98e670f92c894ccf647d8c401431bcac61db9ccc
[openssl.git] / crypto / rand / rand_vms.c
1 /*
2  * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 #include "e_os.h"
11
12 #if defined(OPENSSL_SYS_VMS)
13 # define __NEW_STARLET 1         /* New starlet definitions since VMS 7.0 */
14 # include <unistd.h>
15 # include "internal/cryptlib.h"
16 # include <openssl/rand.h>
17 # include "crypto/rand.h"
18 # include "rand_local.h"
19 # include <descrip.h>
20 # include <dvidef.h>
21 # include <jpidef.h>
22 # include <rmidef.h>
23 # include <syidef.h>
24 # include <ssdef.h>
25 # include <starlet.h>
26 # include <efndef.h>
27 # include <gen64def.h>
28 # include <iosbdef.h>
29 # include <iledef.h>
30 # include <lib$routines.h>
31 # ifdef __DECC
32 #  pragma message disable DOLLARID
33 # endif
34
35 # include <dlfcn.h>              /* SYS$GET_ENTROPY presence */
36
37 # ifndef OPENSSL_RAND_SEED_OS
38 #  error "Unsupported seeding method configured; must be os"
39 # endif
40
41 /*
42  * DATA COLLECTION METHOD
43  * ======================
44  *
45  * This is a method to get low quality entropy.
46  * It works by collecting all kinds of statistical data that
47  * VMS offers and using them as random seed.
48  */
49
50 /* We need to make sure we have the right size pointer in some cases */
51 # if __INITIAL_POINTER_SIZE == 64
52 #  pragma pointer_size save
53 #  pragma pointer_size 32
54 # endif
55 typedef uint32_t *uint32_t__ptr32;
56 # if __INITIAL_POINTER_SIZE == 64
57 #  pragma pointer_size restore
58 # endif
59
60 struct item_st {
61     short length, code;         /* length is number of bytes */
62 };
63
64 static const struct item_st DVI_item_data[] = {
65     {4,   DVI$_ERRCNT},
66     {4,   DVI$_REFCNT},
67 };
68
69 static const struct item_st JPI_item_data[] = {
70     {4,   JPI$_BUFIO},
71     {4,   JPI$_CPUTIM},
72     {4,   JPI$_DIRIO},
73     {4,   JPI$_IMAGECOUNT},
74     {4,   JPI$_PAGEFLTS},
75     {4,   JPI$_PID},
76     {4,   JPI$_PPGCNT},
77     {4,   JPI$_WSPEAK},
78     /*
79      * Note: the direct result is just a 32-bit address.  However, it points
80      * to a list of 4 32-bit words, so we make extra space for them so we can
81      * do in-place replacement of values
82      */
83     {16,  JPI$_FINALEXC},
84 };
85
86 static const struct item_st JPI_item_data_64bit[] = {
87     {8,   JPI$_LAST_LOGIN_I},
88     {8,   JPI$_LOGINTIM},
89 };
90
91 static const struct item_st RMI_item_data[] = {
92     {4,   RMI$_COLPG},
93     {4,   RMI$_MWAIT},
94     {4,   RMI$_CEF},
95     {4,   RMI$_PFW},
96     {4,   RMI$_LEF},
97     {4,   RMI$_LEFO},
98     {4,   RMI$_HIB},
99     {4,   RMI$_HIBO},
100     {4,   RMI$_SUSP},
101     {4,   RMI$_SUSPO},
102     {4,   RMI$_FPG},
103     {4,   RMI$_COM},
104     {4,   RMI$_COMO},
105     {4,   RMI$_CUR},
106 #if defined __alpha
107     {4,   RMI$_FRLIST},
108     {4,   RMI$_MODLIST},
109 #endif
110     {4,   RMI$_FAULTS},
111     {4,   RMI$_PREADS},
112     {4,   RMI$_PWRITES},
113     {4,   RMI$_PWRITIO},
114     {4,   RMI$_PREADIO},
115     {4,   RMI$_GVALFLTS},
116     {4,   RMI$_WRTINPROG},
117     {4,   RMI$_FREFLTS},
118     {4,   RMI$_DZROFLTS},
119     {4,   RMI$_SYSFAULTS},
120     {4,   RMI$_ISWPCNT},
121     {4,   RMI$_DIRIO},
122     {4,   RMI$_BUFIO},
123     {4,   RMI$_MBREADS},
124     {4,   RMI$_MBWRITES},
125     {4,   RMI$_LOGNAM},
126     {4,   RMI$_FCPCALLS},
127     {4,   RMI$_FCPREAD},
128     {4,   RMI$_FCPWRITE},
129     {4,   RMI$_FCPCACHE},
130     {4,   RMI$_FCPCPU},
131     {4,   RMI$_FCPHIT},
132     {4,   RMI$_FCPSPLIT},
133     {4,   RMI$_FCPFAULT},
134     {4,   RMI$_ENQNEW},
135     {4,   RMI$_ENQCVT},
136     {4,   RMI$_DEQ},
137     {4,   RMI$_BLKAST},
138     {4,   RMI$_ENQWAIT},
139     {4,   RMI$_ENQNOTQD},
140     {4,   RMI$_DLCKSRCH},
141     {4,   RMI$_DLCKFND},
142     {4,   RMI$_NUMLOCKS},
143     {4,   RMI$_NUMRES},
144     {4,   RMI$_ARRLOCPK},
145     {4,   RMI$_DEPLOCPK},
146     {4,   RMI$_ARRTRAPK},
147     {4,   RMI$_TRCNGLOS},
148     {4,   RMI$_RCVBUFFL},
149     {4,   RMI$_ENQNEWLOC},
150     {4,   RMI$_ENQNEWIN},
151     {4,   RMI$_ENQNEWOUT},
152     {4,   RMI$_ENQCVTLOC},
153     {4,   RMI$_ENQCVTIN},
154     {4,   RMI$_ENQCVTOUT},
155     {4,   RMI$_DEQLOC},
156     {4,   RMI$_DEQIN},
157     {4,   RMI$_DEQOUT},
158     {4,   RMI$_BLKLOC},
159     {4,   RMI$_BLKIN},
160     {4,   RMI$_BLKOUT},
161     {4,   RMI$_DIRIN},
162     {4,   RMI$_DIROUT},
163     /* We currently get a fault when trying these.  TODO: To be figured out. */
164 #if 0
165     {140, RMI$_MSCP_EVERYTHING},   /* 35 32-bit words */
166     {152, RMI$_DDTM_ALL},          /* 38 32-bit words */
167     {80,  RMI$_TMSCP_EVERYTHING}   /* 20 32-bit words */
168 #endif
169     {4,   RMI$_LPZ_PAGCNT},
170     {4,   RMI$_LPZ_HITS},
171     {4,   RMI$_LPZ_MISSES},
172     {4,   RMI$_LPZ_EXPCNT},
173     {4,   RMI$_LPZ_ALLOCF},
174     {4,   RMI$_LPZ_ALLOC2},
175     {4,   RMI$_ACCESS},
176     {4,   RMI$_ALLOC},
177     {4,   RMI$_FCPCREATE},
178     {4,   RMI$_VOLWAIT},
179     {4,   RMI$_FCPTURN},
180     {4,   RMI$_FCPERASE},
181     {4,   RMI$_OPENS},
182     {4,   RMI$_FIDHIT},
183     {4,   RMI$_FIDMISS},
184     {4,   RMI$_FILHDR_HIT},
185     {4,   RMI$_DIRFCB_HIT},
186     {4,   RMI$_DIRFCB_MISS},
187     {4,   RMI$_DIRDATA_HIT},
188     {4,   RMI$_EXTHIT},
189     {4,   RMI$_EXTMISS},
190     {4,   RMI$_QUOHIT},
191     {4,   RMI$_QUOMISS},
192     {4,   RMI$_STORAGMAP_HIT},
193     {4,   RMI$_VOLLCK},
194     {4,   RMI$_SYNCHLCK},
195     {4,   RMI$_SYNCHWAIT},
196     {4,   RMI$_ACCLCK},
197     {4,   RMI$_XQPCACHEWAIT},
198     {4,   RMI$_DIRDATA_MISS},
199     {4,   RMI$_FILHDR_MISS},
200     {4,   RMI$_STORAGMAP_MISS},
201     {4,   RMI$_PROCCNTMAX},
202     {4,   RMI$_PROCBATCNT},
203     {4,   RMI$_PROCINTCNT},
204     {4,   RMI$_PROCNETCNT},
205     {4,   RMI$_PROCSWITCHCNT},
206     {4,   RMI$_PROCBALSETCNT},
207     {4,   RMI$_PROCLOADCNT},
208     {4,   RMI$_BADFLTS},
209     {4,   RMI$_EXEFAULTS},
210     {4,   RMI$_HDRINSWAPS},
211     {4,   RMI$_HDROUTSWAPS},
212     {4,   RMI$_IOPAGCNT},
213     {4,   RMI$_ISWPCNTPG},
214     {4,   RMI$_OSWPCNT},
215     {4,   RMI$_OSWPCNTPG},
216     {4,   RMI$_RDFAULTS},
217     {4,   RMI$_TRANSFLTS},
218     {4,   RMI$_WRTFAULTS},
219 #if defined __alpha
220     {4,   RMI$_USERPAGES},
221 #endif
222     {4,   RMI$_VMSPAGES},
223     {4,   RMI$_TTWRITES},
224     {4,   RMI$_BUFOBJPAG},
225     {4,   RMI$_BUFOBJPAGPEAK},
226     {4,   RMI$_BUFOBJPAGS01},
227     {4,   RMI$_BUFOBJPAGS2},
228     {4,   RMI$_BUFOBJPAGMAXS01},
229     {4,   RMI$_BUFOBJPAGMAXS2},
230     {4,   RMI$_BUFOBJPAGPEAKS01},
231     {4,   RMI$_BUFOBJPAGPEAKS2},
232     {4,   RMI$_BUFOBJPGLTMAXS01},
233     {4,   RMI$_BUFOBJPGLTMAXS2},
234     {4,   RMI$_DLCK_INCMPLT},
235     {4,   RMI$_DLCKMSGS_IN},
236     {4,   RMI$_DLCKMSGS_OUT},
237     {4,   RMI$_MCHKERRS},
238     {4,   RMI$_MEMERRS},
239 };
240
241 static const struct item_st RMI_item_data_64bit[] = {
242 #if defined __ia64
243     {8,   RMI$_FRLIST},
244     {8,   RMI$_MODLIST},
245 #endif
246     {8,   RMI$_LCKMGR_REQCNT},
247     {8,   RMI$_LCKMGR_REQTIME},
248     {8,   RMI$_LCKMGR_SPINCNT},
249     {8,   RMI$_LCKMGR_SPINTIME},
250     {8,   RMI$_CPUINTSTK},
251     {8,   RMI$_CPUMPSYNCH},
252     {8,   RMI$_CPUKERNEL},
253     {8,   RMI$_CPUEXEC},
254     {8,   RMI$_CPUSUPER},
255     {8,   RMI$_CPUUSER},
256 #if defined __ia64
257     {8,   RMI$_USERPAGES},
258 #endif
259     {8,   RMI$_TQETOTAL},
260     {8,   RMI$_TQESYSUB},
261     {8,   RMI$_TQEUSRTIMR},
262     {8,   RMI$_TQEUSRWAKE},
263 };
264
265 static const struct item_st SYI_item_data[] = {
266     {4,   SYI$_PAGEFILE_FREE},
267 };
268
269 /*
270  * Input:
271  * items_data           - an array of lengths and codes
272  * items_data_num       - number of elements in that array
273  *
274  * Output:
275  * items                - pre-allocated ILE3 array to be filled.
276  *                        It's assumed to have items_data_num elements plus
277  *                        one extra for the terminating NULL element
278  * databuffer           - pre-allocated 32-bit word array.
279  *
280  * Returns the number of elements used in databuffer
281  */
282 static size_t prepare_item_list(const struct item_st *items_input,
283                                 size_t items_input_num,
284                                 ILE3 *items,
285                                 uint32_t__ptr32 databuffer)
286 {
287     size_t data_sz = 0;
288
289     for (; items_input_num-- > 0; items_input++, items++) {
290
291         items->ile3$w_code = items_input->code;
292         /* Special treatment of JPI$_FINALEXC */
293         if (items->ile3$w_code == JPI$_FINALEXC)
294             items->ile3$w_length = 4;
295         else
296             items->ile3$w_length = items_input->length;
297
298         items->ile3$ps_bufaddr = databuffer;
299         items->ile3$ps_retlen_addr = 0;
300
301         databuffer += items_input->length / sizeof(databuffer[0]);
302         data_sz += items_input->length;
303     }
304     /* Terminating NULL entry */
305     items->ile3$w_length = items->ile3$w_code = 0;
306     items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL;
307
308     return data_sz / sizeof(databuffer[0]);
309 }
310
311 static void massage_JPI(ILE3 *items)
312 {
313     /*
314      * Special treatment of JPI$_FINALEXC
315      * The result of that item's data buffer is a 32-bit address to a list of
316      * 4 32-bit words.
317      */
318     for (; items->ile3$w_length != 0; items++) {
319         if (items->ile3$w_code == JPI$_FINALEXC) {
320             uint32_t *data = items->ile3$ps_bufaddr;
321             uint32_t *ptr = (uint32_t *)*data;
322             size_t j;
323
324             /*
325              * We know we made space for 4 32-bit words, so we can do in-place
326              * replacement.
327              */
328             for (j = 0; j < 4; j++)
329                 data[j] = ptr[j];
330
331             break;
332         }
333     }
334 }
335
336 /*
337  * This number expresses how many bits of data contain 1 bit of entropy.
338  *
339  * For the moment, we assume about 0.05 entropy bits per data bit, or 1
340  * bit of entropy per 20 data bits.
341  */
342 #define ENTROPY_FACTOR  20
343
344 size_t data_collect_method(RAND_POOL *pool)
345 {
346     ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1];
347     ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1];
348     ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1];
349     ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1];
350     ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1];
351     ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1];
352     union {
353         /* This ensures buffer starts at 64 bit boundary */
354         uint64_t dummy;
355         uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2
356                         + OSSL_NELEM(RMI_item_data_64bit) * 2
357                         + OSSL_NELEM(DVI_item_data)
358                         + OSSL_NELEM(JPI_item_data)
359                         + OSSL_NELEM(RMI_item_data)
360                         + OSSL_NELEM(SYI_item_data)
361                         + 4 /* For JPI$_FINALEXC */];
362     } data;
363     size_t total_elems = 0;
364     size_t total_length = 0;
365     size_t bytes_needed = rand_pool_bytes_needed(pool, ENTROPY_FACTOR);
366     size_t bytes_remaining = rand_pool_bytes_remaining(pool);
367
368     /* Take all the 64-bit items first, to ensure proper alignment of data */
369     total_elems +=
370         prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit),
371                           JPI_items_64bit, &data.buffer[total_elems]);
372     total_elems +=
373         prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit),
374                           RMI_items_64bit, &data.buffer[total_elems]);
375     /* Now the 32-bit items */
376     total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data),
377                                      DVI_items, &data.buffer[total_elems]);
378     total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data),
379                                      JPI_items, &data.buffer[total_elems]);
380     total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data),
381                                      RMI_items, &data.buffer[total_elems]);
382     total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data),
383                                      SYI_items, &data.buffer[total_elems]);
384     total_length = total_elems * sizeof(data.buffer[0]);
385
386     /* Fill data.buffer with various info bits from this process */
387     {
388         uint32_t status;
389         uint32_t efn;
390         IOSB iosb;
391         $DESCRIPTOR(SYSDEVICE,"SYS$SYSDEVICE:");
392
393         if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items,
394                                   0, 0, 0, 0, 0)) != SS$_NORMAL) {
395             lib$signal(status);
396             return 0;
397         }
398         if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0))
399             != SS$_NORMAL) {
400             lib$signal(status);
401             return 0;
402         }
403         if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0))
404             != SS$_NORMAL) {
405             lib$signal(status);
406             return 0;
407         }
408         if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0))
409             != SS$_NORMAL) {
410             lib$signal(status);
411             return 0;
412         }
413         /*
414          * The RMI service is a bit special, as there is no synchronous
415          * variant, so we MUST create an event flag to synchronise on.
416          */
417         if ((status = lib$get_ef(&efn)) != SS$_NORMAL) {
418             lib$signal(status);
419             return 0;
420         }
421         if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0))
422             != SS$_NORMAL) {
423             lib$signal(status);
424             return 0;
425         }
426         if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
427             lib$signal(status);
428             return 0;
429         }
430         if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
431             lib$signal(iosb.iosb$l_getxxi_status);
432             return 0;
433         }
434         if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0))
435             != SS$_NORMAL) {
436             lib$signal(status);
437             return 0;
438         }
439         if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
440             lib$signal(status);
441             return 0;
442         }
443         if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
444             lib$signal(iosb.iosb$l_getxxi_status);
445             return 0;
446         }
447         if ((status = lib$free_ef(&efn)) != SS$_NORMAL) {
448             lib$signal(status);
449             return 0;
450         }
451     }
452
453     massage_JPI(JPI_items);
454
455     /*
456      * If we can't feed the requirements from the caller, we're in deep trouble.
457      */
458     if (!ossl_assert(total_length >= bytes_needed)) {
459         ERR_raise_data(ERR_LIB_RAND, RAND_R_RANDOM_POOL_UNDERFLOW,
460                        "Needed: %zu, Available: %zu",
461                        bytes_needed, total_length);
462         return 0;
463     }
464
465     /*
466      * Try not to overfeed the pool
467      */
468     if (total_length > bytes_remaining)
469         total_length = bytes_remaining;
470
471     /* We give the pessimistic value for the amount of entropy */
472     rand_pool_add(pool, (unsigned char *)data.buffer, total_length,
473                   8 * total_length / ENTROPY_FACTOR);
474     return rand_pool_entropy_available(pool);
475 }
476
477 int rand_pool_add_nonce_data(RAND_POOL *pool)
478 {
479     struct {
480         pid_t pid;
481         CRYPTO_THREAD_ID tid;
482         uint64_t time;
483     } data;
484
485     /* Erase the entire structure including any padding */
486     memset(&data, 0, sizeof(data));
487
488     /*
489      * Add process id, thread id, and a high resolution timestamp
490      * (where available, which is OpenVMS v8.4 and up) to ensure that
491      * the nonce is unique whith high probability for different process
492      * instances.
493      */
494     data.pid = getpid();
495     data.tid = CRYPTO_THREAD_get_current_id();
496 #if __CRTL_VER >= 80400000
497     sys$gettim_prec(&data.time);
498 #else
499     sys$gettim((void*)&data.time);
500 #endif
501
502     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
503 }
504
505 /*
506  * SYS$GET_ENTROPY METHOD
507  * ======================
508  *
509  * This is a high entropy method based on a new system service that is
510  * based on getentropy() from FreeBSD 12.  It's only used if available,
511  * and its availability is detected at run-time.
512  *
513  * We assume that this function provides full entropy random output.
514  */
515 #define PUBLIC_VECTORS "SYS$LIBRARY:SYS$PUBLIC_VECTORS.EXE"
516 #define GET_ENTROPY "SYS$GET_ENTROPY"
517
518 static int get_entropy_address_flag = 0;
519 static int (*get_entropy_address)(void *buffer, size_t buffer_size) = NULL;
520 static int init_get_entropy_address(void)
521 {
522     if (get_entropy_address_flag == 0)
523         get_entropy_address = dlsym(dlopen(PUBLIC_VECTORS, 0), GET_ENTROPY);
524     get_entropy_address_flag = 1;
525     return get_entropy_address != NULL;
526 }
527
528 size_t get_entropy_method(RAND_POOL *pool)
529 {
530     /*
531      * The documentation says that SYS$GET_ENTROPY will give a maximum of
532      * 256 bytes of data.
533      */
534     unsigned char buffer[256];
535     size_t bytes_needed;
536     size_t bytes_to_get = 0;
537     uint32_t status;
538
539     for (bytes_needed = rand_pool_bytes_needed(pool, 1);
540          bytes_needed > 0;
541          bytes_needed -= bytes_to_get) {
542         bytes_to_get =
543             bytes_needed > sizeof(buffer) ? sizeof(buffer) : bytes_needed;
544
545         status = get_entropy_address(buffer, bytes_to_get);
546         if (status == SS$_RETRY) {
547             /* Set to zero so the loop doesn't diminish |bytes_needed| */
548             bytes_to_get = 0;
549             /* Should sleep some amount of time */
550             continue;
551         }
552
553         if (status != SS$_NORMAL) {
554             lib$signal(status);
555             return 0;
556         }
557
558         rand_pool_add(pool, buffer, bytes_to_get, 8 * bytes_to_get);
559     }
560
561     return rand_pool_entropy_available(pool);
562 }
563
564 /*
565  * MAIN ENTROPY ACQUISITION FUNCTIONS
566  * ==================================
567  *
568  * These functions are called by the RAND / DRBG functions
569  */
570
571 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
572 {
573     if (init_get_entropy_address())
574         return get_entropy_method(pool);
575     return data_collect_method(pool);
576 }
577
578
579 int rand_pool_add_additional_data(RAND_POOL *pool)
580 {
581     struct {
582         CRYPTO_THREAD_ID tid;
583         uint64_t time;
584     } data;
585
586     /* Erase the entire structure including any padding */
587     memset(&data, 0, sizeof(data));
588
589     /*
590      * Add some noise from the thread id and a high resolution timer.
591      * The thread id adds a little randomness if the drbg is accessed
592      * concurrently (which is the case for the <master> drbg).
593      */
594     data.tid = CRYPTO_THREAD_get_current_id();
595 #if __CRTL_VER >= 80400000
596     sys$gettim_prec(&data.time);
597 #else
598     sys$gettim((void*)&data.time);
599 #endif
600
601     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
602 }
603
604 int rand_pool_init(void)
605 {
606     return 1;
607 }
608
609 void rand_pool_cleanup(void)
610 {
611 }
612
613 void rand_pool_keep_random_devices_open(int keep)
614 {
615 }
616
617 #endif