Add BN_native2bn and BN_bn2nativepad, for native BIGNUM import/export
[openssl.git] / include / openssl / engine.h
1 /*
2  * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10
11 #ifndef HEADER_ENGINE_H
12 # define HEADER_ENGINE_H
13
14 # include <openssl/opensslconf.h>
15
16 # ifndef OPENSSL_NO_ENGINE
17 # if !OPENSSL_API_1_1_0
18 #  include <openssl/bn.h>
19 #  include <openssl/rsa.h>
20 #  include <openssl/dsa.h>
21 #  include <openssl/dh.h>
22 #  include <openssl/ec.h>
23 #  include <openssl/rand.h>
24 #  include <openssl/ui.h>
25 #  include <openssl/err.h>
26 # endif
27 # include <openssl/ossl_typ.h>
28 # include <openssl/symhacks.h>
29 # include <openssl/x509.h>
30 # include <openssl/engineerr.h>
31 # ifdef  __cplusplus
32 extern "C" {
33 # endif
34
35 /*
36  * These flags are used to control combinations of algorithm (methods) by
37  * bitwise "OR"ing.
38  */
39 # define ENGINE_METHOD_RSA               (unsigned int)0x0001
40 # define ENGINE_METHOD_DSA               (unsigned int)0x0002
41 # define ENGINE_METHOD_DH                (unsigned int)0x0004
42 # define ENGINE_METHOD_RAND              (unsigned int)0x0008
43 # define ENGINE_METHOD_CIPHERS           (unsigned int)0x0040
44 # define ENGINE_METHOD_DIGESTS           (unsigned int)0x0080
45 # define ENGINE_METHOD_PKEY_METHS        (unsigned int)0x0200
46 # define ENGINE_METHOD_PKEY_ASN1_METHS   (unsigned int)0x0400
47 # define ENGINE_METHOD_EC                (unsigned int)0x0800
48 /* Obvious all-or-nothing cases. */
49 # define ENGINE_METHOD_ALL               (unsigned int)0xFFFF
50 # define ENGINE_METHOD_NONE              (unsigned int)0x0000
51
52 /*
53  * This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used
54  * internally to control registration of ENGINE implementations, and can be
55  * set by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to
56  * initialise registered ENGINEs if they are not already initialised.
57  */
58 # define ENGINE_TABLE_FLAG_NOINIT        (unsigned int)0x0001
59
60 /* ENGINE flags that can be set by ENGINE_set_flags(). */
61 /* Not used */
62 /* #define ENGINE_FLAGS_MALLOCED        0x0001 */
63
64 /*
65  * This flag is for ENGINEs that wish to handle the various 'CMD'-related
66  * control commands on their own. Without this flag, ENGINE_ctrl() handles
67  * these control commands on behalf of the ENGINE using their "cmd_defns"
68  * data.
69  */
70 # define ENGINE_FLAGS_MANUAL_CMD_CTRL    (int)0x0002
71
72 /*
73  * This flag is for ENGINEs who return new duplicate structures when found
74  * via "ENGINE_by_id()". When an ENGINE must store state (eg. if
75  * ENGINE_ctrl() commands are called in sequence as part of some stateful
76  * process like key-generation setup and execution), it can set this flag -
77  * then each attempt to obtain the ENGINE will result in it being copied into
78  * a new structure. Normally, ENGINEs don't declare this flag so
79  * ENGINE_by_id() just increments the existing ENGINE's structural reference
80  * count.
81  */
82 # define ENGINE_FLAGS_BY_ID_COPY         (int)0x0004
83
84 /*
85  * This flag if for an ENGINE that does not want its methods registered as
86  * part of ENGINE_register_all_complete() for example if the methods are not
87  * usable as default methods.
88  */
89
90 # define ENGINE_FLAGS_NO_REGISTER_ALL    (int)0x0008
91
92 /*
93  * ENGINEs can support their own command types, and these flags are used in
94  * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input
95  * each command expects. Currently only numeric and string input is
96  * supported. If a control command supports none of the _NUMERIC, _STRING, or
97  * _NO_INPUT options, then it is regarded as an "internal" control command -
98  * and not for use in config setting situations. As such, they're not
99  * available to the ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl()
100  * access. Changes to this list of 'command types' should be reflected
101  * carefully in ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string().
102  */
103
104 /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */
105 # define ENGINE_CMD_FLAG_NUMERIC         (unsigned int)0x0001
106 /*
107  * accepts string input (cast from 'void*' to 'const char *', 4th parameter
108  * to ENGINE_ctrl)
109  */
110 # define ENGINE_CMD_FLAG_STRING          (unsigned int)0x0002
111 /*
112  * Indicates that the control command takes *no* input. Ie. the control
113  * command is unparameterised.
114  */
115 # define ENGINE_CMD_FLAG_NO_INPUT        (unsigned int)0x0004
116 /*
117  * Indicates that the control command is internal. This control command won't
118  * be shown in any output, and is only usable through the ENGINE_ctrl_cmd()
119  * function.
120  */
121 # define ENGINE_CMD_FLAG_INTERNAL        (unsigned int)0x0008
122
123 /*
124  * NB: These 3 control commands are deprecated and should not be used.
125  * ENGINEs relying on these commands should compile conditional support for
126  * compatibility (eg. if these symbols are defined) but should also migrate
127  * the same functionality to their own ENGINE-specific control functions that
128  * can be "discovered" by calling applications. The fact these control
129  * commands wouldn't be "executable" (ie. usable by text-based config)
130  * doesn't change the fact that application code can find and use them
131  * without requiring per-ENGINE hacking.
132  */
133
134 /*
135  * These flags are used to tell the ctrl function what should be done. All
136  * command numbers are shared between all engines, even if some don't make
137  * sense to some engines.  In such a case, they do nothing but return the
138  * error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED.
139  */
140 # define ENGINE_CTRL_SET_LOGSTREAM               1
141 # define ENGINE_CTRL_SET_PASSWORD_CALLBACK       2
142 # define ENGINE_CTRL_HUP                         3/* Close and reinitialise
143                                                    * any handles/connections
144                                                    * etc. */
145 # define ENGINE_CTRL_SET_USER_INTERFACE          4/* Alternative to callback */
146 # define ENGINE_CTRL_SET_CALLBACK_DATA           5/* User-specific data, used
147                                                    * when calling the password
148                                                    * callback and the user
149                                                    * interface */
150 # define ENGINE_CTRL_LOAD_CONFIGURATION          6/* Load a configuration,
151                                                    * given a string that
152                                                    * represents a file name
153                                                    * or so */
154 # define ENGINE_CTRL_LOAD_SECTION                7/* Load data from a given
155                                                    * section in the already
156                                                    * loaded configuration */
157
158 /*
159  * These control commands allow an application to deal with an arbitrary
160  * engine in a dynamic way. Warn: Negative return values indicate errors FOR
161  * THESE COMMANDS because zero is used to indicate 'end-of-list'. Other
162  * commands, including ENGINE-specific command types, return zero for an
163  * error. An ENGINE can choose to implement these ctrl functions, and can
164  * internally manage things however it chooses - it does so by setting the
165  * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise
166  * the ENGINE_ctrl() code handles this on the ENGINE's behalf using the
167  * cmd_defns data (set using ENGINE_set_cmd_defns()). This means an ENGINE's
168  * ctrl() handler need only implement its own commands - the above "meta"
169  * commands will be taken care of.
170  */
171
172 /*
173  * Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not",
174  * then all the remaining control commands will return failure, so it is
175  * worth checking this first if the caller is trying to "discover" the
176  * engine's capabilities and doesn't want errors generated unnecessarily.
177  */
178 # define ENGINE_CTRL_HAS_CTRL_FUNCTION           10
179 /*
180  * Returns a positive command number for the first command supported by the
181  * engine. Returns zero if no ctrl commands are supported.
182  */
183 # define ENGINE_CTRL_GET_FIRST_CMD_TYPE          11
184 /*
185  * The 'long' argument specifies a command implemented by the engine, and the
186  * return value is the next command supported, or zero if there are no more.
187  */
188 # define ENGINE_CTRL_GET_NEXT_CMD_TYPE           12
189 /*
190  * The 'void*' argument is a command name (cast from 'const char *'), and the
191  * return value is the command that corresponds to it.
192  */
193 # define ENGINE_CTRL_GET_CMD_FROM_NAME           13
194 /*
195  * The next two allow a command to be converted into its corresponding string
196  * form. In each case, the 'long' argument supplies the command. In the
197  * NAME_LEN case, the return value is the length of the command name (not
198  * counting a trailing EOL). In the NAME case, the 'void*' argument must be a
199  * string buffer large enough, and it will be populated with the name of the
200  * command (WITH a trailing EOL).
201  */
202 # define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD       14
203 # define ENGINE_CTRL_GET_NAME_FROM_CMD           15
204 /* The next two are similar but give a "short description" of a command. */
205 # define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD       16
206 # define ENGINE_CTRL_GET_DESC_FROM_CMD           17
207 /*
208  * With this command, the return value is the OR'd combination of
209  * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given
210  * engine-specific ctrl command expects.
211  */
212 # define ENGINE_CTRL_GET_CMD_FLAGS               18
213
214 /*
215  * ENGINE implementations should start the numbering of their own control
216  * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc).
217  */
218 # define ENGINE_CMD_BASE                         200
219
220 /*
221  * NB: These 2 nCipher "chil" control commands are deprecated, and their
222  * functionality is now available through ENGINE-specific control commands
223  * (exposed through the above-mentioned 'CMD'-handling). Code using these 2
224  * commands should be migrated to the more general command handling before
225  * these are removed.
226  */
227
228 /* Flags specific to the nCipher "chil" engine */
229 # define ENGINE_CTRL_CHIL_SET_FORKCHECK          100
230         /*
231          * Depending on the value of the (long)i argument, this sets or
232          * unsets the SimpleForkCheck flag in the CHIL API to enable or
233          * disable checking and workarounds for applications that fork().
234          */
235 # define ENGINE_CTRL_CHIL_NO_LOCKING             101
236         /*
237          * This prevents the initialisation function from providing mutex
238          * callbacks to the nCipher library.
239          */
240
241 /*
242  * If an ENGINE supports its own specific control commands and wishes the
243  * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on
244  * its behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN
245  * entries to ENGINE_set_cmd_defns(). It should also implement a ctrl()
246  * handler that supports the stated commands (ie. the "cmd_num" entries as
247  * described by the array). NB: The array must be ordered in increasing order
248  * of cmd_num. "null-terminated" means that the last ENGINE_CMD_DEFN element
249  * has cmd_num set to zero and/or cmd_name set to NULL.
250  */
251 typedef struct ENGINE_CMD_DEFN_st {
252     unsigned int cmd_num;       /* The command number */
253     const char *cmd_name;       /* The command name itself */
254     const char *cmd_desc;       /* A short description of the command */
255     unsigned int cmd_flags;     /* The input the command expects */
256 } ENGINE_CMD_DEFN;
257
258 /* Generic function pointer */
259 typedef int (*ENGINE_GEN_FUNC_PTR) (void);
260 /* Generic function pointer taking no arguments */
261 typedef int (*ENGINE_GEN_INT_FUNC_PTR) (ENGINE *);
262 /* Specific control function pointer */
263 typedef int (*ENGINE_CTRL_FUNC_PTR) (ENGINE *, int, long, void *,
264                                      void (*f) (void));
265 /* Generic load_key function pointer */
266 typedef EVP_PKEY *(*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *,
267                                          UI_METHOD *ui_method,
268                                          void *callback_data);
269 typedef int (*ENGINE_SSL_CLIENT_CERT_PTR) (ENGINE *, SSL *ssl,
270                                            STACK_OF(X509_NAME) *ca_dn,
271                                            X509 **pcert, EVP_PKEY **pkey,
272                                            STACK_OF(X509) **pother,
273                                            UI_METHOD *ui_method,
274                                            void *callback_data);
275 /*-
276  * These callback types are for an ENGINE's handler for cipher and digest logic.
277  * These handlers have these prototypes;
278  *   int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
279  *   int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid);
280  * Looking at how to implement these handlers in the case of cipher support, if
281  * the framework wants the EVP_CIPHER for 'nid', it will call;
282  *   foo(e, &p_evp_cipher, NULL, nid);    (return zero for failure)
283  * If the framework wants a list of supported 'nid's, it will call;
284  *   foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error)
285  */
286 /*
287  * Returns to a pointer to the array of supported cipher 'nid's. If the
288  * second parameter is non-NULL it is set to the size of the returned array.
289  */
290 typedef int (*ENGINE_CIPHERS_PTR) (ENGINE *, const EVP_CIPHER **,
291                                    const int **, int);
292 typedef int (*ENGINE_DIGESTS_PTR) (ENGINE *, const EVP_MD **, const int **,
293                                    int);
294 typedef int (*ENGINE_PKEY_METHS_PTR) (ENGINE *, EVP_PKEY_METHOD **,
295                                       const int **, int);
296 typedef int (*ENGINE_PKEY_ASN1_METHS_PTR) (ENGINE *, EVP_PKEY_ASN1_METHOD **,
297                                            const int **, int);
298 /*
299  * STRUCTURE functions ... all of these functions deal with pointers to
300  * ENGINE structures where the pointers have a "structural reference". This
301  * means that their reference is to allowed access to the structure but it
302  * does not imply that the structure is functional. To simply increment or
303  * decrement the structural reference count, use ENGINE_by_id and
304  * ENGINE_free. NB: This is not required when iterating using ENGINE_get_next
305  * as it will automatically decrement the structural reference count of the
306  * "current" ENGINE and increment the structural reference count of the
307  * ENGINE it returns (unless it is NULL).
308  */
309
310 /* Get the first/last "ENGINE" type available. */
311 ENGINE *ENGINE_get_first(void);
312 ENGINE *ENGINE_get_last(void);
313 /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
314 ENGINE *ENGINE_get_next(ENGINE *e);
315 ENGINE *ENGINE_get_prev(ENGINE *e);
316 /* Add another "ENGINE" type into the array. */
317 int ENGINE_add(ENGINE *e);
318 /* Remove an existing "ENGINE" type from the array. */
319 int ENGINE_remove(ENGINE *e);
320 /* Retrieve an engine from the list by its unique "id" value. */
321 ENGINE *ENGINE_by_id(const char *id);
322
323 #if !OPENSSL_API_1_1_0
324 # define ENGINE_load_openssl() \
325     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_OPENSSL, NULL)
326 # define ENGINE_load_dynamic() \
327     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_DYNAMIC, NULL)
328 # ifndef OPENSSL_NO_STATIC_ENGINE
329 #  define ENGINE_load_padlock() \
330     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_PADLOCK, NULL)
331 #  define ENGINE_load_capi() \
332     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CAPI, NULL)
333 #  define ENGINE_load_afalg() \
334     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_AFALG, NULL)
335 # endif
336 # define ENGINE_load_cryptodev() \
337     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CRYPTODEV, NULL)
338 # define ENGINE_load_rdrand() \
339     OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_RDRAND, NULL)
340 #endif
341 void ENGINE_load_builtin_engines(void);
342
343 /*
344  * Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation
345  * "registry" handling.
346  */
347 unsigned int ENGINE_get_table_flags(void);
348 void ENGINE_set_table_flags(unsigned int flags);
349
350 /*- Manage registration of ENGINEs per "table". For each type, there are 3
351  * functions;
352  *   ENGINE_register_***(e) - registers the implementation from 'e' (if it has one)
353  *   ENGINE_unregister_***(e) - unregister the implementation from 'e'
354  *   ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list
355  * Cleanup is automatically registered from each table when required.
356  */
357
358 int ENGINE_register_RSA(ENGINE *e);
359 void ENGINE_unregister_RSA(ENGINE *e);
360 void ENGINE_register_all_RSA(void);
361
362 int ENGINE_register_DSA(ENGINE *e);
363 void ENGINE_unregister_DSA(ENGINE *e);
364 void ENGINE_register_all_DSA(void);
365
366 int ENGINE_register_EC(ENGINE *e);
367 void ENGINE_unregister_EC(ENGINE *e);
368 void ENGINE_register_all_EC(void);
369
370 int ENGINE_register_DH(ENGINE *e);
371 void ENGINE_unregister_DH(ENGINE *e);
372 void ENGINE_register_all_DH(void);
373
374 int ENGINE_register_RAND(ENGINE *e);
375 void ENGINE_unregister_RAND(ENGINE *e);
376 void ENGINE_register_all_RAND(void);
377
378 int ENGINE_register_ciphers(ENGINE *e);
379 void ENGINE_unregister_ciphers(ENGINE *e);
380 void ENGINE_register_all_ciphers(void);
381
382 int ENGINE_register_digests(ENGINE *e);
383 void ENGINE_unregister_digests(ENGINE *e);
384 void ENGINE_register_all_digests(void);
385
386 int ENGINE_register_pkey_meths(ENGINE *e);
387 void ENGINE_unregister_pkey_meths(ENGINE *e);
388 void ENGINE_register_all_pkey_meths(void);
389
390 int ENGINE_register_pkey_asn1_meths(ENGINE *e);
391 void ENGINE_unregister_pkey_asn1_meths(ENGINE *e);
392 void ENGINE_register_all_pkey_asn1_meths(void);
393
394 /*
395  * These functions register all support from the above categories. Note, use
396  * of these functions can result in static linkage of code your application
397  * may not need. If you only need a subset of functionality, consider using
398  * more selective initialisation.
399  */
400 int ENGINE_register_complete(ENGINE *e);
401 int ENGINE_register_all_complete(void);
402
403 /*
404  * Send parameterised control commands to the engine. The possibilities to
405  * send down an integer, a pointer to data or a function pointer are
406  * provided. Any of the parameters may or may not be NULL, depending on the
407  * command number. In actuality, this function only requires a structural
408  * (rather than functional) reference to an engine, but many control commands
409  * may require the engine be functional. The caller should be aware of trying
410  * commands that require an operational ENGINE, and only use functional
411  * references in such situations.
412  */
413 int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
414
415 /*
416  * This function tests if an ENGINE-specific command is usable as a
417  * "setting". Eg. in an application's config file that gets processed through
418  * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to
419  * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl().
420  */
421 int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
422
423 /*
424  * This function works like ENGINE_ctrl() with the exception of taking a
425  * command name instead of a command number, and can handle optional
426  * commands. See the comment on ENGINE_ctrl_cmd_string() for an explanation
427  * on how to use the cmd_name and cmd_optional.
428  */
429 int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
430                     long i, void *p, void (*f) (void), int cmd_optional);
431
432 /*
433  * This function passes a command-name and argument to an ENGINE. The
434  * cmd_name is converted to a command number and the control command is
435  * called using 'arg' as an argument (unless the ENGINE doesn't support such
436  * a command, in which case no control command is called). The command is
437  * checked for input flags, and if necessary the argument will be converted
438  * to a numeric value. If cmd_optional is non-zero, then if the ENGINE
439  * doesn't support the given cmd_name the return value will be success
440  * anyway. This function is intended for applications to use so that users
441  * (or config files) can supply engine-specific config data to the ENGINE at
442  * run-time to control behaviour of specific engines. As such, it shouldn't
443  * be used for calling ENGINE_ctrl() functions that return data, deal with
444  * binary data, or that are otherwise supposed to be used directly through
445  * ENGINE_ctrl() in application code. Any "return" data from an ENGINE_ctrl()
446  * operation in this function will be lost - the return value is interpreted
447  * as failure if the return value is zero, success otherwise, and this
448  * function returns a boolean value as a result. In other words, vendors of
449  * 'ENGINE'-enabled devices should write ENGINE implementations with
450  * parameterisations that work in this scheme, so that compliant ENGINE-based
451  * applications can work consistently with the same configuration for the
452  * same ENGINE-enabled devices, across applications.
453  */
454 int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
455                            int cmd_optional);
456
457 /*
458  * These functions are useful for manufacturing new ENGINE structures. They
459  * don't address reference counting at all - one uses them to populate an
460  * ENGINE structure with personalised implementations of things prior to
461  * using it directly or adding it to the builtin ENGINE list in OpenSSL.
462  * These are also here so that the ENGINE structure doesn't have to be
463  * exposed and break binary compatibility!
464  */
465 ENGINE *ENGINE_new(void);
466 int ENGINE_free(ENGINE *e);
467 int ENGINE_up_ref(ENGINE *e);
468 int ENGINE_set_id(ENGINE *e, const char *id);
469 int ENGINE_set_name(ENGINE *e, const char *name);
470 int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
471 int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
472 int ENGINE_set_EC(ENGINE *e, const EC_KEY_METHOD *ecdsa_meth);
473 int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
474 int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
475 int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
476 int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
477 int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
478 int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
479 int ENGINE_set_load_privkey_function(ENGINE *e,
480                                      ENGINE_LOAD_KEY_PTR loadpriv_f);
481 int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
482 int ENGINE_set_load_ssl_client_cert_function(ENGINE *e,
483                                              ENGINE_SSL_CLIENT_CERT_PTR
484                                              loadssl_f);
485 int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
486 int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
487 int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f);
488 int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f);
489 int ENGINE_set_flags(ENGINE *e, int flags);
490 int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
491 /* These functions allow control over any per-structure ENGINE data. */
492 #define ENGINE_get_ex_new_index(l, p, newf, dupf, freef) \
493     CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ENGINE, l, p, newf, dupf, freef)
494 int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
495 void *ENGINE_get_ex_data(const ENGINE *e, int idx);
496
497 #if !OPENSSL_API_1_1_0
498 /*
499  * This function previously cleaned up anything that needs it. Auto-deinit will
500  * now take care of it so it is no longer required to call this function.
501  */
502 # define ENGINE_cleanup() while(0) continue
503 #endif
504
505 /*
506  * These return values from within the ENGINE structure. These can be useful
507  * with functional references as well as structural references - it depends
508  * which you obtained. Using the result for functional purposes if you only
509  * obtained a structural reference may be problematic!
510  */
511 const char *ENGINE_get_id(const ENGINE *e);
512 const char *ENGINE_get_name(const ENGINE *e);
513 const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
514 const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
515 const EC_KEY_METHOD *ENGINE_get_EC(const ENGINE *e);
516 const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
517 const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
518 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
519 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
520 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
521 ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
522 ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
523 ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
524 ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE
525                                                                *e);
526 ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
527 ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
528 ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e);
529 ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e);
530 const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
531 const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
532 const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid);
533 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid);
534 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e,
535                                                           const char *str,
536                                                           int len);
537 const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe,
538                                                       const char *str,
539                                                       int len);
540 const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
541 int ENGINE_get_flags(const ENGINE *e);
542
543 /*
544  * FUNCTIONAL functions. These functions deal with ENGINE structures that
545  * have (or will) be initialised for use. Broadly speaking, the structural
546  * functions are useful for iterating the list of available engine types,
547  * creating new engine types, and other "list" operations. These functions
548  * actually deal with ENGINEs that are to be used. As such these functions
549  * can fail (if applicable) when particular engines are unavailable - eg. if
550  * a hardware accelerator is not attached or not functioning correctly. Each
551  * ENGINE has 2 reference counts; structural and functional. Every time a
552  * functional reference is obtained or released, a corresponding structural
553  * reference is automatically obtained or released too.
554  */
555
556 /*
557  * Initialise a engine type for use (or up its reference count if it's
558  * already in use). This will fail if the engine is not currently operational
559  * and cannot initialise.
560  */
561 int ENGINE_init(ENGINE *e);
562 /*
563  * Free a functional reference to a engine type. This does not require a
564  * corresponding call to ENGINE_free as it also releases a structural
565  * reference.
566  */
567 int ENGINE_finish(ENGINE *e);
568
569 /*
570  * The following functions handle keys that are stored in some secondary
571  * location, handled by the engine.  The storage may be on a card or
572  * whatever.
573  */
574 EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
575                                   UI_METHOD *ui_method, void *callback_data);
576 EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
577                                  UI_METHOD *ui_method, void *callback_data);
578 int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s,
579                                 STACK_OF(X509_NAME) *ca_dn, X509 **pcert,
580                                 EVP_PKEY **ppkey, STACK_OF(X509) **pother,
581                                 UI_METHOD *ui_method, void *callback_data);
582
583 /*
584  * This returns a pointer for the current ENGINE structure that is (by
585  * default) performing any RSA operations. The value returned is an
586  * incremented reference, so it should be free'd (ENGINE_finish) before it is
587  * discarded.
588  */
589 ENGINE *ENGINE_get_default_RSA(void);
590 /* Same for the other "methods" */
591 ENGINE *ENGINE_get_default_DSA(void);
592 ENGINE *ENGINE_get_default_EC(void);
593 ENGINE *ENGINE_get_default_DH(void);
594 ENGINE *ENGINE_get_default_RAND(void);
595 /*
596  * These functions can be used to get a functional reference to perform
597  * ciphering or digesting corresponding to "nid".
598  */
599 ENGINE *ENGINE_get_cipher_engine(int nid);
600 ENGINE *ENGINE_get_digest_engine(int nid);
601 ENGINE *ENGINE_get_pkey_meth_engine(int nid);
602 ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid);
603
604 /*
605  * This sets a new default ENGINE structure for performing RSA operations. If
606  * the result is non-zero (success) then the ENGINE structure will have had
607  * its reference count up'd so the caller should still free their own
608  * reference 'e'.
609  */
610 int ENGINE_set_default_RSA(ENGINE *e);
611 int ENGINE_set_default_string(ENGINE *e, const char *def_list);
612 /* Same for the other "methods" */
613 int ENGINE_set_default_DSA(ENGINE *e);
614 int ENGINE_set_default_EC(ENGINE *e);
615 int ENGINE_set_default_DH(ENGINE *e);
616 int ENGINE_set_default_RAND(ENGINE *e);
617 int ENGINE_set_default_ciphers(ENGINE *e);
618 int ENGINE_set_default_digests(ENGINE *e);
619 int ENGINE_set_default_pkey_meths(ENGINE *e);
620 int ENGINE_set_default_pkey_asn1_meths(ENGINE *e);
621
622 /*
623  * The combination "set" - the flags are bitwise "OR"d from the
624  * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()"
625  * function, this function can result in unnecessary static linkage. If your
626  * application requires only specific functionality, consider using more
627  * selective functions.
628  */
629 int ENGINE_set_default(ENGINE *e, unsigned int flags);
630
631 void ENGINE_add_conf_module(void);
632
633 /* Deprecated functions ... */
634 /* int ENGINE_clear_defaults(void); */
635
636 /**************************/
637 /* DYNAMIC ENGINE SUPPORT */
638 /**************************/
639
640 /* Binary/behaviour compatibility levels */
641 # define OSSL_DYNAMIC_VERSION            (unsigned long)0x00030000
642 /*
643  * Binary versions older than this are too old for us (whether we're a loader
644  * or a loadee)
645  */
646 # define OSSL_DYNAMIC_OLDEST             (unsigned long)0x00030000
647
648 /*
649  * When compiling an ENGINE entirely as an external shared library, loadable
650  * by the "dynamic" ENGINE, these types are needed. The 'dynamic_fns'
651  * structure type provides the calling application's (or library's) error
652  * functionality and memory management function pointers to the loaded
653  * library. These should be used/set in the loaded library code so that the
654  * loading application's 'state' will be used/changed in all operations. The
655  * 'static_state' pointer allows the loaded library to know if it shares the
656  * same static data as the calling application (or library), and thus whether
657  * these callbacks need to be set or not.
658  */
659 typedef void *(*dyn_MEM_malloc_fn) (size_t, const char *, int);
660 typedef void *(*dyn_MEM_realloc_fn) (void *, size_t, const char *, int);
661 typedef void (*dyn_MEM_free_fn) (void *, const char *, int);
662 typedef struct st_dynamic_MEM_fns {
663     dyn_MEM_malloc_fn malloc_fn;
664     dyn_MEM_realloc_fn realloc_fn;
665     dyn_MEM_free_fn free_fn;
666 } dynamic_MEM_fns;
667 /*
668  * FIXME: Perhaps the memory and locking code (crypto.h) should declare and
669  * use these types so we (and any other dependent code) can simplify a bit??
670  */
671 /* The top-level structure */
672 typedef struct st_dynamic_fns {
673     void *static_state;
674     dynamic_MEM_fns mem_fns;
675 } dynamic_fns;
676
677 /*
678  * The version checking function should be of this prototype. NB: The
679  * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading
680  * code. If this function returns zero, it indicates a (potential) version
681  * incompatibility and the loaded library doesn't believe it can proceed.
682  * Otherwise, the returned value is the (latest) version supported by the
683  * loading library. The loader may still decide that the loaded code's
684  * version is unsatisfactory and could veto the load. The function is
685  * expected to be implemented with the symbol name "v_check", and a default
686  * implementation can be fully instantiated with
687  * IMPLEMENT_DYNAMIC_CHECK_FN().
688  */
689 typedef unsigned long (*dynamic_v_check_fn) (unsigned long ossl_version);
690 # define IMPLEMENT_DYNAMIC_CHECK_FN() \
691         OPENSSL_EXPORT unsigned long v_check(unsigned long v); \
692         OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \
693                 if (v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \
694                 return 0; }
695
696 /*
697  * This function is passed the ENGINE structure to initialise with its own
698  * function and command settings. It should not adjust the structural or
699  * functional reference counts. If this function returns zero, (a) the load
700  * will be aborted, (b) the previous ENGINE state will be memcpy'd back onto
701  * the structure, and (c) the shared library will be unloaded. So
702  * implementations should do their own internal cleanup in failure
703  * circumstances otherwise they could leak. The 'id' parameter, if non-NULL,
704  * represents the ENGINE id that the loader is looking for. If this is NULL,
705  * the shared library can choose to return failure or to initialise a
706  * 'default' ENGINE. If non-NULL, the shared library must initialise only an
707  * ENGINE matching the passed 'id'. The function is expected to be
708  * implemented with the symbol name "bind_engine". A standard implementation
709  * can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where the parameter
710  * 'fn' is a callback function that populates the ENGINE structure and
711  * returns an int value (zero for failure). 'fn' should have prototype;
712  * [static] int fn(ENGINE *e, const char *id);
713  */
714 typedef int (*dynamic_bind_engine) (ENGINE *e, const char *id,
715                                     const dynamic_fns *fns);
716 # define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
717         OPENSSL_EXPORT \
718         int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \
719         OPENSSL_EXPORT \
720         int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
721             if (ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \
722             CRYPTO_set_mem_functions(fns->mem_fns.malloc_fn, \
723                                      fns->mem_fns.realloc_fn, \
724                                      fns->mem_fns.free_fn); \
725         skip_cbs: \
726             if (!fn(e, id)) return 0; \
727             return 1; }
728
729 /*
730  * If the loading application (or library) and the loaded ENGINE library
731  * share the same static data (eg. they're both dynamically linked to the
732  * same libcrypto.so) we need a way to avoid trying to set system callbacks -
733  * this would fail, and for the same reason that it's unnecessary to try. If
734  * the loaded ENGINE has (or gets from through the loader) its own copy of
735  * the libcrypto static data, we will need to set the callbacks. The easiest
736  * way to detect this is to have a function that returns a pointer to some
737  * static data and let the loading application and loaded ENGINE compare
738  * their respective values.
739  */
740 void *ENGINE_get_static_state(void);
741
742 # if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
743 DEPRECATEDIN_1_1_0(void ENGINE_setup_bsd_cryptodev(void))
744 # endif
745
746
747 #  ifdef  __cplusplus
748 }
749 #  endif
750 # endif
751 #endif