Add some performance notes about early data
[openssl.git] / doc / man3 / DES_random_key.pod
1 =pod
2
3 =head1 NAME
4
5 DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
6 DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
7 DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
8 DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
9 DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
10 DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
11 DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
12 DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
13 DES_fcrypt, DES_crypt - DES encryption
14
15 =head1 SYNOPSIS
16
17  #include <openssl/des.h>
18
19  void DES_random_key(DES_cblock *ret);
20
21  int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
22  int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
23  int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule);
24  void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule);
25
26  void DES_set_odd_parity(DES_cblock *key);
27  int DES_is_weak_key(const_DES_cblock *key);
28
29  void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
30                       DES_key_schedule *ks, int enc);
31  void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
32                        DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
33  void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
34                        DES_key_schedule *ks1, DES_key_schedule *ks2,
35                        DES_key_schedule *ks3, int enc);
36
37  void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
38                        long length, DES_key_schedule *schedule, DES_cblock *ivec,
39                        int enc);
40  void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
41                       int numbits, long length, DES_key_schedule *schedule,
42                       DES_cblock *ivec, int enc);
43  void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
44                       int numbits, long length, DES_key_schedule *schedule,
45                       DES_cblock *ivec);
46  void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
47                        long length, DES_key_schedule *schedule, DES_cblock *ivec,
48                        int enc);
49  void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
50                         long length, DES_key_schedule *schedule, DES_cblock *ivec,
51                         int *num, int enc);
52  void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
53                         long length, DES_key_schedule *schedule, DES_cblock *ivec,
54                         int *num);
55
56  void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
57                        long length, DES_key_schedule *schedule, DES_cblock *ivec,
58                        const_DES_cblock *inw, const_DES_cblock *outw, int enc);
59
60  void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output,
61                            long length, DES_key_schedule *ks1,
62                            DES_key_schedule *ks2, DES_cblock *ivec, int enc);
63  void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out,
64                              long length, DES_key_schedule *ks1,
65                              DES_key_schedule *ks2, DES_cblock *ivec,
66                              int *num, int enc);
67  void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out,
68                              long length, DES_key_schedule *ks1,
69                              DES_key_schedule *ks2, DES_cblock *ivec, int *num);
70
71  void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output,
72                            long length, DES_key_schedule *ks1,
73                            DES_key_schedule *ks2, DES_key_schedule *ks3,
74                            DES_cblock *ivec, int enc);
75  void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
76                              long length, DES_key_schedule *ks1,
77                              DES_key_schedule *ks2, DES_key_schedule *ks3,
78                              DES_cblock *ivec, int *num, int enc);
79  void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
80                              long length, DES_key_schedule *ks1,
81                              DES_key_schedule *ks2, DES_key_schedule *ks3,
82                              DES_cblock *ivec, int *num);
83
84  DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
85                         long length, DES_key_schedule *schedule,
86                         const_DES_cblock *ivec);
87  DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
88                          long length, int out_count, DES_cblock *seed);
89  void DES_string_to_key(const char *str, DES_cblock *key);
90  void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2);
91
92  char *DES_fcrypt(const char *buf, const char *salt, char *ret);
93  char *DES_crypt(const char *buf, const char *salt);
94
95 =head1 DESCRIPTION
96
97 This library contains a fast implementation of the DES encryption
98 algorithm.
99
100 There are two phases to the use of DES encryption.  The first is the
101 generation of a I<DES_key_schedule> from a key, the second is the
102 actual encryption.  A DES key is of type I<DES_cblock>. This type is
103 consists of 8 bytes with odd parity.  The least significant bit in
104 each byte is the parity bit.  The key schedule is an expanded form of
105 the key; it is used to speed the encryption process.
106
107 DES_random_key() generates a random key.  The PRNG must be seeded
108 prior to using this function (see L<RAND_bytes(3)>).  If the PRNG
109 could not generate a secure key, 0 is returned.
110
111 Before a DES key can be used, it must be converted into the
112 architecture dependent I<DES_key_schedule> via the
113 DES_set_key_checked() or DES_set_key_unchecked() function.
114
115 DES_set_key_checked() will check that the key passed is of odd parity
116 and is not a weak or semi-weak key.  If the parity is wrong, then -1
117 is returned.  If the key is a weak key, then -2 is returned.  If an
118 error is returned, the key schedule is not generated.
119
120 DES_set_key() works like
121 DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
122 otherwise like DES_set_key_unchecked().  These functions are available
123 for compatibility; it is recommended to use a function that does not
124 depend on a global variable.
125
126 DES_set_odd_parity() sets the parity of the passed I<key> to odd.
127
128 DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
129 is ok.
130
131 The following routines mostly operate on an input and output stream of
132 I<DES_cblock>s.
133
134 DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
135 decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
136 (ECB) mode.  It always transforms the input data, pointed to by
137 I<input>, into the output data, pointed to by the I<output> argument.
138 If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
139 (cleartext) is encrypted in to the I<output> (ciphertext) using the
140 key_schedule specified by the I<schedule> argument, previously set via
141 I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
142 ciphertext) is decrypted into the I<output> (now cleartext).  Input
143 and output may overlap.  DES_ecb_encrypt() does not return a value.
144
145 DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
146 three-key Triple-DES encryption in ECB mode.  This involves encrypting
147 the input with I<ks1>, decrypting with the key schedule I<ks2>, and
148 then encrypting with I<ks3>.  This routine greatly reduces the chances
149 of brute force breaking of DES and has the advantage of if I<ks1>,
150 I<ks2> and I<ks3> are the same, it is equivalent to just encryption
151 using ECB mode and I<ks1> as the key.
152
153 The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
154 encryption by using I<ks1> for the final encryption.
155
156 DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
157 (CBC) mode of DES.  If the I<encrypt> argument is non-zero, the
158 routine cipher-block-chain encrypts the cleartext data pointed to by
159 the I<input> argument into the ciphertext pointed to by the I<output>
160 argument, using the key schedule provided by the I<schedule> argument,
161 and initialization vector provided by the I<ivec> argument.  If the
162 I<length> argument is not an integral multiple of eight bytes, the
163 last block is copied to a temporary area and zero filled.  The output
164 is always an integral multiple of eight bytes.
165
166 DES_xcbc_encrypt() is RSA's DESX mode of DES.  It uses I<inw> and
167 I<outw> to 'whiten' the encryption.  I<inw> and I<outw> are secret
168 (unlike the iv) and are as such, part of the key.  So the key is sort
169 of 24 bytes.  This is much better than CBC DES.
170
171 DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
172 three keys. This means that each DES operation inside the CBC mode is
173 an C<C=E(ks3,D(ks2,E(ks1,M)))>.  This mode is used by SSL.
174
175 The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
176 reusing I<ks1> for the final encryption.  C<C=E(ks1,D(ks2,E(ks1,M)))>.
177 This form of Triple-DES is used by the RSAREF library.
178
179 DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
180 chaining mode used by Kerberos v4. Its parameters are the same as
181 DES_ncbc_encrypt().
182
183 DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode.  This
184 method takes an array of characters as input and outputs and array of
185 characters.  It does not require any padding to 8 character groups.
186 Note: the I<ivec> variable is changed and the new changed value needs to
187 be passed to the next call to this function.  Since this function runs
188 a complete DES ECB encryption per I<numbits>, this function is only
189 suggested for use when sending small numbers of characters.
190
191 DES_cfb64_encrypt()
192 implements CFB mode of DES with 64bit feedback.  Why is this
193 useful you ask?  Because this routine will allow you to encrypt an
194 arbitrary number of bytes, no 8 byte padding.  Each call to this
195 routine will encrypt the input bytes to output and then update ivec
196 and num.  num contains 'how far' we are though ivec.  If this does
197 not make much sense, read more about cfb mode of DES :-).
198
199 DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
200 DES_cfb64_encrypt() except that Triple-DES is used.
201
202 DES_ofb_encrypt() encrypts using output feedback mode.  This method
203 takes an array of characters as input and outputs and array of
204 characters.  It does not require any padding to 8 character groups.
205 Note: the I<ivec> variable is changed and the new changed value needs to
206 be passed to the next call to this function.  Since this function runs
207 a complete DES ECB encryption per numbits, this function is only
208 suggested for use when sending small numbers of characters.
209
210 DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
211 Feed Back mode.
212
213 DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
214 DES_ofb64_encrypt(), using Triple-DES.
215
216 The following functions are included in the DES library for
217 compatibility with the MIT Kerberos library.
218
219 DES_cbc_cksum() produces an 8 byte checksum based on the input stream
220 (via CBC encryption).  The last 4 bytes of the checksum are returned
221 and the complete 8 bytes are placed in I<output>. This function is
222 used by Kerberos v4.  Other applications should use
223 L<EVP_DigestInit(3)> etc. instead.
224
225 DES_quad_cksum() is a Kerberos v4 function.  It returns a 4 byte
226 checksum from the input bytes.  The algorithm can be iterated over the
227 input, depending on I<out_count>, 1, 2, 3 or 4 times.  If I<output> is
228 non-NULL, the 8 bytes generated by each pass are written into
229 I<output>.
230
231 The following are DES-based transformations:
232
233 DES_fcrypt() is a fast version of the Unix crypt(3) function.  This
234 version takes only a small amount of space relative to other fast
235 crypt() implementations.  This is different to the normal crypt in
236 that the third parameter is the buffer that the return value is
237 written into.  It needs to be at least 14 bytes long.  This function
238 is thread safe, unlike the normal crypt.
239
240 DES_crypt() is a faster replacement for the normal system crypt().
241 This function calls DES_fcrypt() with a static array passed as the
242 third parameter.  This mostly emulates the normal non-thread-safe semantics
243 of crypt(3).
244 The B<salt> must be two ASCII characters.
245
246 DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
247 buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
248 using I<sched> for the key and I<iv> as a starting vector.  The actual
249 data send down I<fd> consists of 4 bytes (in network byte order)
250 containing the length of the following encrypted data.  The encrypted
251 data then follows, padded with random data out to a multiple of 8
252 bytes.
253
254 =head1 BUGS
255
256 DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
257 instead.
258
259 DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
260 What this means is that if you set numbits to 12, and length to 2, the
261 first 12 bits will come from the 1st input byte and the low half of
262 the second input byte.  The second 12 bits will have the low 8 bits
263 taken from the 3rd input byte and the top 4 bits taken from the 4th
264 input byte.  The same holds for output.  This function has been
265 implemented this way because most people will be using a multiple of 8
266 and because once you get into pulling bytes input bytes apart things
267 get ugly!
268
269 DES_string_to_key() is available for backward compatibility with the
270 MIT library.  New applications should use a cryptographic hash function.
271 The same applies for DES_string_to_2key().
272
273 =head1 NOTES
274
275 The B<des> library was written to be source code compatible with
276 the MIT Kerberos library.
277
278 Applications should use the higher level functions
279 L<EVP_EncryptInit(3)> etc. instead of calling these
280 functions directly.
281
282 Single-key DES is insecure due to its short key size.  ECB mode is
283 not suitable for most applications; see L<des_modes(7)>.
284
285 =head1 HISTORY
286
287 The requirement that the B<salt> parameter to DES_crypt() and DES_fcrypt()
288 be two ASCII characters was first enforced in
289 OpenSSL 1.1.0.  Previous versions tried to use the letter uppercase B<A>
290 if both character were not present, and could crash when given non-ASCII
291 on some platforms.
292
293 =head1 SEE ALSO
294
295 L<des_modes(7)>,
296 L<EVP_EncryptInit(3)>
297
298 =head1 COPYRIGHT
299
300 Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
301
302 Licensed under the OpenSSL license (the "License").  You may not use
303 this file except in compliance with the License.  You can obtain a copy
304 in the file LICENSE in the source distribution or at
305 L<https://www.openssl.org/source/license.html>.
306
307 =cut