4a7ec7a6e9e832e6433a37f0182bf403833f2291
[openssl.git] / crypto / perlasm / x86_64-xlate.pl
1 #! /usr/bin/env perl
2 # Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License").  You may not use
5 # this file except in compliance with the License.  You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9
10 # Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
11 #
12 # Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
13 # format is way easier to parse. Because it's simpler to "gear" from
14 # Unix ABI to Windows one [see cross-reference "card" at the end of
15 # file]. Because Linux targets were available first...
16 #
17 # In addition the script also "distills" code suitable for GNU
18 # assembler, so that it can be compiled with more rigid assemblers,
19 # such as Solaris /usr/ccs/bin/as.
20 #
21 # This translator is not designed to convert *arbitrary* assembler
22 # code from AT&T format to MASM one. It's designed to convert just
23 # enough to provide for dual-ABI OpenSSL modules development...
24 # There *are* limitations and you might have to modify your assembler
25 # code or this script to achieve the desired result...
26 #
27 # Currently recognized limitations:
28 #
29 # - can't use multiple ops per line;
30 #
31 # Dual-ABI styling rules.
32 #
33 # 1. Adhere to Unix register and stack layout [see cross-reference
34 #    ABI "card" at the end for explanation].
35 # 2. Forget about "red zone," stick to more traditional blended
36 #    stack frame allocation. If volatile storage is actually required
37 #    that is. If not, just leave the stack as is.
38 # 3. Functions tagged with ".type name,@function" get crafted with
39 #    unified Win64 prologue and epilogue automatically. If you want
40 #    to take care of ABI differences yourself, tag functions as
41 #    ".type name,@abi-omnipotent" instead.
42 # 4. To optimize the Win64 prologue you can specify number of input
43 #    arguments as ".type name,@function,N." Keep in mind that if N is
44 #    larger than 6, then you *have to* write "abi-omnipotent" code,
45 #    because >6 cases can't be addressed with unified prologue.
46 # 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
47 #    (sorry about latter).
48 # 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
49 #    required to identify the spots, where to inject Win64 epilogue!
50 #    But on the pros, it's then prefixed with rep automatically:-)
51 # 7. Stick to explicit ip-relative addressing. If you have to use
52 #    GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
53 #    Both are recognized and translated to proper Win64 addressing
54 #    modes.
55 #
56 # 8. In order to provide for structured exception handling unified
57 #    Win64 prologue copies %rsp value to %rax. For further details
58 #    see SEH paragraph at the end.
59 # 9. .init segment is allowed to contain calls to functions only.
60 # a. If function accepts more than 4 arguments *and* >4th argument
61 #    is declared as non 64-bit value, do clear its upper part.
62 \f
63
64 use strict;
65
66 my $flavour = shift;
67 my $output  = shift;
68 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
69
70 open STDOUT,">$output" || die "can't open $output: $!"
71         if (defined($output));
72
73 my $gas=1;      $gas=0 if ($output =~ /\.asm$/);
74 my $elf=1;      $elf=0 if (!$gas);
75 my $win64=0;
76 my $prefix="";
77 my $decor=".L";
78
79 my $masmref=8 + 50727*2**-32;   # 8.00.50727 shipped with VS2005
80 my $masm=0;
81 my $PTR=" PTR";
82
83 my $nasmref=2.03;
84 my $nasm=0;
85
86 if    ($flavour eq "mingw64")   { $gas=1; $elf=0; $win64=1;
87                                   $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
88                                   $prefix =~ s|\R$||; # Better chomp
89                                 }
90 elsif ($flavour eq "macosx")    { $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
91 elsif ($flavour eq "masm")      { $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
92 elsif ($flavour eq "nasm")      { $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
93 elsif (!$gas)
94 {   if ($ENV{ASM} =~ m/nasm/ && `nasm -v` =~ m/version ([0-9]+)\.([0-9]+)/i)
95     {   $nasm = $1 + $2*0.01; $PTR="";  }
96     elsif (`ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/)
97     {   $masm = $1 + $2*2**-16 + $4*2**-32;   }
98     die "no assembler found on %PATH%" if (!($nasm || $masm));
99     $win64=1;
100     $elf=0;
101     $decor="\$L\$";
102 }
103
104 my $current_segment;
105 my $current_function;
106 my %globals;
107
108 { package opcode;       # pick up opcodes
109     sub re {
110         my      ($class, $line) = @_;
111         my      $self = {};
112         my      $ret;
113
114         if ($$line =~ /^([a-z][a-z0-9]*)/i) {
115             bless $self,$class;
116             $self->{op} = $1;
117             $ret = $self;
118             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
119
120             undef $self->{sz};
121             if ($self->{op} =~ /^(movz)x?([bw]).*/) {   # movz is pain...
122                 $self->{op} = $1;
123                 $self->{sz} = $2;
124             } elsif ($self->{op} =~ /call|jmp/) {
125                 $self->{sz} = "";
126             } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
127                 $self->{sz} = "";
128             } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
129                 $self->{sz} = "";
130             } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
131                 $self->{sz} = "";
132             } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
133                 $self->{op} = $1;
134                 $self->{sz} = $2;
135             }
136         }
137         $ret;
138     }
139     sub size {
140         my ($self, $sz) = @_;
141         $self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
142         $self->{sz};
143     }
144     sub out {
145         my $self = shift;
146         if ($gas) {
147             if ($self->{op} eq "movz") {        # movz is pain...
148                 sprintf "%s%s%s",$self->{op},$self->{sz},shift;
149             } elsif ($self->{op} =~ /^set/) {
150                 "$self->{op}";
151             } elsif ($self->{op} eq "ret") {
152                 my $epilogue = "";
153                 if ($win64 && $current_function->{abi} eq "svr4") {
154                     $epilogue = "movq   8(%rsp),%rdi\n\t" .
155                                 "movq   16(%rsp),%rsi\n\t";
156                 }
157                 $epilogue . ".byte      0xf3,0xc3";
158             } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
159                 ".p2align\t3\n\t.quad";
160             } else {
161                 "$self->{op}$self->{sz}";
162             }
163         } else {
164             $self->{op} =~ s/^movz/movzx/;
165             if ($self->{op} eq "ret") {
166                 $self->{op} = "";
167                 if ($win64 && $current_function->{abi} eq "svr4") {
168                     $self->{op} = "mov  rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
169                                   "mov  rsi,QWORD$PTR\[16+rsp\]\n\t";
170                 }
171                 $self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
172             } elsif ($self->{op} =~ /^(pop|push)f/) {
173                 $self->{op} .= $self->{sz};
174             } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
175                 $self->{op} = "\tDQ";
176             }
177             $self->{op};
178         }
179     }
180     sub mnemonic {
181         my ($self, $op) = @_;
182         $self->{op}=$op if (defined($op));
183         $self->{op};
184     }
185 }
186 { package const;        # pick up constants, which start with $
187     sub re {
188         my      ($class, $line) = @_;
189         my      $self = {};
190         my      $ret;
191
192         if ($$line =~ /^\$([^,]+)/) {
193             bless $self, $class;
194             $self->{value} = $1;
195             $ret = $self;
196             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
197         }
198         $ret;
199     }
200     sub out {
201         my $self = shift;
202
203         $self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
204         if ($gas) {
205             # Solaris /usr/ccs/bin/as can't handle multiplications
206             # in $self->{value}
207             my $value = $self->{value};
208             no warnings;    # oct might complain about overflow, ignore here...
209             $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
210             if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
211                 $self->{value} = $value;
212             }
213             sprintf "\$%s",$self->{value};
214         } else {
215             my $value = $self->{value};
216             $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
217             sprintf "%s",$value;
218         }
219     }
220 }
221 { package ea;           # pick up effective addresses: expr(%reg,%reg,scale)
222
223     my %szmap = (       b=>"BYTE$PTR",    w=>"WORD$PTR",
224                         l=>"DWORD$PTR",   d=>"DWORD$PTR",
225                         q=>"QWORD$PTR",   o=>"OWORD$PTR",
226                         x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
227                         z=>"ZMMWORD$PTR" ) if (!$gas);
228
229     sub re {
230         my      ($class, $line, $opcode) = @_;
231         my      $self = {};
232         my      $ret;
233
234         # optional * ----vvv--- appears in indirect jmp/call
235         if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
236             bless $self, $class;
237             $self->{asterisk} = $1;
238             $self->{label} = $2;
239             ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
240             $self->{scale} = 1 if (!defined($self->{scale}));
241             $self->{opmask} = $4;
242             $ret = $self;
243             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
244
245             if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
246                 die if ($opcode->mnemonic() ne "mov");
247                 $opcode->mnemonic("lea");
248             }
249             $self->{base}  =~ s/^%//;
250             $self->{index} =~ s/^%// if (defined($self->{index}));
251             $self->{opcode} = $opcode;
252         }
253         $ret;
254     }
255     sub size {}
256     sub out {
257         my ($self, $sz) = @_;
258
259         $self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
260         $self->{label} =~ s/\.L/$decor/g;
261
262         # Silently convert all EAs to 64-bit. This is required for
263         # elder GNU assembler and results in more compact code,
264         # *but* most importantly AES module depends on this feature!
265         $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
266         $self->{base}  =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
267
268         # Solaris /usr/ccs/bin/as can't handle multiplications
269         # in $self->{label}...
270         use integer;
271         $self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
272         $self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
273
274         # Some assemblers insist on signed presentation of 32-bit
275         # offsets, but sign extension is a tricky business in perl...
276         if ((1<<31)<<1) {
277             $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
278         } else {
279             $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
280         }
281
282         # if base register is %rbp or %r13, see if it's possible to
283         # flip base and index registers [for better performance]
284         if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
285             $self->{base} =~ /(rbp|r13)/) {
286                 $self->{base} = $self->{index}; $self->{index} = $1;
287         }
288
289         if ($gas) {
290             $self->{label} =~ s/^___imp_/__imp__/   if ($flavour eq "mingw64");
291
292             if (defined($self->{index})) {
293                 sprintf "%s%s(%s,%%%s,%d)%s",
294                                         $self->{asterisk},$self->{label},
295                                         $self->{base}?"%$self->{base}":"",
296                                         $self->{index},$self->{scale},
297                                         $self->{opmask};
298             } else {
299                 sprintf "%s%s(%%%s)%s", $self->{asterisk},$self->{label},
300                                         $self->{base},$self->{opmask};
301             }
302         } else {
303             $self->{label} =~ s/\./\$/g;
304             $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
305             $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
306
307             my $mnemonic = $self->{opcode}->mnemonic();
308             ($self->{asterisk})                         && ($sz="q") ||
309             ($mnemonic =~ /^v?mov([qd])$/)              && ($sz=$1)  ||
310             ($mnemonic =~ /^v?pinsr([qdwb])$/)          && ($sz=$1)  ||
311             ($mnemonic =~ /^vpbroadcast([qdwb])$/)      && ($sz=$1)  ||
312             ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/)   && ($sz="x");
313
314             $self->{opmask}  =~ s/%(k[0-7])/$1/;
315
316             if (defined($self->{index})) {
317                 sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
318                                         $self->{label}?"$self->{label}+":"",
319                                         $self->{index},$self->{scale},
320                                         $self->{base}?"+$self->{base}":"",
321                                         $self->{opmask};
322             } elsif ($self->{base} eq "rip") {
323                 sprintf "%s[%s]",$szmap{$sz},$self->{label};
324             } else {
325                 sprintf "%s[%s%s]%s",   $szmap{$sz},
326                                         $self->{label}?"$self->{label}+":"",
327                                         $self->{base},$self->{opmask};
328             }
329         }
330     }
331 }
332 { package register;     # pick up registers, which start with %.
333     sub re {
334         my      ($class, $line, $opcode) = @_;
335         my      $self = {};
336         my      $ret;
337
338         # optional * ----vvv--- appears in indirect jmp/call
339         if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
340             bless $self,$class;
341             $self->{asterisk} = $1;
342             $self->{value} = $2;
343             $self->{opmask} = $3;
344             $opcode->size($self->size());
345             $ret = $self;
346             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
347         }
348         $ret;
349     }
350     sub size {
351         my      $self = shift;
352         my      $ret;
353
354         if    ($self->{value} =~ /^r[\d]+b$/i)  { $ret="b"; }
355         elsif ($self->{value} =~ /^r[\d]+w$/i)  { $ret="w"; }
356         elsif ($self->{value} =~ /^r[\d]+d$/i)  { $ret="l"; }
357         elsif ($self->{value} =~ /^r[\w]+$/i)   { $ret="q"; }
358         elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
359         elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; }
360         elsif ($self->{value} =~ /^[\w]{2}$/i)  { $ret="w"; }
361         elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
362
363         $ret;
364     }
365     sub out {
366         my $self = shift;
367         if ($gas)       { sprintf "%s%%%s%s",   $self->{asterisk},
368                                                 $self->{value},
369                                                 $self->{opmask}; }
370         else            { $self->{opmask} =~ s/%(k[0-7])/$1/;
371                           $self->{value}.$self->{opmask}; }
372     }
373 }
374 { package label;        # pick up labels, which end with :
375     sub re {
376         my      ($class, $line) = @_;
377         my      $self = {};
378         my      $ret;
379
380         if ($$line =~ /(^[\.\w]+)\:/) {
381             bless $self,$class;
382             $self->{value} = $1;
383             $ret = $self;
384             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
385
386             $self->{value} =~ s/^\.L/$decor/;
387         }
388         $ret;
389     }
390     sub out {
391         my $self = shift;
392
393         if ($gas) {
394             my $func = ($globals{$self->{value}} or $self->{value}) . ":";
395             if ($win64  && $current_function->{name} eq $self->{value}
396                         && $current_function->{abi} eq "svr4") {
397                 $func .= "\n";
398                 $func .= "      movq    %rdi,8(%rsp)\n";
399                 $func .= "      movq    %rsi,16(%rsp)\n";
400                 $func .= "      movq    %rsp,%rax\n";
401                 $func .= "${decor}SEH_begin_$current_function->{name}:\n";
402                 my $narg = $current_function->{narg};
403                 $narg=6 if (!defined($narg));
404                 $func .= "      movq    %rcx,%rdi\n" if ($narg>0);
405                 $func .= "      movq    %rdx,%rsi\n" if ($narg>1);
406                 $func .= "      movq    %r8,%rdx\n"  if ($narg>2);
407                 $func .= "      movq    %r9,%rcx\n"  if ($narg>3);
408                 $func .= "      movq    40(%rsp),%r8\n" if ($narg>4);
409                 $func .= "      movq    48(%rsp),%r9\n" if ($narg>5);
410             }
411             $func;
412         } elsif ($self->{value} ne "$current_function->{name}") {
413             # Make all labels in masm global.
414             $self->{value} .= ":" if ($masm);
415             $self->{value} . ":";
416         } elsif ($win64 && $current_function->{abi} eq "svr4") {
417             my $func =  "$current_function->{name}" .
418                         ($nasm ? ":" : "\tPROC $current_function->{scope}") .
419                         "\n";
420             $func .= "  mov     QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
421             $func .= "  mov     QWORD$PTR\[16+rsp\],rsi\n";
422             $func .= "  mov     rax,rsp\n";
423             $func .= "${decor}SEH_begin_$current_function->{name}:";
424             $func .= ":" if ($masm);
425             $func .= "\n";
426             my $narg = $current_function->{narg};
427             $narg=6 if (!defined($narg));
428             $func .= "  mov     rdi,rcx\n" if ($narg>0);
429             $func .= "  mov     rsi,rdx\n" if ($narg>1);
430             $func .= "  mov     rdx,r8\n"  if ($narg>2);
431             $func .= "  mov     rcx,r9\n"  if ($narg>3);
432             $func .= "  mov     r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
433             $func .= "  mov     r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
434             $func .= "\n";
435         } else {
436            "$current_function->{name}".
437                         ($nasm ? ":" : "\tPROC $current_function->{scope}");
438         }
439     }
440 }
441 { package expr;         # pick up expressions
442     sub re {
443         my      ($class, $line, $opcode) = @_;
444         my      $self = {};
445         my      $ret;
446
447         if ($$line =~ /(^[^,]+)/) {
448             bless $self,$class;
449             $self->{value} = $1;
450             $ret = $self;
451             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
452
453             $self->{value} =~ s/\@PLT// if (!$elf);
454             $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
455             $self->{value} =~ s/\.L/$decor/g;
456             $self->{opcode} = $opcode;
457         }
458         $ret;
459     }
460     sub out {
461         my $self = shift;
462         if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
463             "NEAR ".$self->{value};
464         } else {
465             $self->{value};
466         }
467     }
468 }
469 { package cfi_directive;
470     # CFI directives annotate instructions that are significant for
471     # stack unwinding procedure compliant with DWARF specification,
472     # see http://dwarfstd.org/. Besides naturally expected for this
473     # script platform-specific filtering function, this module adds
474     # three auxiliary synthetic directives not recognized by [GNU]
475     # assembler:
476     #
477     # - .cfi_push to annotate push instructions in prologue, which
478     #   translates to .cfi_adjust_cfa_offset (if needed) and
479     #   .cfi_offset;
480     # - .cfi_pop to annotate pop instructions in epilogue, which
481     #   translates to .cfi_adjust_cfa_offset (if needed) and
482     #   .cfi_restore;
483     # - [and most notably] .cfi_cfa_expression which encodes
484     #   DW_CFA_def_cfa_expression and passes it to .cfi_escape as
485     #   byte vector;
486     #
487     # CFA expressions were introduced in DWARF specification version
488     # 3 and describe how to deduce CFA, Canonical Frame Address. This
489     # becomes handy if your stack frame is variable and you can't
490     # spare register for [previous] frame pointer. Suggested directive
491     # syntax is made-up mix of DWARF operator suffixes [subset of]
492     # and references to registers with optional bias. Following example
493     # describes offloaded *original* stack pointer at specific offset
494     # from *current* stack pointer:
495     #
496     #   .cfi_cfa_expression     %rsp+40,deref,+8
497     #
498     # Final +8 has everything to do with the fact that CFA is defined
499     # as reference to top of caller's stack, and on x86_64 call to
500     # subroutine pushes 8-byte return address. In other words original
501     # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
502
503     # Below constants are taken from "DWARF Expressions" section of the
504     # DWARF specification, section is numbered 7.7 in versions 3 and 4.
505     my %DW_OP_simple = (        # no-arg operators, mapped directly
506         deref   => 0x06,        dup     => 0x12,
507         drop    => 0x13,        over    => 0x14,
508         pick    => 0x15,        swap    => 0x16,
509         rot     => 0x17,        xderef  => 0x18,
510
511         abs     => 0x19,        and     => 0x1a,
512         div     => 0x1b,        minus   => 0x1c,
513         mod     => 0x1d,        mul     => 0x1e,
514         neg     => 0x1f,        not     => 0x20,
515         or      => 0x21,        plus    => 0x22,
516         shl     => 0x24,        shr     => 0x25,
517         shra    => 0x26,        xor     => 0x27,
518         );
519
520     my %DW_OP_complex = (       # used in specific subroutines
521         constu          => 0x10,        # uleb128
522         consts          => 0x11,        # sleb128
523         plus_uconst     => 0x23,        # uleb128
524         lit0            => 0x30,        # add 0-31 to opcode
525         reg0            => 0x50,        # add 0-31 to opcode
526         breg0           => 0x70,        # add 0-31 to opcole, sleb128
527         regx            => 0x90,        # uleb28
528         fbreg           => 0x91,        # sleb128
529         bregx           => 0x92,        # uleb128, sleb128
530         piece           => 0x93,        # uleb128
531         );
532
533     # Following constants are defined in x86_64 ABI supplement, for
534     # example available at https://www.uclibc.org/docs/psABI-x86_64.pdf,
535     # see section 3.7 "Stack Unwind Algorithm".
536     my %DW_reg_idx = (
537         "%rax"=>0,  "%rdx"=>1,  "%rcx"=>2,  "%rbx"=>3,
538         "%rsi"=>4,  "%rdi"=>5,  "%rbp"=>6,  "%rsp"=>7,
539         "%r8" =>8,  "%r9" =>9,  "%r10"=>10, "%r11"=>11,
540         "%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
541         );
542
543     my ($cfa_reg, $cfa_rsp);
544     my @cfa_stack;
545
546     # [us]leb128 format is variable-length integer representation base
547     # 2^128, with most significant bit of each byte being 0 denoting
548     # *last* most significant digit. See "Variable Length Data" in the
549     # DWARF specification, numbered 7.6 at least in versions 3 and 4.
550     sub sleb128 {
551         use integer;    # get right shift extend sign
552
553         my $val = shift;
554         my $sign = ($val < 0) ? -1 : 0;
555         my @ret = ();
556
557         while(1) {
558             push @ret, $val&0x7f;
559
560             # see if remaining bits are same and equal to most
561             # significant bit of the current digit, if so, it's
562             # last digit...
563             last if (($val>>6) == $sign);
564
565             @ret[-1] |= 0x80;
566             $val >>= 7;
567         }
568
569         return @ret;
570     }
571     sub uleb128 {
572         my $val = shift;
573         my @ret = ();
574
575         while(1) {
576             push @ret, $val&0x7f;
577
578             # see if it's last significant digit...
579             last if (($val >>= 7) == 0);
580
581             @ret[-1] |= 0x80;
582         }
583
584         return @ret;
585     }
586     sub const {
587         my $val = shift;
588
589         if ($val >= 0 && $val < 32) {
590             return ($DW_OP_complex{lit0}+$val);
591         }
592         return ($DW_OP_complex{consts}, sleb128($val));
593     }
594     sub reg {
595         my $val = shift;
596
597         return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
598
599         my $reg = $DW_reg_idx{$1};
600         my $off = eval ("0 $2 $3");
601
602         return (($DW_OP_complex{breg0} + $reg), sleb128($off));
603         # Yes, we use DW_OP_bregX+0 to push register value and not
604         # DW_OP_regX, because latter would require even DW_OP_piece,
605         # which would be a waste under the circumstances. If you have
606         # to use DWP_OP_reg, use "regx:N"...
607     }
608     sub cfa_expression {
609         my $line = shift;
610         my @ret;
611
612         foreach my $token (split(/,\s*/,$line)) {
613             if ($token =~ /^%r/) {
614                 push @ret,reg($token);
615             } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
616                 push @ret,reg("$2+$1");
617             } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
618                 my $i = 1*eval($2);
619                 push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
620             } elsif (my $i = 1*eval($token) or $token eq "0") {
621                 if ($token =~ /^\+/) {
622                     push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
623                 } else {
624                     push @ret,const($i);
625                 }
626             } else {
627                 push @ret,$DW_OP_simple{$token};
628             }
629         }
630
631         # Finally we return DW_CFA_def_cfa_expression, 15, followed by
632         # length of the expression and of course the expression itself.
633         return (15,scalar(@ret),@ret);
634     }
635     sub re {
636         my      ($class, $line) = @_;
637         my      $self = {};
638         my      $ret;
639
640         if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
641             bless $self,$class;
642             $ret = $self;
643             undef $self->{value};
644             my $dir = $1;
645
646             SWITCH: for ($dir) {
647             # What is $cfa_rsp? Effectively it's difference between %rsp
648             # value and current CFA, Canonical Frame Address, which is
649             # why it starts with -8. Recall that CFA is top of caller's
650             # stack...
651             /startproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
652             /endproc/   && do { ($cfa_reg, $cfa_rsp) = ("%rsp",  0);
653                                 # .cfi_remember_state directives that are not
654                                 # matched with .cfi_restore_state are
655                                 # unnecessary.
656                                 die "unpaired .cfi_remember_state" if (@cfa_stack);
657                                 last;
658                               };
659             /def_cfa_register/
660                         && do { $cfa_reg = $$line; last; };
661             /def_cfa_offset/
662                         && do { $cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
663                                 last;
664                               };
665             /adjust_cfa_offset/
666                         && do { $cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
667                                 last;
668                               };
669             /def_cfa/   && do { if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
670                                     $cfa_reg = $1;
671                                     $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
672                                 }
673                                 last;
674                               };
675             /push/      && do { $dir = undef;
676                                 $cfa_rsp -= 8;
677                                 if ($cfa_reg eq "%rsp") {
678                                     $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
679                                 }
680                                 $self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
681                                 last;
682                               };
683             /pop/       && do { $dir = undef;
684                                 $cfa_rsp += 8;
685                                 if ($cfa_reg eq "%rsp") {
686                                     $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
687                                 }
688                                 $self->{value} .= ".cfi_restore\t$$line";
689                                 last;
690                               };
691             /cfa_expression/
692                         && do { $dir = undef;
693                                 $self->{value} = ".cfi_escape\t" .
694                                         join(",", map(sprintf("0x%02x", $_),
695                                                       cfa_expression($$line)));
696                                 last;
697                               };
698             /remember_state/
699                         && do { push @cfa_stack, [$cfa_reg, $cfa_rsp];
700                                 last;
701                               };
702             /restore_state/
703                         && do { ($cfa_reg, $cfa_rsp) = @{pop @cfa_stack};
704                                 last;
705                               };
706             }
707
708             $self->{value} = ".cfi_$dir\t$$line" if ($dir);
709
710             $$line = "";
711         }
712
713         return $ret;
714     }
715     sub out {
716         my $self = shift;
717         return ($elf ? $self->{value} : undef);
718     }
719 }
720 { package directive;    # pick up directives, which start with .
721     sub re {
722         my      ($class, $line) = @_;
723         my      $self = {};
724         my      $ret;
725         my      $dir;
726
727         # chain-call to cfi_directive
728         $ret = cfi_directive->re($line) and return $ret;
729
730         if ($$line =~ /^\s*(\.\w+)/) {
731             bless $self,$class;
732             $dir = $1;
733             $ret = $self;
734             undef $self->{value};
735             $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
736
737             SWITCH: for ($dir) {
738                 /\.global|\.globl|\.extern/
739                             && do { $globals{$$line} = $prefix . $$line;
740                                     $$line = $globals{$$line} if ($prefix);
741                                     last;
742                                   };
743                 /\.type/    && do { my ($sym,$type,$narg) = split(',',$$line);
744                                     if ($type eq "\@function") {
745                                         undef $current_function;
746                                         $current_function->{name} = $sym;
747                                         $current_function->{abi}  = "svr4";
748                                         $current_function->{narg} = $narg;
749                                         $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
750                                     } elsif ($type eq "\@abi-omnipotent") {
751                                         undef $current_function;
752                                         $current_function->{name} = $sym;
753                                         $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
754                                     }
755                                     $$line =~ s/\@abi\-omnipotent/\@function/;
756                                     $$line =~ s/\@function.*/\@function/;
757                                     last;
758                                   };
759                 /\.asciz/   && do { if ($$line =~ /^"(.*)"$/) {
760                                         $dir  = ".byte";
761                                         $$line = join(",",unpack("C*",$1),0);
762                                     }
763                                     last;
764                                   };
765                 /\.rva|\.long|\.quad/
766                             && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
767                                     $$line =~ s/\.L/$decor/g;
768                                     last;
769                                   };
770             }
771
772             if ($gas) {
773                 $self->{value} = $dir . "\t" . $$line;
774
775                 if ($dir =~ /\.extern/) {
776                     $self->{value} = ""; # swallow extern
777                 } elsif (!$elf && $dir =~ /\.type/) {
778                     $self->{value} = "";
779                     $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
780                                 (defined($globals{$1})?".scl 2;":".scl 3;") .
781                                 "\t.type 32;\t.endef"
782                                 if ($win64 && $$line =~ /([^,]+),\@function/);
783                 } elsif (!$elf && $dir =~ /\.size/) {
784                     $self->{value} = "";
785                     if (defined($current_function)) {
786                         $self->{value} .= "${decor}SEH_end_$current_function->{name}:"
787                                 if ($win64 && $current_function->{abi} eq "svr4");
788                         undef $current_function;
789                     }
790                 } elsif (!$elf && $dir =~ /\.align/) {
791                     $self->{value} = ".p2align\t" . (log($$line)/log(2));
792                 } elsif ($dir eq ".section") {
793                     $current_segment=$$line;
794                     if (!$elf && $current_segment eq ".init") {
795                         if      ($flavour eq "macosx")  { $self->{value} = ".mod_init_func"; }
796                         elsif   ($flavour eq "mingw64") { $self->{value} = ".section\t.ctors"; }
797                     }
798                 } elsif ($dir =~ /\.(text|data)/) {
799                     $current_segment=".$1";
800                 } elsif ($dir =~ /\.hidden/) {
801                     if    ($flavour eq "macosx")  { $self->{value} = ".private_extern\t$prefix$$line"; }
802                     elsif ($flavour eq "mingw64") { $self->{value} = ""; }
803                 } elsif ($dir =~ /\.comm/) {
804                     $self->{value} = "$dir\t$prefix$$line";
805                     $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
806                 }
807                 $$line = "";
808                 return $self;
809             }
810
811             # non-gas case or nasm/masm
812             SWITCH: for ($dir) {
813                 /\.text/    && do { my $v=undef;
814                                     if ($nasm) {
815                                         $v="section     .text code align=64\n";
816                                     } else {
817                                         $v="$current_segment\tENDS\n" if ($current_segment);
818                                         $current_segment = ".text\$";
819                                         $v.="$current_segment\tSEGMENT ";
820                                         $v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
821                                         $v.=" 'CODE'";
822                                     }
823                                     $self->{value} = $v;
824                                     last;
825                                   };
826                 /\.data/    && do { my $v=undef;
827                                     if ($nasm) {
828                                         $v="section     .data data align=8\n";
829                                     } else {
830                                         $v="$current_segment\tENDS\n" if ($current_segment);
831                                         $current_segment = "_DATA";
832                                         $v.="$current_segment\tSEGMENT";
833                                     }
834                                     $self->{value} = $v;
835                                     last;
836                                   };
837                 /\.section/ && do { my $v=undef;
838                                     $$line =~ s/([^,]*).*/$1/;
839                                     $$line = ".CRT\$XCU" if ($$line eq ".init");
840                                     if ($nasm) {
841                                         $v="section     $$line";
842                                         if ($$line=~/\.([px])data/) {
843                                             $v.=" rdata align=";
844                                             $v.=$1 eq "p"? 4 : 8;
845                                         } elsif ($$line=~/\.CRT\$/i) {
846                                             $v.=" rdata align=8";
847                                         }
848                                     } else {
849                                         $v="$current_segment\tENDS\n" if ($current_segment);
850                                         $v.="$$line\tSEGMENT";
851                                         if ($$line=~/\.([px])data/) {
852                                             $v.=" READONLY";
853                                             $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
854                                         } elsif ($$line=~/\.CRT\$/i) {
855                                             $v.=" READONLY ";
856                                             $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
857                                         }
858                                     }
859                                     $current_segment = $$line;
860                                     $self->{value} = $v;
861                                     last;
862                                   };
863                 /\.extern/  && do { $self->{value}  = "EXTERN\t".$$line;
864                                     $self->{value} .= ":NEAR" if ($masm);
865                                     last;
866                                   };
867                 /\.globl|.global/
868                             && do { $self->{value}  = $masm?"PUBLIC":"global";
869                                     $self->{value} .= "\t".$$line;
870                                     last;
871                                   };
872                 /\.size/    && do { if (defined($current_function)) {
873                                         undef $self->{value};
874                                         if ($current_function->{abi} eq "svr4") {
875                                             $self->{value}="${decor}SEH_end_$current_function->{name}:";
876                                             $self->{value}.=":\n" if($masm);
877                                         }
878                                         $self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
879                                         undef $current_function;
880                                     }
881                                     last;
882                                   };
883                 /\.align/   && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
884                                     $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
885                                     last;
886                                   };
887                 /\.(value|long|rva|quad)/
888                             && do { my $sz  = substr($1,0,1);
889                                     my @arr = split(/,\s*/,$$line);
890                                     my $last = pop(@arr);
891                                     my $conv = sub  {   my $var=shift;
892                                                         $var=~s/^(0b[0-1]+)/oct($1)/eig;
893                                                         $var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
894                                                         if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
895                                                         { $var=~s/^([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
896                                                         $var;
897                                                     };
898
899                                     $sz =~ tr/bvlrq/BWDDQ/;
900                                     $self->{value} = "\tD$sz\t";
901                                     for (@arr) { $self->{value} .= &$conv($_).","; }
902                                     $self->{value} .= &$conv($last);
903                                     last;
904                                   };
905                 /\.byte/    && do { my @str=split(/,\s*/,$$line);
906                                     map(s/(0b[0-1]+)/oct($1)/eig,@str);
907                                     map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
908                                     while ($#str>15) {
909                                         $self->{value}.="DB\t"
910                                                 .join(",",@str[0..15])."\n";
911                                         foreach (0..15) { shift @str; }
912                                     }
913                                     $self->{value}.="DB\t"
914                                                 .join(",",@str) if (@str);
915                                     last;
916                                   };
917                 /\.comm/    && do { my @str=split(/,\s*/,$$line);
918                                     my $v=undef;
919                                     if ($nasm) {
920                                         $v.="common     $prefix@str[0] @str[1]";
921                                     } else {
922                                         $v="$current_segment\tENDS\n" if ($current_segment);
923                                         $current_segment = "_DATA";
924                                         $v.="$current_segment\tSEGMENT\n";
925                                         $v.="COMM       @str[0]:DWORD:".@str[1]/4;
926                                     }
927                                     $self->{value} = $v;
928                                     last;
929                                   };
930             }
931             $$line = "";
932         }
933
934         $ret;
935     }
936     sub out {
937         my $self = shift;
938         $self->{value};
939     }
940 }
941
942 # Upon initial x86_64 introduction SSE>2 extensions were not introduced
943 # yet. In order not to be bothered by tracing exact assembler versions,
944 # but at the same time to provide a bare security minimum of AES-NI, we
945 # hard-code some instructions. Extensions past AES-NI on the other hand
946 # are traced by examining assembler version in individual perlasm
947 # modules...
948
949 my %regrm = (   "%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
950                 "%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7      );
951
952 sub rex {
953  my $opcode=shift;
954  my ($dst,$src,$rex)=@_;
955
956    $rex|=0x04 if($dst>=8);
957    $rex|=0x01 if($src>=8);
958    push @$opcode,($rex|0x40) if ($rex);
959 }
960
961 my $movq = sub {        # elderly gas can't handle inter-register movq
962   my $arg = shift;
963   my @opcode=(0x66);
964     if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
965         my ($src,$dst)=($1,$2);
966         if ($dst !~ /[0-9]+/)   { $dst = $regrm{"%e$dst"}; }
967         rex(\@opcode,$src,$dst,0x8);
968         push @opcode,0x0f,0x7e;
969         push @opcode,0xc0|(($src&7)<<3)|($dst&7);       # ModR/M
970         @opcode;
971     } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
972         my ($src,$dst)=($2,$1);
973         if ($dst !~ /[0-9]+/)   { $dst = $regrm{"%e$dst"}; }
974         rex(\@opcode,$src,$dst,0x8);
975         push @opcode,0x0f,0x6e;
976         push @opcode,0xc0|(($src&7)<<3)|($dst&7);       # ModR/M
977         @opcode;
978     } else {
979         ();
980     }
981 };
982
983 my $pextrd = sub {
984     if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
985       my @opcode=(0x66);
986         my $imm=$1;
987         my $src=$2;
988         my $dst=$3;
989         if ($dst =~ /%r([0-9]+)d/)      { $dst = $1; }
990         elsif ($dst =~ /%e/)            { $dst = $regrm{$dst}; }
991         rex(\@opcode,$src,$dst);
992         push @opcode,0x0f,0x3a,0x16;
993         push @opcode,0xc0|(($src&7)<<3)|($dst&7);       # ModR/M
994         push @opcode,$imm;
995         @opcode;
996     } else {
997         ();
998     }
999 };
1000
1001 my $pinsrd = sub {
1002     if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
1003       my @opcode=(0x66);
1004         my $imm=$1;
1005         my $src=$2;
1006         my $dst=$3;
1007         if ($src =~ /%r([0-9]+)/)       { $src = $1; }
1008         elsif ($src =~ /%e/)            { $src = $regrm{$src}; }
1009         rex(\@opcode,$dst,$src);
1010         push @opcode,0x0f,0x3a,0x22;
1011         push @opcode,0xc0|(($dst&7)<<3)|($src&7);       # ModR/M
1012         push @opcode,$imm;
1013         @opcode;
1014     } else {
1015         ();
1016     }
1017 };
1018
1019 my $pshufb = sub {
1020     if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1021       my @opcode=(0x66);
1022         rex(\@opcode,$2,$1);
1023         push @opcode,0x0f,0x38,0x00;
1024         push @opcode,0xc0|($1&7)|(($2&7)<<3);           # ModR/M
1025         @opcode;
1026     } else {
1027         ();
1028     }
1029 };
1030
1031 my $palignr = sub {
1032     if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1033       my @opcode=(0x66);
1034         rex(\@opcode,$3,$2);
1035         push @opcode,0x0f,0x3a,0x0f;
1036         push @opcode,0xc0|($2&7)|(($3&7)<<3);           # ModR/M
1037         push @opcode,$1;
1038         @opcode;
1039     } else {
1040         ();
1041     }
1042 };
1043
1044 my $pclmulqdq = sub {
1045     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1046       my @opcode=(0x66);
1047         rex(\@opcode,$3,$2);
1048         push @opcode,0x0f,0x3a,0x44;
1049         push @opcode,0xc0|($2&7)|(($3&7)<<3);           # ModR/M
1050         my $c=$1;
1051         push @opcode,$c=~/^0/?oct($c):$c;
1052         @opcode;
1053     } else {
1054         ();
1055     }
1056 };
1057
1058 my $rdrand = sub {
1059     if (shift =~ /%[er](\w+)/) {
1060       my @opcode=();
1061       my $dst=$1;
1062         if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1063         rex(\@opcode,0,$dst,8);
1064         push @opcode,0x0f,0xc7,0xf0|($dst&7);
1065         @opcode;
1066     } else {
1067         ();
1068     }
1069 };
1070
1071 my $rdseed = sub {
1072     if (shift =~ /%[er](\w+)/) {
1073       my @opcode=();
1074       my $dst=$1;
1075         if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1076         rex(\@opcode,0,$dst,8);
1077         push @opcode,0x0f,0xc7,0xf8|($dst&7);
1078         @opcode;
1079     } else {
1080         ();
1081     }
1082 };
1083
1084 # Not all AVX-capable assemblers recognize AMD XOP extension. Since we
1085 # are using only two instructions hand-code them in order to be excused
1086 # from chasing assembler versions...
1087
1088 sub rxb {
1089  my $opcode=shift;
1090  my ($dst,$src1,$src2,$rxb)=@_;
1091
1092    $rxb|=0x7<<5;
1093    $rxb&=~(0x04<<5) if($dst>=8);
1094    $rxb&=~(0x01<<5) if($src1>=8);
1095    $rxb&=~(0x02<<5) if($src2>=8);
1096    push @$opcode,$rxb;
1097 }
1098
1099 my $vprotd = sub {
1100     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1101       my @opcode=(0x8f);
1102         rxb(\@opcode,$3,$2,-1,0x08);
1103         push @opcode,0x78,0xc2;
1104         push @opcode,0xc0|($2&7)|(($3&7)<<3);           # ModR/M
1105         my $c=$1;
1106         push @opcode,$c=~/^0/?oct($c):$c;
1107         @opcode;
1108     } else {
1109         ();
1110     }
1111 };
1112
1113 my $vprotq = sub {
1114     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1115       my @opcode=(0x8f);
1116         rxb(\@opcode,$3,$2,-1,0x08);
1117         push @opcode,0x78,0xc3;
1118         push @opcode,0xc0|($2&7)|(($3&7)<<3);           # ModR/M
1119         my $c=$1;
1120         push @opcode,$c=~/^0/?oct($c):$c;
1121         @opcode;
1122     } else {
1123         ();
1124     }
1125 };
1126
1127 # Intel Control-flow Enforcement Technology extension. All functions and
1128 # indirect branch targets will have to start with this instruction...
1129
1130 my $endbranch = sub {
1131     (0xf3,0x0f,0x1e,0xfa);
1132 };
1133
1134 ########################################################################
1135
1136 if ($nasm) {
1137     print <<___;
1138 default rel
1139 %define XMMWORD
1140 %define YMMWORD
1141 %define ZMMWORD
1142 ___
1143 } elsif ($masm) {
1144     print <<___;
1145 OPTION  DOTNAME
1146 ___
1147 }
1148 while(defined(my $line=<>)) {
1149
1150     $line =~ s|\R$||;           # Better chomp
1151
1152     $line =~ s|[#!].*$||;       # get rid of asm-style comments...
1153     $line =~ s|/\*.*\*/||;      # ... and C-style comments...
1154     $line =~ s|^\s+||;          # ... and skip white spaces in beginning
1155     $line =~ s|\s+$||;          # ... and at the end
1156
1157     if (my $label=label->re(\$line))    { print $label->out(); }
1158
1159     if (my $directive=directive->re(\$line)) {
1160         printf "%s",$directive->out();
1161     } elsif (my $opcode=opcode->re(\$line)) {
1162         my $asm = eval("\$".$opcode->mnemonic());
1163
1164         if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
1165             print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
1166             next;
1167         }
1168
1169         my @args;
1170         ARGUMENT: while (1) {
1171             my $arg;
1172
1173             ($arg=register->re(\$line, $opcode))||
1174             ($arg=const->re(\$line))            ||
1175             ($arg=ea->re(\$line, $opcode))      ||
1176             ($arg=expr->re(\$line, $opcode))    ||
1177             last ARGUMENT;
1178
1179             push @args,$arg;
1180
1181             last ARGUMENT if ($line !~ /^,/);
1182
1183             $line =~ s/^,\s*//;
1184         } # ARGUMENT:
1185
1186         if ($#args>=0) {
1187             my $insn;
1188             my $sz=$opcode->size();
1189
1190             if ($gas) {
1191                 $insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
1192                 @args = map($_->out($sz),@args);
1193                 printf "\t%s\t%s",$insn,join(",",@args);
1194             } else {
1195                 $insn = $opcode->out();
1196                 foreach (@args) {
1197                     my $arg = $_->out();
1198                     # $insn.=$sz compensates for movq, pinsrw, ...
1199                     if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
1200                     if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
1201                     if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
1202                     if ($arg =~ /^mm[0-9]+$/)  { $insn.=$sz; $sz="q" if(!$sz); last; }
1203                 }
1204                 @args = reverse(@args);
1205                 undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
1206                 printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
1207             }
1208         } else {
1209             printf "\t%s",$opcode->out();
1210         }
1211     }
1212
1213     print $line,"\n";
1214 }
1215
1216 print "\n$current_segment\tENDS\n"      if ($current_segment && $masm);
1217 print "END\n"                           if ($masm);
1218
1219 close STDOUT;
1220
1221 \f#################################################
1222 # Cross-reference x86_64 ABI "card"
1223 #
1224 #               Unix            Win64
1225 # %rax          *               *
1226 # %rbx          -               -
1227 # %rcx          #4              #1
1228 # %rdx          #3              #2
1229 # %rsi          #2              -
1230 # %rdi          #1              -
1231 # %rbp          -               -
1232 # %rsp          -               -
1233 # %r8           #5              #3
1234 # %r9           #6              #4
1235 # %r10          *               *
1236 # %r11          *               *
1237 # %r12          -               -
1238 # %r13          -               -
1239 # %r14          -               -
1240 # %r15          -               -
1241 #
1242 # (*)   volatile register
1243 # (-)   preserved by callee
1244 # (#)   Nth argument, volatile
1245 #
1246 # In Unix terms top of stack is argument transfer area for arguments
1247 # which could not be accommodated in registers. Or in other words 7th
1248 # [integer] argument resides at 8(%rsp) upon function entry point.
1249 # 128 bytes above %rsp constitute a "red zone" which is not touched
1250 # by signal handlers and can be used as temporal storage without
1251 # allocating a frame.
1252 #
1253 # In Win64 terms N*8 bytes on top of stack is argument transfer area,
1254 # which belongs to/can be overwritten by callee. N is the number of
1255 # arguments passed to callee, *but* not less than 4! This means that
1256 # upon function entry point 5th argument resides at 40(%rsp), as well
1257 # as that 32 bytes from 8(%rsp) can always be used as temporal
1258 # storage [without allocating a frame]. One can actually argue that
1259 # one can assume a "red zone" above stack pointer under Win64 as well.
1260 # Point is that at apparently no occasion Windows kernel would alter
1261 # the area above user stack pointer in true asynchronous manner...
1262 #
1263 # All the above means that if assembler programmer adheres to Unix
1264 # register and stack layout, but disregards the "red zone" existence,
1265 # it's possible to use following prologue and epilogue to "gear" from
1266 # Unix to Win64 ABI in leaf functions with not more than 6 arguments.
1267 #
1268 # omnipotent_function:
1269 # ifdef WIN64
1270 #       movq    %rdi,8(%rsp)
1271 #       movq    %rsi,16(%rsp)
1272 #       movq    %rcx,%rdi       ; if 1st argument is actually present
1273 #       movq    %rdx,%rsi       ; if 2nd argument is actually ...
1274 #       movq    %r8,%rdx        ; if 3rd argument is ...
1275 #       movq    %r9,%rcx        ; if 4th argument ...
1276 #       movq    40(%rsp),%r8    ; if 5th ...
1277 #       movq    48(%rsp),%r9    ; if 6th ...
1278 # endif
1279 #       ...
1280 # ifdef WIN64
1281 #       movq    8(%rsp),%rdi
1282 #       movq    16(%rsp),%rsi
1283 # endif
1284 #       ret
1285 #
1286 \f#################################################
1287 # Win64 SEH, Structured Exception Handling.
1288 #
1289 # Unlike on Unix systems(*) lack of Win64 stack unwinding information
1290 # has undesired side-effect at run-time: if an exception is raised in
1291 # assembler subroutine such as those in question (basically we're
1292 # referring to segmentation violations caused by malformed input
1293 # parameters), the application is briskly terminated without invoking
1294 # any exception handlers, most notably without generating memory dump
1295 # or any user notification whatsoever. This poses a problem. It's
1296 # possible to address it by registering custom language-specific
1297 # handler that would restore processor context to the state at
1298 # subroutine entry point and return "exception is not handled, keep
1299 # unwinding" code. Writing such handler can be a challenge... But it's
1300 # doable, though requires certain coding convention. Consider following
1301 # snippet:
1302 #
1303 # .type function,@function
1304 # function:
1305 #       movq    %rsp,%rax       # copy rsp to volatile register
1306 #       pushq   %r15            # save non-volatile registers
1307 #       pushq   %rbx
1308 #       pushq   %rbp
1309 #       movq    %rsp,%r11
1310 #       subq    %rdi,%r11       # prepare [variable] stack frame
1311 #       andq    $-64,%r11
1312 #       movq    %rax,0(%r11)    # check for exceptions
1313 #       movq    %r11,%rsp       # allocate [variable] stack frame
1314 #       movq    %rax,0(%rsp)    # save original rsp value
1315 # magic_point:
1316 #       ...
1317 #       movq    0(%rsp),%rcx    # pull original rsp value
1318 #       movq    -24(%rcx),%rbp  # restore non-volatile registers
1319 #       movq    -16(%rcx),%rbx
1320 #       movq    -8(%rcx),%r15
1321 #       movq    %rcx,%rsp       # restore original rsp
1322 # magic_epilogue:
1323 #       ret
1324 # .size function,.-function
1325 #
1326 # The key is that up to magic_point copy of original rsp value remains
1327 # in chosen volatile register and no non-volatile register, except for
1328 # rsp, is modified. While past magic_point rsp remains constant till
1329 # the very end of the function. In this case custom language-specific
1330 # exception handler would look like this:
1331 #
1332 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1333 #               CONTEXT *context,DISPATCHER_CONTEXT *disp)
1334 # {     ULONG64 *rsp = (ULONG64 *)context->Rax;
1335 #       ULONG64  rip = context->Rip;
1336 #
1337 #       if (rip >= magic_point)
1338 #       {   rsp = (ULONG64 *)context->Rsp;
1339 #           if (rip < magic_epilogue)
1340 #           {   rsp = (ULONG64 *)rsp[0];
1341 #               context->Rbp = rsp[-3];
1342 #               context->Rbx = rsp[-2];
1343 #               context->R15 = rsp[-1];
1344 #           }
1345 #       }
1346 #       context->Rsp = (ULONG64)rsp;
1347 #       context->Rdi = rsp[1];
1348 #       context->Rsi = rsp[2];
1349 #
1350 #       memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
1351 #       RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
1352 #               dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
1353 #               &disp->HandlerData,&disp->EstablisherFrame,NULL);
1354 #       return ExceptionContinueSearch;
1355 # }
1356 #
1357 # It's appropriate to implement this handler in assembler, directly in
1358 # function's module. In order to do that one has to know members'
1359 # offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
1360 # values. Here they are:
1361 #
1362 #       CONTEXT.Rax                             120
1363 #       CONTEXT.Rcx                             128
1364 #       CONTEXT.Rdx                             136
1365 #       CONTEXT.Rbx                             144
1366 #       CONTEXT.Rsp                             152
1367 #       CONTEXT.Rbp                             160
1368 #       CONTEXT.Rsi                             168
1369 #       CONTEXT.Rdi                             176
1370 #       CONTEXT.R8                              184
1371 #       CONTEXT.R9                              192
1372 #       CONTEXT.R10                             200
1373 #       CONTEXT.R11                             208
1374 #       CONTEXT.R12                             216
1375 #       CONTEXT.R13                             224
1376 #       CONTEXT.R14                             232
1377 #       CONTEXT.R15                             240
1378 #       CONTEXT.Rip                             248
1379 #       CONTEXT.Xmm6                            512
1380 #       sizeof(CONTEXT)                         1232
1381 #       DISPATCHER_CONTEXT.ControlPc            0
1382 #       DISPATCHER_CONTEXT.ImageBase            8
1383 #       DISPATCHER_CONTEXT.FunctionEntry        16
1384 #       DISPATCHER_CONTEXT.EstablisherFrame     24
1385 #       DISPATCHER_CONTEXT.TargetIp             32
1386 #       DISPATCHER_CONTEXT.ContextRecord        40
1387 #       DISPATCHER_CONTEXT.LanguageHandler      48
1388 #       DISPATCHER_CONTEXT.HandlerData          56
1389 #       UNW_FLAG_NHANDLER                       0
1390 #       ExceptionContinueSearch                 1
1391 #
1392 # In order to tie the handler to the function one has to compose
1393 # couple of structures: one for .xdata segment and one for .pdata.
1394 #
1395 # UNWIND_INFO structure for .xdata segment would be
1396 #
1397 # function_unwind_info:
1398 #       .byte   9,0,0,0
1399 #       .rva    handler
1400 #
1401 # This structure designates exception handler for a function with
1402 # zero-length prologue, no stack frame or frame register.
1403 #
1404 # To facilitate composing of .pdata structures, auto-generated "gear"
1405 # prologue copies rsp value to rax and denotes next instruction with
1406 # .LSEH_begin_{function_name} label. This essentially defines the SEH
1407 # styling rule mentioned in the beginning. Position of this label is
1408 # chosen in such manner that possible exceptions raised in the "gear"
1409 # prologue would be accounted to caller and unwound from latter's frame.
1410 # End of function is marked with respective .LSEH_end_{function_name}
1411 # label. To summarize, .pdata segment would contain
1412 #
1413 #       .rva    .LSEH_begin_function
1414 #       .rva    .LSEH_end_function
1415 #       .rva    function_unwind_info
1416 #
1417 # Reference to function_unwind_info from .xdata segment is the anchor.
1418 # In case you wonder why references are 32-bit .rvas and not 64-bit
1419 # .quads. References put into these two segments are required to be
1420 # *relative* to the base address of the current binary module, a.k.a.
1421 # image base. No Win64 module, be it .exe or .dll, can be larger than
1422 # 2GB and thus such relative references can be and are accommodated in
1423 # 32 bits.
1424 #
1425 # Having reviewed the example function code, one can argue that "movq
1426 # %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
1427 # rax would contain an undefined value. If this "offends" you, use
1428 # another register and refrain from modifying rax till magic_point is
1429 # reached, i.e. as if it was a non-volatile register. If more registers
1430 # are required prior [variable] frame setup is completed, note that
1431 # nobody says that you can have only one "magic point." You can
1432 # "liberate" non-volatile registers by denoting last stack off-load
1433 # instruction and reflecting it in finer grade unwind logic in handler.
1434 # After all, isn't it why it's called *language-specific* handler...
1435 #
1436 # SE handlers are also involved in unwinding stack when executable is
1437 # profiled or debugged. Profiling implies additional limitations that
1438 # are too subtle to discuss here. For now it's sufficient to say that
1439 # in order to simplify handlers one should either a) offload original
1440 # %rsp to stack (like discussed above); or b) if you have a register to
1441 # spare for frame pointer, choose volatile one.
1442 #
1443 # (*)   Note that we're talking about run-time, not debug-time. Lack of
1444 #       unwind information makes debugging hard on both Windows and
1445 #       Unix. "Unlike" refers to the fact that on Unix signal handler
1446 #       will always be invoked, core dumped and appropriate exit code
1447 #       returned to parent (for user notification).