Make rcu_thread_key context-aware
[openssl.git] / crypto / sha / asm / sha512-armv8.pl
1 #! /usr/bin/env perl
2 # Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License").  You may not use
5 # this file except in compliance with the License.  You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 # ====================================================================
10 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11 # project. The module is, however, dual licensed under OpenSSL and
12 # CRYPTOGAMS licenses depending on where you obtain it. For further
13 # details see http://www.openssl.org/~appro/cryptogams/.
14 #
15 # Permission to use under GPLv2 terms is granted.
16 # ====================================================================
17 #
18 # SHA256/512 for ARMv8.
19 #
20 # Performance in cycles per processed byte and improvement coefficient
21 # over code generated with "default" compiler:
22 #
23 #               SHA256-hw       SHA256(*)       SHA512
24 # Apple A7      1.97            10.5 (+33%)     6.73 (-1%(**))
25 # Cortex-A53    2.38            15.5 (+115%)    10.0 (+150%(***))
26 # Cortex-A57    2.31            11.6 (+86%)     7.51 (+260%(***))
27 # Denver        2.01            10.5 (+26%)     6.70 (+8%)
28 # X-Gene                        20.0 (+100%)    12.8 (+300%(***))
29 # Mongoose      2.36            13.0 (+50%)     8.36 (+33%)
30 # Kryo          1.92            17.4 (+30%)     11.2 (+8%)
31 #
32 # (*)   Software SHA256 results are of lesser relevance, presented
33 #       mostly for informational purposes.
34 # (**)  The result is a trade-off: it's possible to improve it by
35 #       10% (or by 1 cycle per round), but at the cost of 20% loss
36 #       on Cortex-A53 (or by 4 cycles per round).
37 # (***) Super-impressive coefficients over gcc-generated code are
38 #       indication of some compiler "pathology", most notably code
39 #       generated with -mgeneral-regs-only is significantly faster
40 #       and the gap is only 40-90%.
41 #
42 # October 2016.
43 #
44 # Originally it was reckoned that it makes no sense to implement NEON
45 # version of SHA256 for 64-bit processors. This is because performance
46 # improvement on most wide-spread Cortex-A5x processors was observed
47 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
48 # observed that 32-bit NEON SHA256 performs significantly better than
49 # 64-bit scalar version on *some* of the more recent processors. As
50 # result 64-bit NEON version of SHA256 was added to provide best
51 # all-round performance. For example it executes ~30% faster on X-Gene
52 # and Mongoose. [For reference, NEON version of SHA512 is bound to
53 # deliver much less improvement, likely *negative* on Cortex-A5x.
54 # Which is why NEON support is limited to SHA256.]
55
56 $output=pop;
57 $flavour=pop;
58
59 if ($flavour && $flavour ne "void") {
60     $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
61     ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
62     ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
63     die "can't locate arm-xlate.pl";
64
65     open OUT,"| \"$^X\" $xlate $flavour $output";
66     *STDOUT=*OUT;
67 } else {
68     open STDOUT,">$output";
69 }
70
71 if ($output =~ /512/) {
72         $BITS=512;
73         $SZ=8;
74         @Sigma0=(28,34,39);
75         @Sigma1=(14,18,41);
76         @sigma0=(1,  8, 7);
77         @sigma1=(19,61, 6);
78         $rounds=80;
79         $reg_t="x";
80 } else {
81         $BITS=256;
82         $SZ=4;
83         @Sigma0=( 2,13,22);
84         @Sigma1=( 6,11,25);
85         @sigma0=( 7,18, 3);
86         @sigma1=(17,19,10);
87         $rounds=64;
88         $reg_t="w";
89 }
90
91 $func="sha${BITS}_block_data_order";
92
93 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
94
95 @X=map("$reg_t$_",(3..15,0..2));
96 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
97 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
98
99 sub BODY_00_xx {
100 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
101 my $j=($i+1)&15;
102 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
103    $T0=@X[$i+3] if ($i<11);
104
105 $code.=<<___    if ($i<16);
106 #ifndef __AARCH64EB__
107         rev     @X[$i],@X[$i]                   // $i
108 #endif
109 ___
110 $code.=<<___    if ($i<13 && ($i&1));
111         ldp     @X[$i+1],@X[$i+2],[$inp],#2*$SZ
112 ___
113 $code.=<<___    if ($i==13);
114         ldp     @X[14],@X[15],[$inp]
115 ___
116 $code.=<<___    if ($i>=14);
117         ldr     @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
118 ___
119 $code.=<<___    if ($i>0 && $i<16);
120         add     $a,$a,$t1                       // h+=Sigma0(a)
121 ___
122 $code.=<<___    if ($i>=11);
123         str     @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
124 ___
125 # While ARMv8 specifies merged rotate-n-logical operation such as
126 # 'eor x,y,z,ror#n', it was found to negatively affect performance
127 # on Apple A7. The reason seems to be that it requires even 'y' to
128 # be available earlier. This means that such merged instruction is
129 # not necessarily best choice on critical path... On the other hand
130 # Cortex-A5x handles merged instructions much better than disjoint
131 # rotate and logical... See (**) footnote above.
132 $code.=<<___    if ($i<15);
133         ror     $t0,$e,#$Sigma1[0]
134         add     $h,$h,$t2                       // h+=K[i]
135         eor     $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
136         and     $t1,$f,$e
137         bic     $t2,$g,$e
138         add     $h,$h,@X[$i&15]                 // h+=X[i]
139         orr     $t1,$t1,$t2                     // Ch(e,f,g)
140         eor     $t2,$a,$b                       // a^b, b^c in next round
141         eor     $t0,$t0,$T0,ror#$Sigma1[1]      // Sigma1(e)
142         ror     $T0,$a,#$Sigma0[0]
143         add     $h,$h,$t1                       // h+=Ch(e,f,g)
144         eor     $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
145         add     $h,$h,$t0                       // h+=Sigma1(e)
146         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
147         add     $d,$d,$h                        // d+=h
148         eor     $t3,$t3,$b                      // Maj(a,b,c)
149         eor     $t1,$T0,$t1,ror#$Sigma0[1]      // Sigma0(a)
150         add     $h,$h,$t3                       // h+=Maj(a,b,c)
151         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
152         //add   $h,$h,$t1                       // h+=Sigma0(a)
153 ___
154 $code.=<<___    if ($i>=15);
155         ror     $t0,$e,#$Sigma1[0]
156         add     $h,$h,$t2                       // h+=K[i]
157         ror     $T1,@X[($j+1)&15],#$sigma0[0]
158         and     $t1,$f,$e
159         ror     $T2,@X[($j+14)&15],#$sigma1[0]
160         bic     $t2,$g,$e
161         ror     $T0,$a,#$Sigma0[0]
162         add     $h,$h,@X[$i&15]                 // h+=X[i]
163         eor     $t0,$t0,$e,ror#$Sigma1[1]
164         eor     $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
165         orr     $t1,$t1,$t2                     // Ch(e,f,g)
166         eor     $t2,$a,$b                       // a^b, b^c in next round
167         eor     $t0,$t0,$e,ror#$Sigma1[2]       // Sigma1(e)
168         eor     $T0,$T0,$a,ror#$Sigma0[1]
169         add     $h,$h,$t1                       // h+=Ch(e,f,g)
170         and     $t3,$t3,$t2                     // (b^c)&=(a^b)
171         eor     $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
172         eor     $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]    // sigma0(X[i+1])
173         add     $h,$h,$t0                       // h+=Sigma1(e)
174         eor     $t3,$t3,$b                      // Maj(a,b,c)
175         eor     $t1,$T0,$a,ror#$Sigma0[2]       // Sigma0(a)
176         eor     $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]   // sigma1(X[i+14])
177         add     @X[$j],@X[$j],@X[($j+9)&15]
178         add     $d,$d,$h                        // d+=h
179         add     $h,$h,$t3                       // h+=Maj(a,b,c)
180         ldr     $t3,[$Ktbl],#$SZ                // *K++, $t2 in next round
181         add     @X[$j],@X[$j],$T1
182         add     $h,$h,$t1                       // h+=Sigma0(a)
183         add     @X[$j],@X[$j],$T2
184 ___
185         ($t2,$t3)=($t3,$t2);
186 }
187
188 $code.=<<___;
189 #ifndef __KERNEL__
190 # include "arm_arch.h"
191 .extern OPENSSL_armcap_P
192 #endif
193
194 .text
195
196 .globl  $func
197 .type   $func,%function
198 .align  6
199 $func:
200 #ifndef __KERNEL__
201         adrp    x16,OPENSSL_armcap_P
202         ldr     w16,[x16,#:lo12:OPENSSL_armcap_P]
203 ___
204 $code.=<<___    if ($SZ==4);
205         tst     w16,#ARMV8_SHA256
206         b.ne    .Lv8_entry
207         tst     w16,#ARMV7_NEON
208         b.ne    .Lneon_entry
209 ___
210 $code.=<<___    if ($SZ==8);
211         tst     w16,#ARMV8_SHA512
212         b.ne    .Lv8_entry
213 ___
214 $code.=<<___;
215 #endif
216         .inst   0xd503233f                              // paciasp
217         stp     x29,x30,[sp,#-128]!
218         add     x29,sp,#0
219
220         stp     x19,x20,[sp,#16]
221         stp     x21,x22,[sp,#32]
222         stp     x23,x24,[sp,#48]
223         stp     x25,x26,[sp,#64]
224         stp     x27,x28,[sp,#80]
225         sub     sp,sp,#4*$SZ
226
227         ldp     $A,$B,[$ctx]                            // load context
228         ldp     $C,$D,[$ctx,#2*$SZ]
229         ldp     $E,$F,[$ctx,#4*$SZ]
230         add     $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
231         ldp     $G,$H,[$ctx,#6*$SZ]
232         adr     $Ktbl,.LK$BITS
233         stp     $ctx,$num,[x29,#96]
234
235 .Loop:
236         ldp     @X[0],@X[1],[$inp],#2*$SZ
237         ldr     $t2,[$Ktbl],#$SZ                        // *K++
238         eor     $t3,$B,$C                               // magic seed
239         str     $inp,[x29,#112]
240 ___
241 for ($i=0;$i<16;$i++)   { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
242 $code.=".Loop_16_xx:\n";
243 for (;$i<32;$i++)       { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
244 $code.=<<___;
245         cbnz    $t2,.Loop_16_xx
246
247         ldp     $ctx,$num,[x29,#96]
248         ldr     $inp,[x29,#112]
249         sub     $Ktbl,$Ktbl,#`$SZ*($rounds+1)`          // rewind
250
251         ldp     @X[0],@X[1],[$ctx]
252         ldp     @X[2],@X[3],[$ctx,#2*$SZ]
253         add     $inp,$inp,#14*$SZ                       // advance input pointer
254         ldp     @X[4],@X[5],[$ctx,#4*$SZ]
255         add     $A,$A,@X[0]
256         ldp     @X[6],@X[7],[$ctx,#6*$SZ]
257         add     $B,$B,@X[1]
258         add     $C,$C,@X[2]
259         add     $D,$D,@X[3]
260         stp     $A,$B,[$ctx]
261         add     $E,$E,@X[4]
262         add     $F,$F,@X[5]
263         stp     $C,$D,[$ctx,#2*$SZ]
264         add     $G,$G,@X[6]
265         add     $H,$H,@X[7]
266         cmp     $inp,$num
267         stp     $E,$F,[$ctx,#4*$SZ]
268         stp     $G,$H,[$ctx,#6*$SZ]
269         b.ne    .Loop
270
271         ldp     x19,x20,[x29,#16]
272         add     sp,sp,#4*$SZ
273         ldp     x21,x22,[x29,#32]
274         ldp     x23,x24,[x29,#48]
275         ldp     x25,x26,[x29,#64]
276         ldp     x27,x28,[x29,#80]
277         ldp     x29,x30,[sp],#128
278         .inst   0xd50323bf                              // autiasp
279         ret
280 .size   $func,.-$func
281
282 .align  6
283 .type   .LK$BITS,%object
284 .LK$BITS:
285 ___
286 $code.=<<___ if ($SZ==8);
287         .quad   0x428a2f98d728ae22,0x7137449123ef65cd
288         .quad   0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
289         .quad   0x3956c25bf348b538,0x59f111f1b605d019
290         .quad   0x923f82a4af194f9b,0xab1c5ed5da6d8118
291         .quad   0xd807aa98a3030242,0x12835b0145706fbe
292         .quad   0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
293         .quad   0x72be5d74f27b896f,0x80deb1fe3b1696b1
294         .quad   0x9bdc06a725c71235,0xc19bf174cf692694
295         .quad   0xe49b69c19ef14ad2,0xefbe4786384f25e3
296         .quad   0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
297         .quad   0x2de92c6f592b0275,0x4a7484aa6ea6e483
298         .quad   0x5cb0a9dcbd41fbd4,0x76f988da831153b5
299         .quad   0x983e5152ee66dfab,0xa831c66d2db43210
300         .quad   0xb00327c898fb213f,0xbf597fc7beef0ee4
301         .quad   0xc6e00bf33da88fc2,0xd5a79147930aa725
302         .quad   0x06ca6351e003826f,0x142929670a0e6e70
303         .quad   0x27b70a8546d22ffc,0x2e1b21385c26c926
304         .quad   0x4d2c6dfc5ac42aed,0x53380d139d95b3df
305         .quad   0x650a73548baf63de,0x766a0abb3c77b2a8
306         .quad   0x81c2c92e47edaee6,0x92722c851482353b
307         .quad   0xa2bfe8a14cf10364,0xa81a664bbc423001
308         .quad   0xc24b8b70d0f89791,0xc76c51a30654be30
309         .quad   0xd192e819d6ef5218,0xd69906245565a910
310         .quad   0xf40e35855771202a,0x106aa07032bbd1b8
311         .quad   0x19a4c116b8d2d0c8,0x1e376c085141ab53
312         .quad   0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
313         .quad   0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
314         .quad   0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
315         .quad   0x748f82ee5defb2fc,0x78a5636f43172f60
316         .quad   0x84c87814a1f0ab72,0x8cc702081a6439ec
317         .quad   0x90befffa23631e28,0xa4506cebde82bde9
318         .quad   0xbef9a3f7b2c67915,0xc67178f2e372532b
319         .quad   0xca273eceea26619c,0xd186b8c721c0c207
320         .quad   0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
321         .quad   0x06f067aa72176fba,0x0a637dc5a2c898a6
322         .quad   0x113f9804bef90dae,0x1b710b35131c471b
323         .quad   0x28db77f523047d84,0x32caab7b40c72493
324         .quad   0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
325         .quad   0x4cc5d4becb3e42b6,0x597f299cfc657e2a
326         .quad   0x5fcb6fab3ad6faec,0x6c44198c4a475817
327         .quad   0       // terminator
328 ___
329 $code.=<<___ if ($SZ==4);
330         .long   0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
331         .long   0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
332         .long   0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
333         .long   0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
334         .long   0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
335         .long   0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
336         .long   0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
337         .long   0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
338         .long   0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
339         .long   0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
340         .long   0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
341         .long   0xd192e819,0xd6990624,0xf40e3585,0x106aa070
342         .long   0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
343         .long   0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
344         .long   0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
345         .long   0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
346         .long   0       //terminator
347 ___
348 $code.=<<___;
349 .size   .LK$BITS,.-.LK$BITS
350 .asciz  "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
351 .align  2
352 ___
353
354 if ($SZ==4) {
355 my $Ktbl="x3";
356
357 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
358 my @MSG=map("v$_.16b",(4..7));
359 my ($W0,$W1)=("v16.4s","v17.4s");
360 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
361
362 $code.=<<___;
363 #ifndef __KERNEL__
364 .type   sha256_block_armv8,%function
365 .align  6
366 sha256_block_armv8:
367 .Lv8_entry:
368         stp             x29,x30,[sp,#-16]!
369         add             x29,sp,#0
370
371         ld1.32          {$ABCD,$EFGH},[$ctx]
372         adr             $Ktbl,.LK256
373
374 .Loop_hw:
375         ld1             {@MSG[0]-@MSG[3]},[$inp],#64
376         sub             $num,$num,#1
377         ld1.32          {$W0},[$Ktbl],#16
378         rev32           @MSG[0],@MSG[0]
379         rev32           @MSG[1],@MSG[1]
380         rev32           @MSG[2],@MSG[2]
381         rev32           @MSG[3],@MSG[3]
382         orr             $ABCD_SAVE,$ABCD,$ABCD          // offload
383         orr             $EFGH_SAVE,$EFGH,$EFGH
384 ___
385 for($i=0;$i<12;$i++) {
386 $code.=<<___;
387         ld1.32          {$W1},[$Ktbl],#16
388         add.i32         $W0,$W0,@MSG[0]
389         sha256su0       @MSG[0],@MSG[1]
390         orr             $abcd,$ABCD,$ABCD
391         sha256h         $ABCD,$EFGH,$W0
392         sha256h2        $EFGH,$abcd,$W0
393         sha256su1       @MSG[0],@MSG[2],@MSG[3]
394 ___
395         ($W0,$W1)=($W1,$W0);    push(@MSG,shift(@MSG));
396 }
397 $code.=<<___;
398         ld1.32          {$W1},[$Ktbl],#16
399         add.i32         $W0,$W0,@MSG[0]
400         orr             $abcd,$ABCD,$ABCD
401         sha256h         $ABCD,$EFGH,$W0
402         sha256h2        $EFGH,$abcd,$W0
403
404         ld1.32          {$W0},[$Ktbl],#16
405         add.i32         $W1,$W1,@MSG[1]
406         orr             $abcd,$ABCD,$ABCD
407         sha256h         $ABCD,$EFGH,$W1
408         sha256h2        $EFGH,$abcd,$W1
409
410         ld1.32          {$W1},[$Ktbl]
411         add.i32         $W0,$W0,@MSG[2]
412         sub             $Ktbl,$Ktbl,#$rounds*$SZ-16     // rewind
413         orr             $abcd,$ABCD,$ABCD
414         sha256h         $ABCD,$EFGH,$W0
415         sha256h2        $EFGH,$abcd,$W0
416
417         add.i32         $W1,$W1,@MSG[3]
418         orr             $abcd,$ABCD,$ABCD
419         sha256h         $ABCD,$EFGH,$W1
420         sha256h2        $EFGH,$abcd,$W1
421
422         add.i32         $ABCD,$ABCD,$ABCD_SAVE
423         add.i32         $EFGH,$EFGH,$EFGH_SAVE
424
425         cbnz            $num,.Loop_hw
426
427         st1.32          {$ABCD,$EFGH},[$ctx]
428
429         ldr             x29,[sp],#16
430         ret
431 .size   sha256_block_armv8,.-sha256_block_armv8
432 #endif
433 ___
434 }
435
436 if ($SZ==4) {   ######################################### NEON stuff #
437 # You'll surely note a lot of similarities with sha256-armv4 module,
438 # and of course it's not a coincidence. sha256-armv4 was used as
439 # initial template, but was adapted for ARMv8 instruction set and
440 # extensively re-tuned for all-round performance.
441
442 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
443 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
444 my $Ktbl="x16";
445 my $Xfer="x17";
446 my @X = map("q$_",(0..3));
447 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
448 my $j=0;
449
450 sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
451 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
452   my $arg = pop;
453     $arg = "#$arg" if ($arg*1 eq $arg);
454     $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
455 }
456
457 sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
458 sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
459 sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
460
461 sub Xupdate()
462 { use integer;
463   my $body = shift;
464   my @insns = (&$body,&$body,&$body,&$body);
465   my ($a,$b,$c,$d,$e,$f,$g,$h);
466
467         &ext_8          ($T0,@X[0],@X[1],4);    # X[1..4]
468          eval(shift(@insns));
469          eval(shift(@insns));
470          eval(shift(@insns));
471         &ext_8          ($T3,@X[2],@X[3],4);    # X[9..12]
472          eval(shift(@insns));
473          eval(shift(@insns));
474         &mov            (&Dscalar($T7),&Dhi(@X[3]));    # X[14..15]
475          eval(shift(@insns));
476          eval(shift(@insns));
477         &ushr_32        ($T2,$T0,$sigma0[0]);
478          eval(shift(@insns));
479         &ushr_32        ($T1,$T0,$sigma0[2]);
480          eval(shift(@insns));
481         &add_32         (@X[0],@X[0],$T3);      # X[0..3] += X[9..12]
482          eval(shift(@insns));
483         &sli_32         ($T2,$T0,32-$sigma0[0]);
484          eval(shift(@insns));
485          eval(shift(@insns));
486         &ushr_32        ($T3,$T0,$sigma0[1]);
487          eval(shift(@insns));
488          eval(shift(@insns));
489         &eor_8          ($T1,$T1,$T2);
490          eval(shift(@insns));
491          eval(shift(@insns));
492         &sli_32         ($T3,$T0,32-$sigma0[1]);
493          eval(shift(@insns));
494          eval(shift(@insns));
495           &ushr_32      ($T4,$T7,$sigma1[0]);
496          eval(shift(@insns));
497          eval(shift(@insns));
498         &eor_8          ($T1,$T1,$T3);          # sigma0(X[1..4])
499          eval(shift(@insns));
500          eval(shift(@insns));
501           &sli_32       ($T4,$T7,32-$sigma1[0]);
502          eval(shift(@insns));
503          eval(shift(@insns));
504           &ushr_32      ($T5,$T7,$sigma1[2]);
505          eval(shift(@insns));
506          eval(shift(@insns));
507           &ushr_32      ($T3,$T7,$sigma1[1]);
508          eval(shift(@insns));
509          eval(shift(@insns));
510         &add_32         (@X[0],@X[0],$T1);      # X[0..3] += sigma0(X[1..4])
511          eval(shift(@insns));
512          eval(shift(@insns));
513           &sli_u32      ($T3,$T7,32-$sigma1[1]);
514          eval(shift(@insns));
515          eval(shift(@insns));
516           &eor_8        ($T5,$T5,$T4);
517          eval(shift(@insns));
518          eval(shift(@insns));
519          eval(shift(@insns));
520           &eor_8        ($T5,$T5,$T3);          # sigma1(X[14..15])
521          eval(shift(@insns));
522          eval(shift(@insns));
523          eval(shift(@insns));
524         &add_32         (@X[0],@X[0],$T5);      # X[0..1] += sigma1(X[14..15])
525          eval(shift(@insns));
526          eval(shift(@insns));
527          eval(shift(@insns));
528           &ushr_32      ($T6,@X[0],$sigma1[0]);
529          eval(shift(@insns));
530           &ushr_32      ($T7,@X[0],$sigma1[2]);
531          eval(shift(@insns));
532          eval(shift(@insns));
533           &sli_32       ($T6,@X[0],32-$sigma1[0]);
534          eval(shift(@insns));
535           &ushr_32      ($T5,@X[0],$sigma1[1]);
536          eval(shift(@insns));
537          eval(shift(@insns));
538           &eor_8        ($T7,$T7,$T6);
539          eval(shift(@insns));
540          eval(shift(@insns));
541           &sli_32       ($T5,@X[0],32-$sigma1[1]);
542          eval(shift(@insns));
543          eval(shift(@insns));
544         &ld1_32         ("{$T0}","[$Ktbl], #16");
545          eval(shift(@insns));
546           &eor_8        ($T7,$T7,$T5);          # sigma1(X[16..17])
547          eval(shift(@insns));
548          eval(shift(@insns));
549         &eor_8          ($T5,$T5,$T5);
550          eval(shift(@insns));
551          eval(shift(@insns));
552         &mov            (&Dhi($T5), &Dlo($T7));
553          eval(shift(@insns));
554          eval(shift(@insns));
555          eval(shift(@insns));
556         &add_32         (@X[0],@X[0],$T5);      # X[2..3] += sigma1(X[16..17])
557          eval(shift(@insns));
558          eval(shift(@insns));
559          eval(shift(@insns));
560         &add_32         ($T0,$T0,@X[0]);
561          while($#insns>=1) { eval(shift(@insns)); }
562         &st1_32         ("{$T0}","[$Xfer], #16");
563          eval(shift(@insns));
564
565         push(@X,shift(@X));             # "rotate" X[]
566 }
567
568 sub Xpreload()
569 { use integer;
570   my $body = shift;
571   my @insns = (&$body,&$body,&$body,&$body);
572   my ($a,$b,$c,$d,$e,$f,$g,$h);
573
574          eval(shift(@insns));
575          eval(shift(@insns));
576         &ld1_8          ("{@X[0]}","[$inp],#16");
577          eval(shift(@insns));
578          eval(shift(@insns));
579         &ld1_32         ("{$T0}","[$Ktbl],#16");
580          eval(shift(@insns));
581          eval(shift(@insns));
582          eval(shift(@insns));
583          eval(shift(@insns));
584         &rev32          (@X[0],@X[0]);
585          eval(shift(@insns));
586          eval(shift(@insns));
587          eval(shift(@insns));
588          eval(shift(@insns));
589         &add_32         ($T0,$T0,@X[0]);
590          foreach (@insns) { eval; }     # remaining instructions
591         &st1_32         ("{$T0}","[$Xfer], #16");
592
593         push(@X,shift(@X));             # "rotate" X[]
594 }
595
596 sub body_00_15 () {
597         (
598         '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
599         '&add   ($h,$h,$t1)',                   # h+=X[i]+K[i]
600         '&add   ($a,$a,$t4);'.                  # h+=Sigma0(a) from the past
601         '&and   ($t1,$f,$e)',
602         '&bic   ($t4,$g,$e)',
603         '&eor   ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
604         '&add   ($a,$a,$t2)',                   # h+=Maj(a,b,c) from the past
605         '&orr   ($t1,$t1,$t4)',                 # Ch(e,f,g)
606         '&eor   ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',   # Sigma1(e)
607         '&eor   ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
608         '&add   ($h,$h,$t1)',                   # h+=Ch(e,f,g)
609         '&ror   ($t0,$t0,"#$Sigma1[0]")',
610         '&eor   ($t2,$a,$b)',                   # a^b, b^c in next round
611         '&eor   ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',   # Sigma0(a)
612         '&add   ($h,$h,$t0)',                   # h+=Sigma1(e)
613         '&ldr   ($t1,sprintf "[sp,#%d]",4*(($j+1)&15))  if (($j&15)!=15);'.
614         '&ldr   ($t1,"[$Ktbl]")                         if ($j==15);'.
615         '&and   ($t3,$t3,$t2)',                 # (b^c)&=(a^b)
616         '&ror   ($t4,$t4,"#$Sigma0[0]")',
617         '&add   ($d,$d,$h)',                    # d+=h
618         '&eor   ($t3,$t3,$b)',                  # Maj(a,b,c)
619         '$j++;  unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
620         )
621 }
622
623 $code.=<<___;
624 #ifdef  __KERNEL__
625 .globl  sha256_block_neon
626 #endif
627 .type   sha256_block_neon,%function
628 .align  4
629 sha256_block_neon:
630 .Lneon_entry:
631         stp     x29, x30, [sp, #-16]!
632         mov     x29, sp
633         sub     sp,sp,#16*4
634
635         adr     $Ktbl,.LK256
636         add     $num,$inp,$num,lsl#6    // len to point at the end of inp
637
638         ld1.8   {@X[0]},[$inp], #16
639         ld1.8   {@X[1]},[$inp], #16
640         ld1.8   {@X[2]},[$inp], #16
641         ld1.8   {@X[3]},[$inp], #16
642         ld1.32  {$T0},[$Ktbl], #16
643         ld1.32  {$T1},[$Ktbl], #16
644         ld1.32  {$T2},[$Ktbl], #16
645         ld1.32  {$T3},[$Ktbl], #16
646         rev32   @X[0],@X[0]             // yes, even on
647         rev32   @X[1],@X[1]             // big-endian
648         rev32   @X[2],@X[2]
649         rev32   @X[3],@X[3]
650         mov     $Xfer,sp
651         add.32  $T0,$T0,@X[0]
652         add.32  $T1,$T1,@X[1]
653         add.32  $T2,$T2,@X[2]
654         st1.32  {$T0-$T1},[$Xfer], #32
655         add.32  $T3,$T3,@X[3]
656         st1.32  {$T2-$T3},[$Xfer]
657         sub     $Xfer,$Xfer,#32
658
659         ldp     $A,$B,[$ctx]
660         ldp     $C,$D,[$ctx,#8]
661         ldp     $E,$F,[$ctx,#16]
662         ldp     $G,$H,[$ctx,#24]
663         ldr     $t1,[sp,#0]
664         mov     $t2,wzr
665         eor     $t3,$B,$C
666         mov     $t4,wzr
667         b       .L_00_48
668
669 .align  4
670 .L_00_48:
671 ___
672         &Xupdate(\&body_00_15);
673         &Xupdate(\&body_00_15);
674         &Xupdate(\&body_00_15);
675         &Xupdate(\&body_00_15);
676 $code.=<<___;
677         cmp     $t1,#0                          // check for K256 terminator
678         ldr     $t1,[sp,#0]
679         sub     $Xfer,$Xfer,#64
680         bne     .L_00_48
681
682         sub     $Ktbl,$Ktbl,#256                // rewind $Ktbl
683         cmp     $inp,$num
684         mov     $Xfer, #64
685         csel    $Xfer, $Xfer, xzr, eq
686         sub     $inp,$inp,$Xfer                 // avoid SEGV
687         mov     $Xfer,sp
688 ___
689         &Xpreload(\&body_00_15);
690         &Xpreload(\&body_00_15);
691         &Xpreload(\&body_00_15);
692         &Xpreload(\&body_00_15);
693 $code.=<<___;
694         add     $A,$A,$t4                       // h+=Sigma0(a) from the past
695         ldp     $t0,$t1,[$ctx,#0]
696         add     $A,$A,$t2                       // h+=Maj(a,b,c) from the past
697         ldp     $t2,$t3,[$ctx,#8]
698         add     $A,$A,$t0                       // accumulate
699         add     $B,$B,$t1
700         ldp     $t0,$t1,[$ctx,#16]
701         add     $C,$C,$t2
702         add     $D,$D,$t3
703         ldp     $t2,$t3,[$ctx,#24]
704         add     $E,$E,$t0
705         add     $F,$F,$t1
706          ldr    $t1,[sp,#0]
707         stp     $A,$B,[$ctx,#0]
708         add     $G,$G,$t2
709          mov    $t2,wzr
710         stp     $C,$D,[$ctx,#8]
711         add     $H,$H,$t3
712         stp     $E,$F,[$ctx,#16]
713          eor    $t3,$B,$C
714         stp     $G,$H,[$ctx,#24]
715          mov    $t4,wzr
716          mov    $Xfer,sp
717         b.ne    .L_00_48
718
719         ldr     x29,[x29]
720         add     sp,sp,#16*4+16
721         ret
722 .size   sha256_block_neon,.-sha256_block_neon
723 ___
724 }
725
726 if ($SZ==8) {
727 my $Ktbl="x3";
728
729 my @H = map("v$_.16b",(0..4));
730 my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
731 my @MSG=map("v$_.16b",(16..23));
732 my ($W0,$W1)=("v24.2d","v25.2d");
733 my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
734
735 $code.=<<___;
736 #ifndef __KERNEL__
737 .type   sha512_block_armv8,%function
738 .align  6
739 sha512_block_armv8:
740 .Lv8_entry:
741         stp             x29,x30,[sp,#-16]!
742         add             x29,sp,#0
743
744         ld1             {@MSG[0]-@MSG[3]},[$inp],#64    // load input
745         ld1             {@MSG[4]-@MSG[7]},[$inp],#64
746
747         ld1.64          {@H[0]-@H[3]},[$ctx]            // load context
748         adr             $Ktbl,.LK512
749
750         rev64           @MSG[0],@MSG[0]
751         rev64           @MSG[1],@MSG[1]
752         rev64           @MSG[2],@MSG[2]
753         rev64           @MSG[3],@MSG[3]
754         rev64           @MSG[4],@MSG[4]
755         rev64           @MSG[5],@MSG[5]
756         rev64           @MSG[6],@MSG[6]
757         rev64           @MSG[7],@MSG[7]
758         b               .Loop_hw
759
760 .align  4
761 .Loop_hw:
762         ld1.64          {$W0},[$Ktbl],#16
763         subs            $num,$num,#1
764         sub             x4,$inp,#128
765         orr             $AB,@H[0],@H[0]                 // offload
766         orr             $CD,@H[1],@H[1]
767         orr             $EF,@H[2],@H[2]
768         orr             $GH,@H[3],@H[3]
769         csel            $inp,$inp,x4,ne                 // conditional rewind
770 ___
771 for($i=0;$i<32;$i++) {
772 $code.=<<___;
773         add.i64         $W0,$W0,@MSG[0]
774         ld1.64          {$W1},[$Ktbl],#16
775         ext             $W0,$W0,$W0,#8
776         ext             $fg,@H[2],@H[3],#8
777         ext             $de,@H[1],@H[2],#8
778         add.i64         @H[3],@H[3],$W0                 // "T1 + H + K512[i]"
779          sha512su0      @MSG[0],@MSG[1]
780          ext            $m9_10,@MSG[4],@MSG[5],#8
781         sha512h         @H[3],$fg,$de
782          sha512su1      @MSG[0],@MSG[7],$m9_10
783         add.i64         @H[4],@H[1],@H[3]               // "D + T1"
784         sha512h2        @H[3],$H[1],@H[0]
785 ___
786         ($W0,$W1)=($W1,$W0);    push(@MSG,shift(@MSG));
787         @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
788 }
789 for(;$i<40;$i++) {
790 $code.=<<___    if ($i<39);
791         ld1.64          {$W1},[$Ktbl],#16
792 ___
793 $code.=<<___    if ($i==39);
794         sub             $Ktbl,$Ktbl,#$rounds*$SZ        // rewind
795 ___
796 $code.=<<___;
797         add.i64         $W0,$W0,@MSG[0]
798          ld1            {@MSG[0]},[$inp],#16            // load next input
799         ext             $W0,$W0,$W0,#8
800         ext             $fg,@H[2],@H[3],#8
801         ext             $de,@H[1],@H[2],#8
802         add.i64         @H[3],@H[3],$W0                 // "T1 + H + K512[i]"
803         sha512h         @H[3],$fg,$de
804          rev64          @MSG[0],@MSG[0]
805         add.i64         @H[4],@H[1],@H[3]               // "D + T1"
806         sha512h2        @H[3],$H[1],@H[0]
807 ___
808         ($W0,$W1)=($W1,$W0);    push(@MSG,shift(@MSG));
809         @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
810 }
811 $code.=<<___;
812         add.i64         @H[0],@H[0],$AB                 // accumulate
813         add.i64         @H[1],@H[1],$CD
814         add.i64         @H[2],@H[2],$EF
815         add.i64         @H[3],@H[3],$GH
816
817         cbnz            $num,.Loop_hw
818
819         st1.64          {@H[0]-@H[3]},[$ctx]            // store context
820
821         ldr             x29,[sp],#16
822         ret
823 .size   sha512_block_armv8,.-sha512_block_armv8
824 #endif
825 ___
826 }
827
828 $code.=<<___;
829 #if !defined(__KERNEL__) && !defined(_WIN64)
830 .comm   OPENSSL_armcap_P,4,4
831 #endif
832 ___
833
834 {   my  %opcode = (
835         "sha256h"       => 0x5e004000,  "sha256h2"      => 0x5e005000,
836         "sha256su0"     => 0x5e282800,  "sha256su1"     => 0x5e006000   );
837
838     sub unsha256 {
839         my ($mnemonic,$arg)=@_;
840
841         $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
842         &&
843         sprintf ".inst\t0x%08x\t//%s %s",
844                         $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
845                         $mnemonic,$arg;
846     }
847 }
848
849 {   my  %opcode = (
850         "sha512h"       => 0xce608000,  "sha512h2"      => 0xce608400,
851         "sha512su0"     => 0xcec08000,  "sha512su1"     => 0xce608800   );
852
853     sub unsha512 {
854         my ($mnemonic,$arg)=@_;
855
856         $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
857         &&
858         sprintf ".inst\t0x%08x\t//%s %s",
859                         $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
860                         $mnemonic,$arg;
861     }
862 }
863
864 open SELF,$0;
865 while(<SELF>) {
866         next if (/^#!/);
867         last if (!s/^#/\/\// and !/^$/);
868         print;
869 }
870 close SELF;
871
872 foreach(split("\n",$code)) {
873
874         s/\`([^\`]*)\`/eval($1)/ge;
875
876         s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge   or
877         s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
878
879         s/\bq([0-9]+)\b/v$1.16b/g;              # old->new registers
880
881         s/\.[ui]?8(\s)/$1/;
882         s/\.\w?64\b//           and s/\.16b/\.2d/g      or
883         s/\.\w?32\b//           and s/\.16b/\.4s/g;
884         m/\bext\b/              and s/\.2d/\.16b/g      or
885         m/(ld|st)1[^\[]+\[0\]/  and s/\.4s/\.s/g;
886
887         print $_,"\n";
888 }
889
890 close STDOUT;