d43a5960aeea7e972db0d48c71816a044a9a4ef5
[openssl.git] / crypto / sha / asm / sha512-ia64.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
8 #
9 # SHA256/512_Transform for Itanium.
10 #
11 # sha512_block runs in 1003 cycles on Itanium 2, which is almost 50%
12 # faster than gcc and >60%(!) faster than code generated by HP-UX
13 # compiler (yes, HP-UX is generating slower code, because unlike gcc,
14 # it failed to deploy "shift right pair," 'shrp' instruction, which
15 # substitutes for 64-bit rotate).
16 #
17 # 924 cycles long sha256_block outperforms gcc by over factor of 2(!)
18 # and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost
19 # this one big time). Note that "formally" 924 is about 100 cycles
20 # too much. I mean it's 64 32-bit rounds vs. 80 virtually identical
21 # 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round,
22 # are spent on extra work to provide for 32-bit rotations. 32-bit
23 # rotations are still handled by 'shrp' instruction and for this
24 # reason lower 32 bits are deposited to upper half of 64-bit register
25 # prior 'shrp' issue. And in order to minimize the amount of such
26 # operations, X[16] values are *maintained* with copies of lower
27 # halves in upper halves, which is why you'll spot such instructions
28 # as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel
29 # 32-bit unsigned right shift," 'pshr4.u' instructions here.
30 #
31 # Rules of engagement.
32 #
33 # There is only one integer shifter meaning that if I have two rotate,
34 # deposit or extract instructions in adjacent bundles, they shall
35 # split [at run-time if they have to]. But note that variable and
36 # parallel shifts are performed by multi-media ALU and *are* pairable
37 # with rotates [and alike]. On the backside MMALU is rather slow: it
38 # takes 2 extra cycles before the result of integer operation is
39 # available *to* MMALU and 2(*) extra cycles before the result of MM
40 # operation is available "back" *to* integer ALU, not to mention that
41 # MMALU itself has 2 cycles latency. However! I explicitly scheduled
42 # these MM instructions to avoid MM stalls, so that all these extra
43 # latencies get "hidden" in instruction-level parallelism.
44 #
45 # (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule
46 #     for 2 in order to provide for best *overall* performance,
47 #     because on Itanium 1 stall on MM result is accompanied by
48 #     pipeline flush, which takes 6 cycles:-(
49 #
50 # Resulting performance numbers for 900MHz Itanium 2 system:
51 #
52 # The 'numbers' are in 1000s of bytes per second processed.
53 # type     16 bytes    64 bytes   256 bytes  1024 bytes  8192 bytes
54 # sha1(*)   6210.14k   20376.30k   52447.83k   85870.05k  105478.12k
55 # sha256    7476.45k   20572.05k   41538.34k   56062.29k   62093.18k
56 # sha512    4996.56k   20026.28k   47597.20k   85278.79k  111501.31k
57 #
58 # (*) SHA1 numbers are for HP-UX compiler and are presented purely
59 #     for reference purposes. I bet it can improved too...
60 #
61 # To generate code, pass the file name with either 256 or 512 in its
62 # name and compiler flags.
63
64 $output=shift;
65
66 if ($output =~ /512.*\.[s|asm]/) {
67         $SZ=8;
68         $BITS=8*$SZ;
69         $LDW="ld8";
70         $STW="st8";
71         $ADD="add";
72         $SHRU="shr.u";
73         $TABLE="K512";
74         $func="sha512_block_data_order";
75         @Sigma0=(28,34,39);
76         @Sigma1=(14,18,41);
77         @sigma0=(1,  8, 7);
78         @sigma1=(19,61, 6);
79         $rounds=80;
80 } elsif ($output =~ /256.*\.[s|asm]/) {
81         $SZ=4;
82         $BITS=8*$SZ;
83         $LDW="ld4";
84         $STW="st4";
85         $ADD="padd4";
86         $SHRU="pshr4.u";
87         $TABLE="K256";
88         $func="sha256_block_data_order";
89         @Sigma0=( 2,13,22);
90         @Sigma1=( 6,11,25);
91         @sigma0=( 7,18, 3);
92         @sigma1=(17,19,10);
93         $rounds=64;
94 } else { die "nonsense $output"; }
95
96 open STDOUT,">$output" || die "can't open $output: $!";
97
98 if ($^O eq "hpux") {
99     $ADDP="addp4";
100     for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
101 } else { $ADDP="add"; }
102 for (@ARGV)  {  $big_endian=1 if (/\-DB_ENDIAN/);
103                 $big_endian=0 if (/\-DL_ENDIAN/);  }
104 if (!defined($big_endian))
105              {  $big_endian=(unpack('L',pack('N',1))==1);  }
106
107 $code=<<___;
108 .ident  \"$output, version 1.0\"
109 .ident  \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\"
110 .explicit
111 .text
112
113 pfssave=r2;
114 lcsave=r3;
115 prsave=r14;
116 K=r15;
117 A=r16;  B=r17;  C=r18;  D=r19;
118 E=r20;  F=r21;  G=r22;  H=r23;
119 T1=r24; T2=r25;
120 s0=r26; s1=r27; t0=r28; t1=r29;
121 Ktbl=r30;
122 ctx=r31;        // 1st arg
123 input=r48;      // 2nd arg
124 num=r49;        // 3rd arg
125 sgm0=r50;       sgm1=r51;       // small constants
126
127 // void $func (SHA_CTX *ctx, const void *in,size_t num[,int host])
128 .global $func#
129 .proc   $func#
130 .align  32
131 $func:
132         .prologue
133         .save   ar.pfs,pfssave
134 { .mmi; alloc   pfssave=ar.pfs,3,17,0,16
135         $ADDP   ctx=0,r32               // 1st arg
136         .save   ar.lc,lcsave
137         mov     lcsave=ar.lc    }
138 { .mmi; $ADDP   input=0,r33             // 2nd arg
139         mov     num=r34                 // 3rd arg
140         .save   pr,prsave
141         mov     prsave=pr       };;
142
143         .body
144 { .mib; add     r8=0*$SZ,ctx
145         add     r9=1*$SZ,ctx
146         brp.loop.imp    .L_first16,.L_first16_ctop
147                                 }
148 { .mib; add     r10=2*$SZ,ctx
149         add     r11=3*$SZ,ctx
150         brp.loop.imp    .L_rest,.L_rest_ctop
151                                 };;
152 // load A-H
153 .Lpic_point:
154 { .mmi; $LDW    A=[r8],4*$SZ
155         $LDW    B=[r9],4*$SZ
156         mov     Ktbl=ip         }
157 { .mmi; $LDW    C=[r10],4*$SZ
158         $LDW    D=[r11],4*$SZ
159         mov     sgm0=$sigma0[2] };;
160 { .mmi; $LDW    E=[r8]
161         $LDW    F=[r9]
162         add     Ktbl=($TABLE#-.Lpic_point),Ktbl         }
163 { .mmi; $LDW    G=[r10]
164         $LDW    H=[r11]
165         cmp.ne  p15,p14=0,r0    };;     // used in sha256_block
166
167 .L_outer:
168 { .mii; mov     sgm1=$sigma1[2]
169         mov     ar.lc=15
170         mov     ar.ec=1         };;
171 .align  32
172 .L_first16:
173 .rotr   X[16]
174 ___
175 $t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
176 { .mib; (p14)   add     r9=1,input
177         (p14)   add     r10=2,input     }
178 { .mib; (p14)   add     r11=3,input
179         (p15)   br.dptk.few     .L_host };;
180 { .mmi; (p14)   ld1     r8=[input],$SZ
181         (p14)   ld1     r9=[r9]         }
182 { .mmi; (p14)   ld1     r10=[r10]
183         (p14)   ld1     r11=[r11]       };;
184 { .mii; (p14)   dep     r9=r8,r9,8,8
185         (p14)   dep     r11=r10,r11,8,8 };;
186 { .mib; (p14)   dep     X[15]=r9,r11,16,16 };;
187 .L_host:
188 { .mib; (p15)   $LDW    X[15]=[input],$SZ       // X[i]=*input++
189                 dep.z   $t1=E,32,32     }
190 { .mib;         $LDW    K=[Ktbl],$SZ
191                 zxt4    E=E             };;
192 { .mmi;         or      $t1=$t1,E
193                 and     T1=F,E
194                 and     T2=A,B          }
195 { .mmi;         andcm   r8=G,E
196                 and     r9=A,C
197                 mux2    $t0=A,0x44      };;     // copy lower half to upper
198 { .mib;         xor     T1=T1,r8                // T1=((e & f) ^ (~e & g))
199                 _rotr   r11=$t1,$Sigma1[0] }    // ROTR(e,14)
200 { .mib;         and     r10=B,C
201                 xor     T2=T2,r9        };;
202 ___
203 $t0="A", $t1="E", $code.=<<___ if ($BITS==64);
204 { .mmi;         $LDW    X[15]=[input],$SZ       // X[i]=*input++
205                 and     T1=F,E
206                 and     T2=A,B          }
207 { .mmi;         $LDW    K=[Ktbl],$SZ
208                 andcm   r8=G,E
209                 and     r9=A,C          };;
210 { .mmi;         xor     T1=T1,r8                //T1=((e & f) ^ (~e & g))
211                 and     r10=B,C
212                 _rotr   r11=$t1,$Sigma1[0] }    // ROTR(e,14)
213 { .mmi;         xor     T2=T2,r9
214                 mux1    X[15]=X[15],\@rev };;   // eliminated in big-endian
215 ___
216 $code.=<<___;
217 { .mib;         add     T1=T1,H                 // T1=Ch(e,f,g)+h
218                 _rotr   r8=$t1,$Sigma1[1] }     // ROTR(e,18)
219 { .mib;         xor     T2=T2,r10               // T2=((a & b) ^ (a & c) ^ (b & c))
220                 mov     H=G             };;
221 { .mib;         xor     r11=r8,r11
222                 _rotr   r9=$t1,$Sigma1[2] }     // ROTR(e,41)
223 { .mib;         mov     G=F
224                 mov     F=E             };;
225 { .mib;         xor     r9=r9,r11               // r9=Sigma1(e)
226                 _rotr   r10=$t0,$Sigma0[0] }    // ROTR(a,28)
227 { .mib;         add     T1=T1,K                 // T1=Ch(e,f,g)+h+K512[i]
228                 mov     E=D             };;
229 { .mib;         add     T1=T1,r9                // T1+=Sigma1(e)
230                 _rotr   r11=$t0,$Sigma0[1] }    // ROTR(a,34)
231 { .mib;         mov     D=C
232                 mov     C=B             };;
233 { .mib;         add     T1=T1,X[15]             // T1+=X[i]
234                 _rotr   r8=$t0,$Sigma0[2] }     // ROTR(a,39)
235 { .mib;         xor     r10=r10,r11
236                 mux2    X[15]=X[15],0x44 };;    // eliminated in 64-bit
237 { .mmi;         xor     r10=r8,r10              // r10=Sigma0(a)
238                 mov     B=A
239                 add     A=T1,T2         };;
240 .L_first16_ctop:
241 { .mib;         add     E=E,T1
242                 add     A=A,r10                 // T2=Maj(a,b,c)+Sigma0(a)
243         br.ctop.sptk    .L_first16      };;
244
245 { .mib; mov     ar.lc=$rounds-17        }
246 { .mib; mov     ar.ec=1                 };;
247 .align  32
248 .L_rest:
249 .rotr   X[16]
250 { .mib;         $LDW    K=[Ktbl],$SZ
251                 _rotr   r8=X[15-1],$sigma0[0] } // ROTR(s0,1)
252 { .mib;         $ADD    X[15]=X[15],X[15-9]     // X[i&0xF]+=X[(i+9)&0xF]
253                 $SHRU   s0=X[15-1],sgm0 };;     // s0=X[(i+1)&0xF]>>7
254 { .mib;         and     T1=F,E
255                 _rotr   r9=X[15-1],$sigma0[1] } // ROTR(s0,8)
256 { .mib;         andcm   r10=G,E
257                 $SHRU   s1=X[15-14],sgm1 };;    // s1=X[(i+14)&0xF]>>6
258 { .mmi;         xor     T1=T1,r10               // T1=((e & f) ^ (~e & g))
259                 xor     r9=r8,r9
260                 _rotr   r10=X[15-14],$sigma1[0] };;// ROTR(s1,19)
261 { .mib;         and     T2=A,B          
262                 _rotr   r11=X[15-14],$sigma1[1] }// ROTR(s1,61)
263 { .mib;         and     r8=A,C          };;
264 ___
265 $t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
266 // I adhere to mmi; in order to hold Itanium 1 back and avoid 6 cycle
267 // pipeline flush in last bundle. Note that even on Itanium2 the
268 // latter stalls for one clock cycle...
269 { .mmi;         xor     s0=s0,r9                // s0=sigma0(X[(i+1)&0xF])
270                 dep.z   $t1=E,32,32     }
271 { .mmi;         xor     r10=r11,r10
272                 zxt4    E=E             };;
273 { .mmi;         or      $t1=$t1,E
274                 xor     s1=s1,r10               // s1=sigma1(X[(i+14)&0xF])
275                 mux2    $t0=A,0x44      };;     // copy lower half to upper
276 { .mmi;         xor     T2=T2,r8
277                 _rotr   r9=$t1,$Sigma1[0] }     // ROTR(e,14)
278 { .mmi;         and     r10=B,C
279                 add     T1=T1,H                 // T1=Ch(e,f,g)+h
280                 $ADD    X[15]=X[15],s0  };;     // X[i&0xF]+=sigma0(X[(i+1)&0xF])
281 ___
282 $t0="A", $t1="E", $code.=<<___ if ($BITS==64);
283 { .mib;         xor     s0=s0,r9                // s0=sigma0(X[(i+1)&0xF])
284                 _rotr   r9=$t1,$Sigma1[0] }     // ROTR(e,14)
285 { .mib;         xor     r10=r11,r10
286                 xor     T2=T2,r8        };;
287 { .mib;         xor     s1=s1,r10               // s1=sigma1(X[(i+14)&0xF])
288                 add     T1=T1,H         }
289 { .mib;         and     r10=B,C
290                 $ADD    X[15]=X[15],s0  };;     // X[i&0xF]+=sigma0(X[(i+1)&0xF])
291 ___
292 $code.=<<___;
293 { .mmi;         xor     T2=T2,r10               // T2=((a & b) ^ (a & c) ^ (b & c))
294                 mov     H=G
295                 _rotr   r8=$t1,$Sigma1[1] };;   // ROTR(e,18)
296 { .mmi;         xor     r11=r8,r9
297                 $ADD    X[15]=X[15],s1          // X[i&0xF]+=sigma1(X[(i+14)&0xF])
298                 _rotr   r9=$t1,$Sigma1[2] }     // ROTR(e,41)
299 { .mmi;         mov     G=F
300                 mov     F=E             };;
301 { .mib;         xor     r9=r9,r11               // r9=Sigma1(e)
302                 _rotr   r10=$t0,$Sigma0[0] }    // ROTR(a,28)
303 { .mib;         add     T1=T1,K                 // T1=Ch(e,f,g)+h+K512[i]
304                 mov     E=D             };;
305 { .mib;         add     T1=T1,r9                // T1+=Sigma1(e)
306                 _rotr   r11=$t0,$Sigma0[1] }    // ROTR(a,34)
307 { .mib;         mov     D=C
308                 mov     C=B             };;
309 { .mmi;         add     T1=T1,X[15]             // T1+=X[i]
310                 xor     r10=r10,r11
311                 _rotr   r8=$t0,$Sigma0[2] };;   // ROTR(a,39)
312 { .mmi;         xor     r10=r8,r10              // r10=Sigma0(a)
313                 mov     B=A
314                 add     A=T1,T2         };;
315 .L_rest_ctop:
316 { .mib;         add     E=E,T1
317                 add     A=A,r10                 // T2=Maj(a,b,c)+Sigma0(a)
318         br.ctop.sptk    .L_rest };;
319
320 { .mib; add     r8=0*$SZ,ctx
321         add     r9=1*$SZ,ctx            }
322 { .mib; add     r10=2*$SZ,ctx
323         add     r11=3*$SZ,ctx           };;
324 { .mmi; $LDW    r32=[r8],4*$SZ
325         $LDW    r33=[r9],4*$SZ          }
326 { .mmi; $LDW    r34=[r10],4*$SZ
327         $LDW    r35=[r11],4*$SZ
328         cmp.ltu p6,p7=1,num             };;
329 { .mmi; $LDW    r36=[r8],-4*$SZ
330         $LDW    r37=[r9],-4*$SZ
331 (p6)    add     Ktbl=-$SZ*$rounds,Ktbl  }
332 { .mmi; $LDW    r38=[r10],-4*$SZ
333         $LDW    r39=[r11],-4*$SZ
334 (p7)    mov     ar.lc=lcsave            };;
335 { .mmi; add     A=A,r32
336         add     B=B,r33
337         add     C=C,r34                 }
338 { .mmi; add     D=D,r35
339         add     E=E,r36
340         add     F=F,r37                 };;
341 { .mmi; $STW    [r8]=A,4*$SZ
342         $STW    [r9]=B,4*$SZ
343         add     G=G,r38                 }
344 { .mmi; $STW    [r10]=C,4*$SZ
345         $STW    [r11]=D,4*$SZ
346         add     H=H,r39                 };;
347 { .mmi; $STW    [r8]=E
348         $STW    [r9]=F
349 (p6)    add     num=-1,num              }
350 { .mmb; $STW    [r10]=G
351         $STW    [r11]=H
352 (p6)    br.dptk.many    .L_outer        };;
353
354 { .mib; mov     pr=prsave,0x1ffff
355         br.ret.sptk.many        b0      };;
356 .endp   $func#
357 ___
358
359 $code =~ s/\`([^\`]*)\`/eval $1/gem;
360 $code =~ s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm;
361 if ($BITS==64) {
362     $code =~ s/mux2(\s+)\S+/nop.i$1 0x0/gm;
363     $code =~ s/mux1(\s+)\S+/nop.i$1 0x0/gm if ($big_endian);
364 }
365
366 print $code;
367
368 print<<___ if ($BITS==32);
369 .align  64
370 .type   K256#,\@object
371 K256:   data4   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
372         data4   0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
373         data4   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
374         data4   0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
375         data4   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
376         data4   0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
377         data4   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
378         data4   0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
379         data4   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
380         data4   0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
381         data4   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
382         data4   0xd192e819,0xd6990624,0xf40e3585,0x106aa070
383         data4   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
384         data4   0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
385         data4   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
386         data4   0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
387 .size   K256#,$SZ*$rounds
388 ___
389 print<<___ if ($BITS==64);
390 .align  64
391 .type   K512#,\@object
392 K512:   data8   0x428a2f98d728ae22,0x7137449123ef65cd
393         data8   0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
394         data8   0x3956c25bf348b538,0x59f111f1b605d019
395         data8   0x923f82a4af194f9b,0xab1c5ed5da6d8118
396         data8   0xd807aa98a3030242,0x12835b0145706fbe
397         data8   0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
398         data8   0x72be5d74f27b896f,0x80deb1fe3b1696b1
399         data8   0x9bdc06a725c71235,0xc19bf174cf692694
400         data8   0xe49b69c19ef14ad2,0xefbe4786384f25e3
401         data8   0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
402         data8   0x2de92c6f592b0275,0x4a7484aa6ea6e483
403         data8   0x5cb0a9dcbd41fbd4,0x76f988da831153b5
404         data8   0x983e5152ee66dfab,0xa831c66d2db43210
405         data8   0xb00327c898fb213f,0xbf597fc7beef0ee4
406         data8   0xc6e00bf33da88fc2,0xd5a79147930aa725
407         data8   0x06ca6351e003826f,0x142929670a0e6e70
408         data8   0x27b70a8546d22ffc,0x2e1b21385c26c926
409         data8   0x4d2c6dfc5ac42aed,0x53380d139d95b3df
410         data8   0x650a73548baf63de,0x766a0abb3c77b2a8
411         data8   0x81c2c92e47edaee6,0x92722c851482353b
412         data8   0xa2bfe8a14cf10364,0xa81a664bbc423001
413         data8   0xc24b8b70d0f89791,0xc76c51a30654be30
414         data8   0xd192e819d6ef5218,0xd69906245565a910
415         data8   0xf40e35855771202a,0x106aa07032bbd1b8
416         data8   0x19a4c116b8d2d0c8,0x1e376c085141ab53
417         data8   0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
418         data8   0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
419         data8   0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
420         data8   0x748f82ee5defb2fc,0x78a5636f43172f60
421         data8   0x84c87814a1f0ab72,0x8cc702081a6439ec
422         data8   0x90befffa23631e28,0xa4506cebde82bde9
423         data8   0xbef9a3f7b2c67915,0xc67178f2e372532b
424         data8   0xca273eceea26619c,0xd186b8c721c0c207
425         data8   0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
426         data8   0x06f067aa72176fba,0x0a637dc5a2c898a6
427         data8   0x113f9804bef90dae,0x1b710b35131c471b
428         data8   0x28db77f523047d84,0x32caab7b40c72493
429         data8   0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
430         data8   0x4cc5d4becb3e42b6,0x597f299cfc657e2a
431         data8   0x5fcb6fab3ad6faec,0x6c44198c4a475817
432 .size   K512#,$SZ*$rounds
433 ___