_fns mem_fns;
680 } dynamic_fns;
681
682 /*
683  * The version checking function should be of this prototype. NB: The
684  * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading
685  * code. If this function returns zero, it indicates a (potential) version
686  * incompatibility and the loaded library doesn't believe it can proceed.
687  * Otherwise, the returned value is the (latest) version supported by the
688  * loading library. The loader may still decide that the loaded code's
689  * version is unsatisfactory and could veto the load. The function is
690  * expected to be implemented with the symbol name "v_check", and a default
691  * implementation can be fully instantiated with
692  * IMPLEMENT_DYNAMIC_CHECK_FN().
693  */
694 typedef unsigned long (*dynamic_v_check_fn) (unsigned long ossl_version);
695 # define IMPLEMENT_DYNAMIC_CHECK_FN() \
696         OPENSSL_EXPORT unsigned long v_check(unsigned long v); \
697         OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \
698                 if (v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \
699                 return 0; }
700
701 /*
702  * This function is passed the ENGINE structure to initialise with its own
703  * function and command settings. It should not adjust the structural or
704  * functional reference counts. If this function returns zero, (a) the load
705  * will be aborted, (b) the previous ENGINE state will be memcpy'd back onto
706  * the structure, and (c) the shared library will be unloaded. So
707  * implementations should do their own internal cleanup in failure
708  * circumstances otherwise they could leak. The 'id' parameter, if non-NULL,
709  * represents the ENGINE id that the loader is looking for. If this is NULL,
710  * the shared library can choose to return failure or to initialise a
711  * 'default' ENGINE. If non-NULL, the shared library must initialise only an
712  * ENGINE matching the passed 'id'. The function is expected to be
713  * implemented with the symbol name "bind_engine". A standard implementation
714  * can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where the parameter
715  * 'fn' is a callback function that populates the ENGINE structure and
716  * returns an int value (zero for failure). 'fn' should have prototype;
717  * [static] int fn(ENGINE *e, const char *id);
718  */
719 typedef int (*dynamic_bind_engine) (ENGINE *e, const char *id,
720                                     const dynamic_fns *fns);
721 # define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
722         OPENSSL_EXPORT \
723         int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \
724         OPENSSL_EXPORT \
725         int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
726             if (ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \
727             CRYPTO_set_mem_functions(fns->mem_fns.malloc_fn, \
728                                      fns->mem_fns.realloc_fn, \
729                                      fns->mem_fns.free_fn); \
730         skip_cbs: \
731             if (!fn(e, id)) return 0; \
732             return 1; }
733
734 /*
735  * If the loading application (or library) and the loaded ENGINE library
736  * share the same static data (eg. they're both dynamically linked to the
737  * same libcrypto.so) we need a way to avoid trying to set system callbacks -
738  * this would fail, and for the same reason that it's unnecessary to try. If
739  * the loaded ENGINE has (or gets from through the loader) its own copy of
740  * the libcrypto static data, we will need to set the callbacks. The easiest
741  * way to detect this is to have a function that returns a pointer to some
742  * static data and let the loading application and loaded ENGINE compare
743  * their respective values.
744  */
745 void *ENGINE_get_static_state(void);
746
747 # if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
748 DEPRECATEDIN_1_1_0(void ENGINE_setup_bsd_cryptodev(void))
749 # endif
750
751 int ERR_load_ENGINE_strings(void);
752
753 #  ifdef  __cplusplus
754 }
755 #  endif
756 # endif
757 #endif