Comply with optimization manual (no data should share cache-line with code).
[openssl.git] / crypto / sha / asm / sha512-sse2.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
8 #
9 # SHA512_Transform_SSE2.
10 #
11 # As the name suggests, this is an IA-32 SSE2 implementation of
12 # SHA512_Transform. Motivating factor for the undertaken effort was that
13 # SHA512 was observed to *consistently* perform *significantly* poorer
14 # than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit
15 # platforms on the other hand SHA512 tend to outperform SHA256 [~50%
16 # seem to be common improvement factor]. All this is perfectly natural,
17 # as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially
18 # a 64-bit instruction set? Is it rich enough to implement SHA512?
19 # If answer was "no," then you wouldn't have been reading this...
20 #
21 # Throughput performance in MBps (larger is better):
22 #
23 #               2.4GHz P4       1.4GHz AMD32    1.4GHz AMD64(*)
24 # SHA256/gcc(*) 54              43              59
25 # SHA512/gcc    17              23              92
26 # SHA512/sse2   61(**)          57(**)
27 # SHA512/icc    26              28
28 # SHA256/icc(*) 65              54
29 #
30 # (*)   AMD64 and SHA256 numbers are presented mostly for amusement or
31 #       reference purposes.
32 # (**)  I.e. it gives ~2-3x speed-up if compared with compiler generated
33 #       code. One can argue that hand-coded *non*-SSE2 implementation
34 #       would perform better than compiler generated one as well, and
35 #       that comparison is therefore not exactly fair. Well, as SHA512
36 #       puts enormous pressure on IA-32 GP register bank, I reckon that
37 #       hand-coded version wouldn't perform significantly better than
38 #       one compiled with icc, ~20% perhaps... So that this code would
39 #       still outperform it with distinguishing marginal. But feel free
40 #       to prove me wrong:-)
41 #                                               <appro@fy.chalmers.se>
42 push(@INC,"perlasm","../../perlasm");
43 require "x86asm.pl";
44
45 &asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386");
46
47 $K512="esi";    # K512[80] table, found at the end...
48 #$W512="esp";   # $W512 is not just W512[16]: it comprises *two* copies
49                 # of W512[16] and a copy of A-H variables...
50 $W512_SZ=8*(16+16+8);   # see above...
51 #$Kidx="ebx";   # index in K512 table, advances from 0 to 80...
52 $Widx="edx";    # index in W512, wraps around at 16...
53 $data="edi";    # 16 qwords of input data...
54 $A="mm0";       # B-D and
55 $E="mm1";       # F-H are allocated dynamically...
56 $Aoff=256+0;    # A-H offsets relative to $W512...
57 $Boff=256+8;
58 $Coff=256+16;
59 $Doff=256+24;
60 $Eoff=256+32;
61 $Foff=256+40;
62 $Goff=256+48;
63 $Hoff=256+56;
64
65 sub SHA2_ROUND()
66 { local ($kidx,$widx)=@_;
67
68         # One can argue that one could reorder instructions for better
69         # performance. Well, I tried and it doesn't seem to make any
70         # noticeable difference. Modern out-of-order execution cores
71         # reorder instructions to their liking in either case and they
72         # apparently do decent job. So we can keep the code more
73         # readable/regular/comprehensible:-)
74
75         # I adhere to 64-bit %mmX registers in order to avoid/not care
76         # about #GP exceptions on misaligned 128-bit access, most
77         # notably in paddq with memory operand. Not to mention that
78         # SSE2 intructions operating on %mmX can be scheduled every
79         # cycle [and not every second one if operating on %xmmN].
80
81         &movq   ("mm4",&QWP($Foff,$W512));      # load f
82         &movq   ("mm5",&QWP($Goff,$W512));      # load g
83         &movq   ("mm6",&QWP($Hoff,$W512));      # load h
84
85         &movq   ("mm2",$E);                     # %mm2 is sliding right
86         &movq   ("mm3",$E);                     # %mm3 is sliding left
87         &psrlq  ("mm2",14);
88         &psllq  ("mm3",23);
89         &movq   ("mm7","mm2");                  # %mm7 is T1
90         &pxor   ("mm7","mm3");
91         &psrlq  ("mm2",4);
92         &psllq  ("mm3",23);
93         &pxor   ("mm7","mm2");
94         &pxor   ("mm7","mm3");
95         &psrlq  ("mm2",23);
96         &psllq  ("mm3",4);
97         &pxor   ("mm7","mm2");
98         &pxor   ("mm7","mm3");                  # T1=Sigma1_512(e)
99
100         &movq   (&QWP($Foff,$W512),$E);         # f = e
101         &movq   (&QWP($Goff,$W512),"mm4");      # g = f
102         &movq   (&QWP($Hoff,$W512),"mm5");      # h = g
103
104         &pxor   ("mm4","mm5");                  # f^=g
105         &pand   ("mm4",$E);                     # f&=e
106         &pxor   ("mm4","mm5");                  # f^=g
107         &paddq  ("mm7","mm4");                  # T1+=Ch(e,f,g)
108
109         &movq   ("mm2",&QWP($Boff,$W512));      # load b
110         &movq   ("mm3",&QWP($Coff,$W512));      # load c
111         &movq   ($E,&QWP($Doff,$W512));         # e = d
112
113         &paddq  ("mm7","mm6");                  # T1+=h
114         &paddq  ("mm7",&QWP(0,$K512,$kidx,8));  # T1+=K512[i]
115         &paddq  ("mm7",&QWP(0,$W512,$widx,8));  # T1+=W512[i]
116         &paddq  ($E,"mm7");                     # e += T1
117
118         &movq   ("mm4",$A);                     # %mm4 is sliding right
119         &movq   ("mm5",$A);                     # %mm5 is sliding left
120         &psrlq  ("mm4",28);
121         &psllq  ("mm5",25);
122         &movq   ("mm6","mm4");                  # %mm6 is T2
123         &pxor   ("mm6","mm5");
124         &psrlq  ("mm4",6);
125         &psllq  ("mm5",5);
126         &pxor   ("mm6","mm4");
127         &pxor   ("mm6","mm5");
128         &psrlq  ("mm4",5);
129         &psllq  ("mm5",6);
130         &pxor   ("mm6","mm4");
131         &pxor   ("mm6","mm5");                  # T2=Sigma0_512(a)
132
133         &movq   (&QWP($Boff,$W512),$A);         # b = a
134         &movq   (&QWP($Coff,$W512),"mm2");      # c = b
135         &movq   (&QWP($Doff,$W512),"mm3");      # d = c
136
137         &movq   ("mm4",$A);                     # %mm4=a
138         &por    ($A,"mm3");                     # a=a|c
139         &pand   ("mm4","mm3");                  # %mm4=a&c
140         &pand   ($A,"mm2");                     # a=(a|c)&b
141         &por    ("mm4",$A);                     # %mm4=(a&c)|((a|c)&b)
142         &paddq  ("mm6","mm4");                  # T2+=Maj(a,b,c)
143
144         &movq   ($A,"mm7");                     # a=T1
145         &paddq  ($A,"mm6");                     # a+=T2
146 }
147
148 $func="sha512_block_sse2";
149
150 &function_begin_B($func);
151         if (0) {# Caller is expected to check if it's appropriate to
152                 # call this routine. Below 3 lines are retained for
153                 # debugging purposes...
154                 &picmeup("eax","OPENSSL_ia32cap");
155                 &bt     (&DWP(0,"eax"),26);
156                 &jnc    ("SHA512_Transform");
157         }
158
159         &push   ("ebp");
160         &mov    ("ebp","esp");
161         &push   ("ebx");
162         &push   ("esi");
163         &push   ("edi");
164
165         &mov    ($Widx,&DWP(8,"ebp"));          # A-H state, 1st arg
166         &mov    ($data,&DWP(12,"ebp"));         # input data, 2nd arg
167         &call   (&label("pic_point"));          # make it PIC!
168 &set_label("pic_point");
169         &blindpop($K512);
170         &lea    ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
171
172         $W512 = "esp";                  # start using %esp as W512
173         &sub    ($W512,$W512_SZ);
174         &and    ($W512,-16);            # ensure 128-bit alignment
175
176         # make private copy of A-H
177         #     v assume the worst and stick to unaligned load
178         &movdqu ("xmm0",&QWP(0,$Widx));
179         &movdqu ("xmm1",&QWP(16,$Widx));
180         &movdqu ("xmm2",&QWP(32,$Widx));
181         &movdqu ("xmm3",&QWP(48,$Widx));
182
183 &align(8);
184 &set_label("_chunk_loop");
185
186         &movdqa (&QWP($Aoff,$W512),"xmm0");     # a,b
187         &movdqa (&QWP($Coff,$W512),"xmm1");     # c,d
188         &movdqa (&QWP($Eoff,$W512),"xmm2");     # e,f
189         &movdqa (&QWP($Goff,$W512),"xmm3");     # g,h
190
191         &xor    ($Widx,$Widx);
192
193         &movdq2q($A,"xmm0");                    # load a
194         &movdq2q($E,"xmm2");                    # load e
195
196         # Why aren't loops unrolled? It makes sense to unroll if
197         # execution time for loop body is comparable with branch
198         # penalties and/or if whole data-set resides in register bank.
199         # Neither is case here... Well, it would be possible to
200         # eliminate few store operations, but it would hardly affect
201         # so to say stop-watch performance, as there is a lot of
202         # available memory slots to fill. It will only relieve some
203         # pressure off memory bus...
204
205         # flip input stream byte order...
206         &mov    ("eax",&DWP(0,$data,$Widx,8));
207         &mov    ("ebx",&DWP(4,$data,$Widx,8));
208         &bswap  ("eax");
209         &bswap  ("ebx");
210         &mov    (&DWP(0,$W512,$Widx,8),"ebx");          # W512[i]
211         &mov    (&DWP(4,$W512,$Widx,8),"eax");
212         &mov    (&DWP(128+0,$W512,$Widx,8),"ebx");      # copy of W512[i]
213         &mov    (&DWP(128+4,$W512,$Widx,8),"eax");
214
215 &align(8);
216 &set_label("_1st_loop");                # 0-15
217         # flip input stream byte order...
218         &mov    ("eax",&DWP(0+8,$data,$Widx,8));
219         &mov    ("ebx",&DWP(4+8,$data,$Widx,8));
220         &bswap  ("eax");
221         &bswap  ("ebx");
222         &mov    (&DWP(0+8,$W512,$Widx,8),"ebx");        # W512[i]
223         &mov    (&DWP(4+8,$W512,$Widx,8),"eax");
224         &mov    (&DWP(128+0+8,$W512,$Widx,8),"ebx");    # copy of W512[i]
225         &mov    (&DWP(128+4+8,$W512,$Widx,8),"eax");
226 &set_label("_1st_looplet");
227         &SHA2_ROUND($Widx,$Widx); &inc($Widx);
228
229 &cmp    ($Widx,15)
230 &jl     (&label("_1st_loop"));
231 &je     (&label("_1st_looplet"));       # playing similar trick on 2nd loop
232                                         # does not improve performance...
233
234         $Kidx = "ebx";                  # start using %ebx as Kidx
235         &mov    ($Kidx,$Widx);
236
237 &align(8);
238 &set_label("_2nd_loop");                # 16-79
239         &and($Widx,0xf);
240
241         # 128-bit fragment! I update W512[i] and W512[i+1] in
242         # parallel:-) Note that I refer to W512[(i&0xf)+N] and not to
243         # W512[(i+N)&0xf]! This is exactly what I maintain the second
244         # copy of W512[16] for...
245         &movdqu ("xmm0",&QWP(8*1,$W512,$Widx,8));       # s0=W512[i+1]
246         &movdqa ("xmm2","xmm0");                # %xmm2 is sliding right
247         &movdqa ("xmm3","xmm0");                # %xmm3 is sliding left
248         &psrlq  ("xmm2",1);
249         &psllq  ("xmm3",56);
250         &movdqa ("xmm0","xmm2");
251         &pxor   ("xmm0","xmm3");
252         &psrlq  ("xmm2",6);
253         &psllq  ("xmm3",7);
254         &pxor   ("xmm0","xmm2");
255         &pxor   ("xmm0","xmm3");
256         &psrlq  ("xmm2",1);
257         &pxor   ("xmm0","xmm2");                # s0 = sigma0_512(s0);
258
259         &movdqa ("xmm1",&QWP(8*14,$W512,$Widx,8));      # s1=W512[i+14]
260         &movdqa ("xmm4","xmm1");                # %xmm4 is sliding right
261         &movdqa ("xmm5","xmm1");                # %xmm5 is sliding left
262         &psrlq  ("xmm4",6);
263         &psllq  ("xmm5",3);
264         &movdqa ("xmm1","xmm4");
265         &pxor   ("xmm1","xmm5");
266         &psrlq  ("xmm4",13);
267         &psllq  ("xmm5",42);
268         &pxor   ("xmm1","xmm4");
269         &pxor   ("xmm1","xmm5");
270         &psrlq  ("xmm4",42);
271         &pxor   ("xmm1","xmm4");                # s1 = sigma1_512(s1);
272
273         #     + have to explictly load W512[i+9] as it's not 128-bit
274         #     v aligned and paddq would throw an exception...
275         &movdqu ("xmm6",&QWP(8*9,$W512,$Widx,8));
276         &paddq  ("xmm0","xmm1");                # s0 += s1
277         &paddq  ("xmm0","xmm6");                # s0 += W512[i+9]
278         &paddq  ("xmm0",&QWP(0,$W512,$Widx,8)); # s0 += W512[i]
279
280         &movdqa (&QWP(0,$W512,$Widx,8),"xmm0");         # W512[i] = s0
281         &movdqa (&QWP(16*8,$W512,$Widx,8),"xmm0");      # copy of W512[i]
282
283         # as the above fragment was 128-bit, we "owe" 2 rounds...
284         &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
285         &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
286
287 &cmp    ($Kidx,80);
288 &jl     (&label("_2nd_loop"));
289
290         # update A-H state
291         &mov    ($Widx,&DWP(8,"ebp"));          # A-H state, 1st arg
292         &movq   (&QWP($Aoff,$W512),$A);         # write out a
293         &movq   (&QWP($Eoff,$W512),$E);         # write out e
294         &movdqu ("xmm0",&QWP(0,$Widx));
295         &movdqu ("xmm1",&QWP(16,$Widx));
296         &movdqu ("xmm2",&QWP(32,$Widx));
297         &movdqu ("xmm3",&QWP(48,$Widx));
298         &paddq  ("xmm0",&QWP($Aoff,$W512));     # 128-bit additions...
299         &paddq  ("xmm1",&QWP($Coff,$W512));
300         &paddq  ("xmm2",&QWP($Eoff,$W512));
301         &paddq  ("xmm3",&QWP($Goff,$W512));
302         &movdqu (&QWP(0,$Widx),"xmm0");
303         &movdqu (&QWP(16,$Widx),"xmm1");
304         &movdqu (&QWP(32,$Widx),"xmm2");
305         &movdqu (&QWP(48,$Widx),"xmm3");
306
307 &add    ($data,16*8);                           # advance input data pointer
308 &dec    (&DWP(16,"ebp"));                       # decrement 3rd arg
309 &jnz    (&label("_chunk_loop"));
310
311         # epilogue
312         &emms   ();     # required for at least ELF and Win32 ABIs
313         &mov    ("edi",&DWP(-12,"ebp"));
314         &mov    ("esi",&DWP(-8,"ebp"));
315         &mov    ("ebx",&DWP(-4,"ebp"));
316         &leave  ();
317 &ret    ();
318
319 &align(64);
320 &set_label("K512");     # Yes! I keep it in the code segment!
321         &data_word(0xd728ae22,0x428a2f98);      # u64
322         &data_word(0x23ef65cd,0x71374491);      # u64
323         &data_word(0xec4d3b2f,0xb5c0fbcf);      # u64
324         &data_word(0x8189dbbc,0xe9b5dba5);      # u64
325         &data_word(0xf348b538,0x3956c25b);      # u64
326         &data_word(0xb605d019,0x59f111f1);      # u64
327         &data_word(0xaf194f9b,0x923f82a4);      # u64
328         &data_word(0xda6d8118,0xab1c5ed5);      # u64
329         &data_word(0xa3030242,0xd807aa98);      # u64
330         &data_word(0x45706fbe,0x12835b01);      # u64
331         &data_word(0x4ee4b28c,0x243185be);      # u64
332         &data_word(0xd5ffb4e2,0x550c7dc3);      # u64
333         &data_word(0xf27b896f,0x72be5d74);      # u64
334         &data_word(0x3b1696b1,0x80deb1fe);      # u64
335         &data_word(0x25c71235,0x9bdc06a7);      # u64
336         &data_word(0xcf692694,0xc19bf174);      # u64
337         &data_word(0x9ef14ad2,0xe49b69c1);      # u64
338         &data_word(0x384f25e3,0xefbe4786);      # u64
339         &data_word(0x8b8cd5b5,0x0fc19dc6);      # u64
340         &data_word(0x77ac9c65,0x240ca1cc);      # u64
341         &data_word(0x592b0275,0x2de92c6f);      # u64
342         &data_word(0x6ea6e483,0x4a7484aa);      # u64
343         &data_word(0xbd41fbd4,0x5cb0a9dc);      # u64
344         &data_word(0x831153b5,0x76f988da);      # u64
345         &data_word(0xee66dfab,0x983e5152);      # u64
346         &data_word(0x2db43210,0xa831c66d);      # u64
347         &data_word(0x98fb213f,0xb00327c8);      # u64
348         &data_word(0xbeef0ee4,0xbf597fc7);      # u64
349         &data_word(0x3da88fc2,0xc6e00bf3);      # u64
350         &data_word(0x930aa725,0xd5a79147);      # u64
351         &data_word(0xe003826f,0x06ca6351);      # u64
352         &data_word(0x0a0e6e70,0x14292967);      # u64
353         &data_word(0x46d22ffc,0x27b70a85);      # u64
354         &data_word(0x5c26c926,0x2e1b2138);      # u64
355         &data_word(0x5ac42aed,0x4d2c6dfc);      # u64
356         &data_word(0x9d95b3df,0x53380d13);      # u64
357         &data_word(0x8baf63de,0x650a7354);      # u64
358         &data_word(0x3c77b2a8,0x766a0abb);      # u64
359         &data_word(0x47edaee6,0x81c2c92e);      # u64
360         &data_word(0x1482353b,0x92722c85);      # u64
361         &data_word(0x4cf10364,0xa2bfe8a1);      # u64
362         &data_word(0xbc423001,0xa81a664b);      # u64
363         &data_word(0xd0f89791,0xc24b8b70);      # u64
364         &data_word(0x0654be30,0xc76c51a3);      # u64
365         &data_word(0xd6ef5218,0xd192e819);      # u64
366         &data_word(0x5565a910,0xd6990624);      # u64
367         &data_word(0x5771202a,0xf40e3585);      # u64
368         &data_word(0x32bbd1b8,0x106aa070);      # u64
369         &data_word(0xb8d2d0c8,0x19a4c116);      # u64
370         &data_word(0x5141ab53,0x1e376c08);      # u64
371         &data_word(0xdf8eeb99,0x2748774c);      # u64
372         &data_word(0xe19b48a8,0x34b0bcb5);      # u64
373         &data_word(0xc5c95a63,0x391c0cb3);      # u64
374         &data_word(0xe3418acb,0x4ed8aa4a);      # u64
375         &data_word(0x7763e373,0x5b9cca4f);      # u64
376         &data_word(0xd6b2b8a3,0x682e6ff3);      # u64
377         &data_word(0x5defb2fc,0x748f82ee);      # u64
378         &data_word(0x43172f60,0x78a5636f);      # u64
379         &data_word(0xa1f0ab72,0x84c87814);      # u64
380         &data_word(0x1a6439ec,0x8cc70208);      # u64
381         &data_word(0x23631e28,0x90befffa);      # u64
382         &data_word(0xde82bde9,0xa4506ceb);      # u64
383         &data_word(0xb2c67915,0xbef9a3f7);      # u64
384         &data_word(0xe372532b,0xc67178f2);      # u64
385         &data_word(0xea26619c,0xca273ece);      # u64
386         &data_word(0x21c0c207,0xd186b8c7);      # u64
387         &data_word(0xcde0eb1e,0xeada7dd6);      # u64
388         &data_word(0xee6ed178,0xf57d4f7f);      # u64
389         &data_word(0x72176fba,0x06f067aa);      # u64
390         &data_word(0xa2c898a6,0x0a637dc5);      # u64
391         &data_word(0xbef90dae,0x113f9804);      # u64
392         &data_word(0x131c471b,0x1b710b35);      # u64
393         &data_word(0x23047d84,0x28db77f5);      # u64
394         &data_word(0x40c72493,0x32caab7b);      # u64
395         &data_word(0x15c9bebc,0x3c9ebe0a);      # u64
396         &data_word(0x9c100d4c,0x431d67c4);      # u64
397         &data_word(0xcb3e42b6,0x4cc5d4be);      # u64
398         &data_word(0xfc657e2a,0x597f299c);      # u64
399         &data_word(0x3ad6faec,0x5fcb6fab);      # u64
400         &data_word(0x4a475817,0x6c44198c);      # u64
401
402 &function_end_B($func);
403
404 &asm_finish();