Documentation updates due to naming tweaks
[openssl.git] / doc / man7 / provider.pod
1 =pod
2
3 =head1 NAME
4
5 provider - OpenSSL operation implementation providers
6
7 =head1 SYNOPSIS
8
9 =for openssl generic
10
11 #include <openssl/provider.h>
12
13 =head1 DESCRIPTION
14
15 =head2 General
16
17 A I<provider>, in OpenSSL terms, is a unit of code that provides one
18 or more implementations for various operations for diverse algorithms
19 that one might want to perform.
20
21 An I<operation> is something one wants to do, such as encryption and
22 decryption, key derivation, MAC calculation, signing and verification,
23 etc.
24
25 An I<algorithm> is a named method to perform an operation.
26 Very often, the algorithms revolve around cryptographic operations,
27 but may also revolve around other types of operation, such as managing
28 certain types of objects.
29
30 =head2 Provider
31
32 I<NOTE: This section is mostly interesting for provider authors.>
33
34 A I<provider> offers an initialization function, as a set of base
35 functions in the form of an B<OSSL_DISPATCH> array, and by extension,
36 a set of B<OSSL_ALGORITHM>s (see L<openssl-core.h(7)>).
37 It may be a dynamically loadable module, or may be built-in, in
38 OpenSSL libraries or in the application.
39 If it's a dynamically loadable module, the initialization function
40 must be named C<OSSL_provider_init> and must be exported.
41 If it's built-in, the initialization function may have any name.
42
43 The initialization function must have the following signature:
44
45  int NAME(const OSSL_PROVIDER *provider,
46           const OSSL_DISPATCH *in, const OSSL_DISPATCH **out,
47           void **provctx);
48
49 I<provider> is the OpenSSL library object for the provider, and works
50 as a handle for everything the OpenSSL libraries need to know about
51 the provider.
52 For the provider itself, it may hold some interesting information,
53 and is also passed to some of the functions given in the dispatch
54 array I<in>.
55
56 I<in> is a dispatch array of base functions offered by the OpenSSL
57 libraries, and the available functions are further described in
58 L<provider-base(7)>.
59
60 I<*out> must be assigned a dispatch array of base functions that the
61 provider offers to the OpenSSL libraries.
62 The functions that may be offered are further described in
63 L<provider-base(7)>, and they are the central means of communication
64 between the OpenSSL libraries and the provider.
65
66 I<*provctx> should be assigned a provider specific context to allow
67 the provider multiple simultaneous uses.
68 This pointer will be passed to various operation functions offered by
69 the provider.
70
71 One of the functions the provider offers to the OpenSSL libraries is
72 the central mechanism for the OpenSSL libraries to get access to
73 operation implementations for diverse algorithms.
74 Its referred to with the number B<OSSL_FUNC_PROVIDER_QUERY_OPERATION>
75 and has the following signature:
76
77  const OSSL_ALGORITHM *provider_query_operation(void *provctx,
78                                                 int operation_id,
79                                                 const int *no_store);
80
81 I<provctx> is the provider specific context that was passed back by
82 the initialization function.
83
84 I<operation_id> is an operation identity (see L</Operations> below).
85
86 I<no_store> is a flag back to the OpenSSL libraries which, when
87 nonzero, signifies that the OpenSSL libraries will not store a
88 reference to the returned data in their internal store of
89 implementations.
90
91 The returned B<OSSL_ALGORITHM> is the foundation of any OpenSSL
92 library API that uses providers for their implementation, most
93 commonly in the I<fetching> type of functions
94 (see L</Fetching algorithms> below).
95
96 =head2 Operations
97
98 I<NOTE: This section is mostly interesting for provider authors.>
99
100 Operations are referred to with numbers, via macros with names
101 starting with C<OSSL_OP_>.
102
103 With each operation comes a set of defined function types that a
104 provider may or may not offer, depending on its needs.
105
106 Currently available operations are:
107
108 =over 4
109
110 =item Digests
111
112 In the OpenSSL libraries, the corresponding method object is
113 B<EVP_MD>.
114 The number for this operation is B<OSSL_OP_DIGEST>.
115 The functions the provider can offer are described in
116 L<provider-digest(7)>
117
118 =item Symmetric ciphers
119
120 In the OpenSSL libraries, the corresponding method object is
121 B<EVP_CIPHER>.
122 The number for this operation is B<OSSL_OP_CIPHER>.
123 The functions the provider can offer are described in
124 L<provider-cipher(7)>
125
126 =item Message Authentication Code (MAC)
127
128 In the OpenSSL libraries, the corresponding method object is
129 B<EVP_MAC>.
130 The number for this operation is B<OSSL_OP_MAC>.
131 The functions the provider can offer are described in
132 L<provider-mac(7)>
133
134 =item Key Derivation Function (KDF)
135
136 In the OpenSSL libraries, the corresponding method object is
137 B<EVP_KDF>.
138 The number for this operation is B<OSSL_OP_KDF>.
139 The functions the provider can offer are described in
140 L<provider-kdf(7)>
141
142 =item Key Exchange
143
144 In the OpenSSL libraries, the corresponding method object is
145 B<EVP_KEYEXCH>.
146 The number for this operation is B<OSSL_OP_KEYEXCH>.
147 The functions the provider can offer are described in
148 L<provider-keyexch(7)>
149
150 =back
151
152 =head2 Fetching algorithms
153
154 =head3 Explicit fetch
155
156 I<NOTE: This section is mostly interesting to OpenSSL users.>
157
158 Users of the OpenSSL libraries never query the provider directly for
159 its diverse implementations and dispatch tables.
160 Instead, the diverse OpenSSL APIs often have fetching functions that
161 do the work, and they return an appropriate method object back to the
162 user.
163 These functions usually have the name C<APINAME_fetch>, where
164 C<APINAME> is the name of the API, for example L<EVP_MD_fetch(3)>.
165
166 These fetching functions follow a fairly common pattern, where three
167 arguments are passed:
168
169 =over 4
170
171 =item The library context
172
173 See L<OPENSSL_CTX(3)> for a more detailed description.
174 This may be NULL to signify the default (global) library context, or a
175 context created by the user.
176 Only providers loaded in this library context (see
177 L<OSSL_PROVIDER_load(3)>) will be considered by the fetching
178 function.
179
180 =item An identifier
181
182 This is most commonly an algorithm name (this is the case for all EVP
183 methods), but may also be called something else.
184
185 =for comment For example, an OSSL_STORE implementation would use the
186 URI scheme as an identifier.
187
188 =item A property query string
189
190 See L<property(7)> for a more detailed description.
191 This is used to select more exactly which providers will get to offer
192 an implementation.
193
194 =back
195
196 The method object that is fetched can then be used with diverse other
197 functions that use them, for example L<EVP_DigestInit_ex(3)>.
198
199 =head3 Implicit fetch
200
201 I<NOTE: This section is mostly interesting to OpenSSL users.>
202
203 OpenSSL has a number of functions that return a method object with no
204 associated implementation, such as L<EVP_sha256(3)>,
205 L<EVP_blake2b512(3)> or L<EVP_aes_128_cbc(3)>, which are present for
206 compatibility with OpenSSL before version 3.0.
207
208 When they are used with functions like L<EVP_DigestInit_ex(3)> or
209 L<EVP_CipherInit_ex(3)>, the actual implementation to be used is
210 fetched implicitly using default search criteria.
211
212 Implicit fetching can also occur with functions such as
213 L<EVP_PKEY_CTX_derive_init_ex(3)> where a NULL algorithm parameter is
214 supplied.
215 In this case an algorithm implementation is implicitly fetched using
216 default search criteria and an algorithm name that is consistent with
217 the type of EVP_PKEY being used.
218
219 =head3 Algorithm naming
220
221 Algorithm names are case insensitive. Any particular algorithm can have multiple
222 aliases associated with it. The canonical OpenSSL naming scheme follows this
223 format:
224
225 ALGNAME[VERSION?][-SUBNAME[VERSION?]?][-SIZE?][-MODE?]
226
227 VERSION is only present if there are multiple versions of an algorithm (e.g.
228 MD2, MD4, MD5).  It may be omitted if there is only one version.
229
230 SUBNAME may be present where multiple algorithms are combined together,
231 e.g. MD5-SHA1.
232
233 SIZE is only present if multiple versions of an algorithm exist with different
234 sizes (e.g. AES-128-CBC, AES-256-CBC)
235
236 MODE is only present where applicable.
237
238 Other aliases may exist for example where standards bodies or common practice
239 use alternative names or names that OpenSSL has used historically.
240
241 =head1 OPENSSL PROVIDERS
242
243 OpenSSL comes with a set of providers.
244
245 The algorithms available in each of these providers may vary due to build time
246 configuration options. The L<openssl-list(1)> command can be used to list the
247 currently available algorithms.
248
249 The names of the algorithms shown from L<openssl-list(1)> can be used as an
250 algorithm identifier to the appropriate fetching function.
251
252 =head2 Default provider
253
254 The default provider is built in as part of the F<libcrypto> library.
255 Should it be needed (if other providers are loaded and offer
256 implementations of the same algorithms), the property "default=yes"
257 can be used as a search criterion for these implementations.
258
259 =head2 FIPS provider
260
261 The FIPS provider is a dynamically loadable module, and must therefore
262 be loaded explicitly, either in code or through OpenSSL configuration
263 (see L<config(5)>).
264 Should it be needed (if other providers are loaded and offer
265 implementations of the same algorithms), the property "fips=yes" can
266 be used as a search criterion for these implementations.
267
268 =head2 Legacy provider
269
270 The legacy provider is a dynamically loadable module, and must therefore
271 be loaded explicitly, either in code or through OpenSSL configuration
272 (see L<config(5)>).
273 Should it be needed (if other providers are loaded and offer
274 implementations of the same algorithms), the property "legacy=yes" can be
275 used as a search criterion for these implementations.
276
277 =head1 EXAMPLES
278
279 =head2 Fetching
280
281 Fetch any available implementation of SHA2-256 in the default context:
282
283  EVP_MD *md = EVP_MD_fetch(NULL, "SHA2-256", NULL);
284  ...
285  EVP_MD_meth_free(md);
286
287 Fetch any available implementation of AES-128-CBC in the default context:
288
289  EVP_CIPHER *cipher = EVP_CIPHER_fetch(NULL, "AES-128-CBC", NULL);
290  ...
291  EVP_CIPHER_meth_free(cipher);
292
293 Fetch an implementation of SHA2-256 from the default provider in the default
294 context:
295
296  EVP_MD *md = EVP_MD_fetch(NULL, "SHA2-256", "default=yes");
297  ...
298  EVP_MD_meth_free(md);
299
300 Fetch an implementation of SHA2-256 that is not from the default provider in the
301 default context:
302
303  EVP_MD *md = EVP_MD_fetch(NULL, "SHA2-256", "default=no");
304  ...
305  EVP_MD_meth_free(md);
306
307 Fetch an implementation of SHA2-256 from the default provider in the specified
308 context:
309
310  EVP_MD *md = EVP_MD_fetch(ctx, "SHA2-256", "default=yes");
311  ...
312  EVP_MD_meth_free(md);
313
314 Load the legacy provider into the default context and then fetch an
315 implementation of WHIRLPOOL from it:
316
317  /* This only needs to be done once - usually at application start up */
318  OSSL_PROVIDER *legacy = OSSL_PROVIDER_load(NULL, "legacy");
319
320  EVP_MD *md = EVP_MD_fetch(NULL, "WHIRLPOOL", "legacy=yes");
321  ...
322  EVP_MD_meth_free(md);
323
324 Note that in the above example the property string "legacy=yes" is optional
325 since, assuming no other providers have been loaded, the only implementation of
326 the "whirlpool" algorithm is in the "legacy" provider. Also note that the
327 default provider should be explicitly loaded if it is required in addition to
328 other providers:
329
330  /* This only needs to be done once - usually at application start up */
331  OSSL_PROVIDER *legacy = OSSL_PROVIDER_load(NULL, "legacy");
332  OSSL_PROVIDER *default = OSSL_PROVIDER_load(NULL, "default");
333
334  EVP_MD *md_whirlpool = EVP_MD_fetch(NULL, "whirlpool", NULL);
335  EVP_MD *md_sha256 = EVP_MD_fetch(NULL, "SHA2-256", NULL);
336  ...
337  EVP_MD_meth_free(md_whirlpool);
338  EVP_MD_meth_free(md_sha256);
339
340
341 =head1 SEE ALSO
342
343 L<EVP_DigestInit_ex(3)>, L<EVP_EncryptInit_ex(3)>,
344 L<EVP_PKEY_derive_init_ex(3)>, 
345 L<OPENSSL_CTX(3)>,
346 L<EVP_set_default_properties(3)>,
347 L<EVP_MD_fetch(3)>,
348 L<EVP_CIPHER_fetch(3)>,
349 L<EVP_KEYMGMT_fetch(3)>,
350 L<openssl-core.h(7)>,
351 L<provider-base(7)>,
352 L<provider-digest(7)>,
353 L<provider-cipher(7)>,
354 L<provider-keyexch(7)>
355
356 =head1 HISTORY
357
358 The concept of providers and everything surrounding them was
359 introduced in OpenSSL 3.0.
360
361 =head1 COPYRIGHT
362
363 Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
364
365 Licensed under the Apache License 2.0 (the "License").  You may not use
366 this file except in compliance with the License.  You can obtain a copy
367 in the file LICENSE in the source distribution or at
368 L<https://www.openssl.org/source/license.html>.
369
370 =cut