s390x assembly pack: extend s390x capability vector.
[openssl.git] / crypto / sha / sha_locl.h
1 /*
2  * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include <stdlib.h>
11 #include <string.h>
12
13 #include <openssl/opensslconf.h>
14 #include <openssl/sha.h>
15
16 #define DATA_ORDER_IS_BIG_ENDIAN
17
18 #define HASH_LONG               SHA_LONG
19 #define HASH_CTX                SHA_CTX
20 #define HASH_CBLOCK             SHA_CBLOCK
21 #define HASH_MAKE_STRING(c,s)   do {    \
22         unsigned long ll;               \
23         ll=(c)->h0; (void)HOST_l2c(ll,(s));     \
24         ll=(c)->h1; (void)HOST_l2c(ll,(s));     \
25         ll=(c)->h2; (void)HOST_l2c(ll,(s));     \
26         ll=(c)->h3; (void)HOST_l2c(ll,(s));     \
27         ll=(c)->h4; (void)HOST_l2c(ll,(s));     \
28         } while (0)
29
30 #define HASH_UPDATE                     SHA1_Update
31 #define HASH_TRANSFORM                  SHA1_Transform
32 #define HASH_FINAL                      SHA1_Final
33 #define HASH_INIT                       SHA1_Init
34 #define HASH_BLOCK_DATA_ORDER           sha1_block_data_order
35 #define Xupdate(a,ix,ia,ib,ic,id)       ( (a)=(ia^ib^ic^id),    \
36                                           ix=(a)=ROTATE((a),1)  \
37                                         )
38
39 #ifndef SHA1_ASM
40 static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
41 #else
42 void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
43 #endif
44
45 #include "internal/md32_common.h"
46
47 #define INIT_DATA_h0 0x67452301UL
48 #define INIT_DATA_h1 0xefcdab89UL
49 #define INIT_DATA_h2 0x98badcfeUL
50 #define INIT_DATA_h3 0x10325476UL
51 #define INIT_DATA_h4 0xc3d2e1f0UL
52
53 int HASH_INIT(SHA_CTX *c)
54 {
55     memset(c, 0, sizeof(*c));
56     c->h0 = INIT_DATA_h0;
57     c->h1 = INIT_DATA_h1;
58     c->h2 = INIT_DATA_h2;
59     c->h3 = INIT_DATA_h3;
60     c->h4 = INIT_DATA_h4;
61     return 1;
62 }
63
64 #define K_00_19 0x5a827999UL
65 #define K_20_39 0x6ed9eba1UL
66 #define K_40_59 0x8f1bbcdcUL
67 #define K_60_79 0xca62c1d6UL
68
69 /*
70  * As pointed out by Wei Dai, F() below can be simplified to the code in
71  * F_00_19.  Wei attributes these optimisations to Peter Gutmann's SHS code,
72  * and he attributes it to Rich Schroeppel.
73  *      #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
74  * I've just become aware of another tweak to be made, again from Wei Dai,
75  * in F_40_59, (x&a)|(y&a) -> (x|y)&a
76  */
77 #define F_00_19(b,c,d)  ((((c) ^ (d)) & (b)) ^ (d))
78 #define F_20_39(b,c,d)  ((b) ^ (c) ^ (d))
79 #define F_40_59(b,c,d)  (((b) & (c)) | (((b)|(c)) & (d)))
80 #define F_60_79(b,c,d)  F_20_39(b,c,d)
81
82 #ifndef OPENSSL_SMALL_FOOTPRINT
83
84 # define BODY_00_15(i,a,b,c,d,e,f,xi) \
85         (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
86         (b)=ROTATE((b),30);
87
88 # define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
89         Xupdate(f,xi,xa,xb,xc,xd); \
90         (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
91         (b)=ROTATE((b),30);
92
93 # define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
94         Xupdate(f,xi,xa,xb,xc,xd); \
95         (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
96         (b)=ROTATE((b),30);
97
98 # define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
99         Xupdate(f,xa,xa,xb,xc,xd); \
100         (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
101         (b)=ROTATE((b),30);
102
103 # define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
104         Xupdate(f,xa,xa,xb,xc,xd); \
105         (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
106         (b)=ROTATE((b),30);
107
108 # define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
109         Xupdate(f,xa,xa,xb,xc,xd); \
110         (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
111         (b)=ROTATE((b),30);
112
113 # ifdef X
114 #  undef X
115 # endif
116 # ifndef MD32_XARRAY
117   /*
118    * Originally X was an array. As it's automatic it's natural
119    * to expect RISC compiler to accommodate at least part of it in
120    * the register bank, isn't it? Unfortunately not all compilers
121    * "find" this expectation reasonable:-( On order to make such
122    * compilers generate better code I replace X[] with a bunch of
123    * X0, X1, etc. See the function body below...
124    */
125 #  define X(i)   XX##i
126 # else
127   /*
128    * However! Some compilers (most notably HP C) get overwhelmed by
129    * that many local variables so that we have to have the way to
130    * fall down to the original behavior.
131    */
132 #  define X(i)   XX[i]
133 # endif
134
135 # if !defined(SHA1_ASM)
136 static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
137 {
138     const unsigned char *data = p;
139     register unsigned MD32_REG_T A, B, C, D, E, T, l;
140 #  ifndef MD32_XARRAY
141     unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
142         XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15;
143 #  else
144     SHA_LONG XX[16];
145 #  endif
146
147     A = c->h0;
148     B = c->h1;
149     C = c->h2;
150     D = c->h3;
151     E = c->h4;
152
153     for (;;) {
154         const union {
155             long one;
156             char little;
157         } is_endian = {
158             1
159         };
160
161         if (!is_endian.little && sizeof(SHA_LONG) == 4
162             && ((size_t)p % 4) == 0) {
163             const SHA_LONG *W = (const SHA_LONG *)data;
164
165             X(0) = W[0];
166             X(1) = W[1];
167             BODY_00_15(0, A, B, C, D, E, T, X(0));
168             X(2) = W[2];
169             BODY_00_15(1, T, A, B, C, D, E, X(1));
170             X(3) = W[3];
171             BODY_00_15(2, E, T, A, B, C, D, X(2));
172             X(4) = W[4];
173             BODY_00_15(3, D, E, T, A, B, C, X(3));
174             X(5) = W[5];
175             BODY_00_15(4, C, D, E, T, A, B, X(4));
176             X(6) = W[6];
177             BODY_00_15(5, B, C, D, E, T, A, X(5));
178             X(7) = W[7];
179             BODY_00_15(6, A, B, C, D, E, T, X(6));
180             X(8) = W[8];
181             BODY_00_15(7, T, A, B, C, D, E, X(7));
182             X(9) = W[9];
183             BODY_00_15(8, E, T, A, B, C, D, X(8));
184             X(10) = W[10];
185             BODY_00_15(9, D, E, T, A, B, C, X(9));
186             X(11) = W[11];
187             BODY_00_15(10, C, D, E, T, A, B, X(10));
188             X(12) = W[12];
189             BODY_00_15(11, B, C, D, E, T, A, X(11));
190             X(13) = W[13];
191             BODY_00_15(12, A, B, C, D, E, T, X(12));
192             X(14) = W[14];
193             BODY_00_15(13, T, A, B, C, D, E, X(13));
194             X(15) = W[15];
195             BODY_00_15(14, E, T, A, B, C, D, X(14));
196             BODY_00_15(15, D, E, T, A, B, C, X(15));
197
198             data += SHA_CBLOCK;
199         } else {
200             (void)HOST_c2l(data, l);
201             X(0) = l;
202             (void)HOST_c2l(data, l);
203             X(1) = l;
204             BODY_00_15(0, A, B, C, D, E, T, X(0));
205             (void)HOST_c2l(data, l);
206             X(2) = l;
207             BODY_00_15(1, T, A, B, C, D, E, X(1));
208             (void)HOST_c2l(data, l);
209             X(3) = l;
210             BODY_00_15(2, E, T, A, B, C, D, X(2));
211             (void)HOST_c2l(data, l);
212             X(4) = l;
213             BODY_00_15(3, D, E, T, A, B, C, X(3));
214             (void)HOST_c2l(data, l);
215             X(5) = l;
216             BODY_00_15(4, C, D, E, T, A, B, X(4));
217             (void)HOST_c2l(data, l);
218             X(6) = l;
219             BODY_00_15(5, B, C, D, E, T, A, X(5));
220             (void)HOST_c2l(data, l);
221             X(7) = l;
222             BODY_00_15(6, A, B, C, D, E, T, X(6));
223             (void)HOST_c2l(data, l);
224             X(8) = l;
225             BODY_00_15(7, T, A, B, C, D, E, X(7));
226             (void)HOST_c2l(data, l);
227             X(9) = l;
228             BODY_00_15(8, E, T, A, B, C, D, X(8));
229             (void)HOST_c2l(data, l);
230             X(10) = l;
231             BODY_00_15(9, D, E, T, A, B, C, X(9));
232             (void)HOST_c2l(data, l);
233             X(11) = l;
234             BODY_00_15(10, C, D, E, T, A, B, X(10));
235             (void)HOST_c2l(data, l);
236             X(12) = l;
237             BODY_00_15(11, B, C, D, E, T, A, X(11));
238             (void)HOST_c2l(data, l);
239             X(13) = l;
240             BODY_00_15(12, A, B, C, D, E, T, X(12));
241             (void)HOST_c2l(data, l);
242             X(14) = l;
243             BODY_00_15(13, T, A, B, C, D, E, X(13));
244             (void)HOST_c2l(data, l);
245             X(15) = l;
246             BODY_00_15(14, E, T, A, B, C, D, X(14));
247             BODY_00_15(15, D, E, T, A, B, C, X(15));
248         }
249
250         BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
251         BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
252         BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
253         BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
254
255         BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
256         BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
257         BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
258         BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
259         BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
260         BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
261         BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
262         BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
263         BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
264         BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
265         BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
266         BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
267
268         BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
269         BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
270         BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
271         BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
272         BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
273         BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
274         BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
275         BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
276
277         BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
278         BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
279         BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
280         BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
281         BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
282         BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
283         BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
284         BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
285         BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
286         BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
287         BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
288         BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
289         BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
290         BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
291         BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
292         BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
293         BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
294         BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
295         BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
296         BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
297
298         BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
299         BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
300         BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
301         BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
302         BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
303         BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
304         BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
305         BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
306         BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
307         BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
308         BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
309         BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
310         BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
311         BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
312         BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
313         BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
314         BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
315         BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
316         BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
317         BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
318
319         c->h0 = (c->h0 + E) & 0xffffffffL;
320         c->h1 = (c->h1 + T) & 0xffffffffL;
321         c->h2 = (c->h2 + A) & 0xffffffffL;
322         c->h3 = (c->h3 + B) & 0xffffffffL;
323         c->h4 = (c->h4 + C) & 0xffffffffL;
324
325         if (--num == 0)
326             break;
327
328         A = c->h0;
329         B = c->h1;
330         C = c->h2;
331         D = c->h3;
332         E = c->h4;
333
334     }
335 }
336 # endif
337
338 #else                           /* OPENSSL_SMALL_FOOTPRINT */
339
340 # define BODY_00_15(xi)           do {   \
341         T=E+K_00_19+F_00_19(B,C,D);     \
342         E=D, D=C, C=ROTATE(B,30), B=A;  \
343         A=ROTATE(A,5)+T+xi;         } while(0)
344
345 # define BODY_16_19(xa,xb,xc,xd)  do {   \
346         Xupdate(T,xa,xa,xb,xc,xd);      \
347         T+=E+K_00_19+F_00_19(B,C,D);    \
348         E=D, D=C, C=ROTATE(B,30), B=A;  \
349         A=ROTATE(A,5)+T;            } while(0)
350
351 # define BODY_20_39(xa,xb,xc,xd)  do {   \
352         Xupdate(T,xa,xa,xb,xc,xd);      \
353         T+=E+K_20_39+F_20_39(B,C,D);    \
354         E=D, D=C, C=ROTATE(B,30), B=A;  \
355         A=ROTATE(A,5)+T;            } while(0)
356
357 # define BODY_40_59(xa,xb,xc,xd)  do {   \
358         Xupdate(T,xa,xa,xb,xc,xd);      \
359         T+=E+K_40_59+F_40_59(B,C,D);    \
360         E=D, D=C, C=ROTATE(B,30), B=A;  \
361         A=ROTATE(A,5)+T;            } while(0)
362
363 # define BODY_60_79(xa,xb,xc,xd)  do {   \
364         Xupdate(T,xa,xa,xb,xc,xd);      \
365         T=E+K_60_79+F_60_79(B,C,D);     \
366         E=D, D=C, C=ROTATE(B,30), B=A;  \
367         A=ROTATE(A,5)+T+xa;         } while(0)
368
369 # if !defined(SHA1_ASM)
370 static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
371 {
372     const unsigned char *data = p;
373     register unsigned MD32_REG_T A, B, C, D, E, T, l;
374     int i;
375     SHA_LONG X[16];
376
377     A = c->h0;
378     B = c->h1;
379     C = c->h2;
380     D = c->h3;
381     E = c->h4;
382
383     for (;;) {
384         for (i = 0; i < 16; i++) {
385             (void)HOST_c2l(data, l);
386             X[i] = l;
387             BODY_00_15(X[i]);
388         }
389         for (i = 0; i < 4; i++) {
390             BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]);
391         }
392         for (; i < 24; i++) {
393             BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15],
394                        X[(i + 13) & 15]);
395         }
396         for (i = 0; i < 20; i++) {
397             BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
398                        X[(i + 5) & 15]);
399         }
400         for (i = 4; i < 24; i++) {
401             BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15],
402                        X[(i + 5) & 15]);
403         }
404
405         c->h0 = (c->h0 + A) & 0xffffffffL;
406         c->h1 = (c->h1 + B) & 0xffffffffL;
407         c->h2 = (c->h2 + C) & 0xffffffffL;
408         c->h3 = (c->h3 + D) & 0xffffffffL;
409         c->h4 = (c->h4 + E) & 0xffffffffL;
410
411         if (--num == 0)
412             break;
413
414         A = c->h0;
415         B = c->h1;
416         C = c->h2;
417         D = c->h3;
418         E = c->h4;
419
420     }
421 }
422 # endif
423
424 #endif