GH408 follow-on: update buflen
[openssl.git] / crypto / modes / asm / ghash-x86_64.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9 #
10 # March, June 2010
11 #
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
19 #
20 #               gcc 3.4.x(*)    assembler
21 #
22 # P4            28.6            14.0            +100%
23 # Opteron       19.3            7.7             +150%
24 # Core2         17.8            8.1(**)         +120%
25 # Atom          31.6            16.8            +88%
26 # VIA Nano      21.8            10.1            +115%
27 #
28 # (*)   comparison is not completely fair, because C results are
29 #       for vanilla "256B" implementation, while assembler results
30 #       are for "528B";-)
31 # (**)  it's mystery [to me] why Core2 result is not same as for
32 #       Opteron;
33
34 # May 2010
35 #
36 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
37 # See ghash-x86.pl for background information and details about coding
38 # techniques.
39 #
40 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
41 # providing access to a Westmere-based system on behalf of Intel
42 # Open Source Technology Centre.
43
44 # December 2012
45 #
46 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
47 # reduction_alg9, increase reduction aggregate factor to 4x. As for
48 # the latter. ghash-x86.pl discusses that it makes lesser sense to
49 # increase aggregate factor. Then why increase here? Critical path
50 # consists of 3 independent pclmulqdq instructions, Karatsuba post-
51 # processing and reduction. "On top" of this we lay down aggregated
52 # multiplication operations, triplets of independent pclmulqdq's. As
53 # issue rate for pclmulqdq is limited, it makes lesser sense to
54 # aggregate more multiplications than it takes to perform remaining
55 # non-multiplication operations. 2x is near-optimal coefficient for
56 # contemporary Intel CPUs (therefore modest improvement coefficient),
57 # but not for Bulldozer. Latter is because logical SIMD operations
58 # are twice as slow in comparison to Intel, so that critical path is
59 # longer. A CPU with higher pclmulqdq issue rate would also benefit
60 # from higher aggregate factor...
61 #
62 # Westmere      1.78(+13%)
63 # Sandy Bridge  1.80(+8%)
64 # Ivy Bridge    1.80(+7%)
65 # Haswell       0.55(+93%) (if system doesn't support AVX)
66 # Broadwell     0.45(+110%)(if system doesn't support AVX)
67 # Bulldozer     1.49(+27%)
68 # Silvermont    2.88(+13%)
69
70 # March 2013
71 #
72 # ... 8x aggregate factor AVX code path is using reduction algorithm
73 # suggested by Shay Gueron[1]. Even though contemporary AVX-capable
74 # CPUs such as Sandy and Ivy Bridge can execute it, the code performs
75 # sub-optimally in comparison to above mentioned version. But thanks
76 # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
77 # it performs in 0.41 cycles per byte on Haswell processor, and in
78 # 0.29 on Broadwell.
79 #
80 # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
81
82 $flavour = shift;
83 $output  = shift;
84 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
85
86 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
87
88 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
89 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
90 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
91 die "can't locate x86_64-xlate.pl";
92
93 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
94                 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
95         $avx = ($1>=2.19) + ($1>=2.22);
96 }
97
98 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
99             `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
100         $avx = ($1>=2.09) + ($1>=2.10);
101 }
102
103 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
104             `ml64 2>&1` =~ /Version ([0-9]+)\./) {
105         $avx = ($1>=10) + ($1>=11);
106 }
107
108 if (!$avx && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/) {
109         $avx = ($2>=3.0) + ($2>3.0);
110 }
111
112 open OUT,"| \"$^X\" $xlate $flavour $output";
113 *STDOUT=*OUT;
114
115 $do4xaggr=1;
116
117 # common register layout
118 $nlo="%rax";
119 $nhi="%rbx";
120 $Zlo="%r8";
121 $Zhi="%r9";
122 $tmp="%r10";
123 $rem_4bit = "%r11";
124
125 $Xi="%rdi";
126 $Htbl="%rsi";
127
128 # per-function register layout
129 $cnt="%rcx";
130 $rem="%rdx";
131
132 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/     or
133                         $r =~ s/%[er]([sd]i)/%\1l/      or
134                         $r =~ s/%[er](bp)/%\1l/         or
135                         $r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
136
137 sub AUTOLOAD()          # thunk [simplified] 32-bit style perlasm
138 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
139   my $arg = pop;
140     $arg = "\$$arg" if ($arg*1 eq $arg);
141     $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
142 }
143 \f
144 { my $N;
145   sub loop() {
146   my $inp = shift;
147
148         $N++;
149 $code.=<<___;
150         xor     $nlo,$nlo
151         xor     $nhi,$nhi
152         mov     `&LB("$Zlo")`,`&LB("$nlo")`
153         mov     `&LB("$Zlo")`,`&LB("$nhi")`
154         shl     \$4,`&LB("$nlo")`
155         mov     \$14,$cnt
156         mov     8($Htbl,$nlo),$Zlo
157         mov     ($Htbl,$nlo),$Zhi
158         and     \$0xf0,`&LB("$nhi")`
159         mov     $Zlo,$rem
160         jmp     .Loop$N
161
162 .align  16
163 .Loop$N:
164         shr     \$4,$Zlo
165         and     \$0xf,$rem
166         mov     $Zhi,$tmp
167         mov     ($inp,$cnt),`&LB("$nlo")`
168         shr     \$4,$Zhi
169         xor     8($Htbl,$nhi),$Zlo
170         shl     \$60,$tmp
171         xor     ($Htbl,$nhi),$Zhi
172         mov     `&LB("$nlo")`,`&LB("$nhi")`
173         xor     ($rem_4bit,$rem,8),$Zhi
174         mov     $Zlo,$rem
175         shl     \$4,`&LB("$nlo")`
176         xor     $tmp,$Zlo
177         dec     $cnt
178         js      .Lbreak$N
179
180         shr     \$4,$Zlo
181         and     \$0xf,$rem
182         mov     $Zhi,$tmp
183         shr     \$4,$Zhi
184         xor     8($Htbl,$nlo),$Zlo
185         shl     \$60,$tmp
186         xor     ($Htbl,$nlo),$Zhi
187         and     \$0xf0,`&LB("$nhi")`
188         xor     ($rem_4bit,$rem,8),$Zhi
189         mov     $Zlo,$rem
190         xor     $tmp,$Zlo
191         jmp     .Loop$N
192
193 .align  16
194 .Lbreak$N:
195         shr     \$4,$Zlo
196         and     \$0xf,$rem
197         mov     $Zhi,$tmp
198         shr     \$4,$Zhi
199         xor     8($Htbl,$nlo),$Zlo
200         shl     \$60,$tmp
201         xor     ($Htbl,$nlo),$Zhi
202         and     \$0xf0,`&LB("$nhi")`
203         xor     ($rem_4bit,$rem,8),$Zhi
204         mov     $Zlo,$rem
205         xor     $tmp,$Zlo
206
207         shr     \$4,$Zlo
208         and     \$0xf,$rem
209         mov     $Zhi,$tmp
210         shr     \$4,$Zhi
211         xor     8($Htbl,$nhi),$Zlo
212         shl     \$60,$tmp
213         xor     ($Htbl,$nhi),$Zhi
214         xor     $tmp,$Zlo
215         xor     ($rem_4bit,$rem,8),$Zhi
216
217         bswap   $Zlo
218         bswap   $Zhi
219 ___
220 }}
221
222 $code=<<___;
223 .text
224 .extern OPENSSL_ia32cap_P
225
226 .globl  gcm_gmult_4bit
227 .type   gcm_gmult_4bit,\@function,2
228 .align  16
229 gcm_gmult_4bit:
230         push    %rbx
231         push    %rbp            # %rbp and %r12 are pushed exclusively in
232         push    %r12            # order to reuse Win64 exception handler...
233 .Lgmult_prologue:
234
235         movzb   15($Xi),$Zlo
236         lea     .Lrem_4bit(%rip),$rem_4bit
237 ___
238         &loop   ($Xi);
239 $code.=<<___;
240         mov     $Zlo,8($Xi)
241         mov     $Zhi,($Xi)
242
243         mov     16(%rsp),%rbx
244         lea     24(%rsp),%rsp
245 .Lgmult_epilogue:
246         ret
247 .size   gcm_gmult_4bit,.-gcm_gmult_4bit
248 ___
249 \f
250 # per-function register layout
251 $inp="%rdx";
252 $len="%rcx";
253 $rem_8bit=$rem_4bit;
254
255 $code.=<<___;
256 .globl  gcm_ghash_4bit
257 .type   gcm_ghash_4bit,\@function,4
258 .align  16
259 gcm_ghash_4bit:
260         push    %rbx
261         push    %rbp
262         push    %r12
263         push    %r13
264         push    %r14
265         push    %r15
266         sub     \$280,%rsp
267 .Lghash_prologue:
268         mov     $inp,%r14               # reassign couple of args
269         mov     $len,%r15
270 ___
271 { my $inp="%r14";
272   my $dat="%edx";
273   my $len="%r15";
274   my @nhi=("%ebx","%ecx");
275   my @rem=("%r12","%r13");
276   my $Hshr4="%rbp";
277
278         &sub    ($Htbl,-128);           # size optimization
279         &lea    ($Hshr4,"16+128(%rsp)");
280         { my @lo =($nlo,$nhi);
281           my @hi =($Zlo,$Zhi);
282
283           &xor  ($dat,$dat);
284           for ($i=0,$j=-2;$i<18;$i++,$j++) {
285             &mov        ("$j(%rsp)",&LB($dat))          if ($i>1);
286             &or         ($lo[0],$tmp)                   if ($i>1);
287             &mov        (&LB($dat),&LB($lo[1]))         if ($i>0 && $i<17);
288             &shr        ($lo[1],4)                      if ($i>0 && $i<17);
289             &mov        ($tmp,$hi[1])                   if ($i>0 && $i<17);
290             &shr        ($hi[1],4)                      if ($i>0 && $i<17);
291             &mov        ("8*$j($Hshr4)",$hi[0])         if ($i>1);
292             &mov        ($hi[0],"16*$i+0-128($Htbl)")   if ($i<16);
293             &shl        (&LB($dat),4)                   if ($i>0 && $i<17);
294             &mov        ("8*$j-128($Hshr4)",$lo[0])     if ($i>1);
295             &mov        ($lo[0],"16*$i+8-128($Htbl)")   if ($i<16);
296             &shl        ($tmp,60)                       if ($i>0 && $i<17);
297
298             push        (@lo,shift(@lo));
299             push        (@hi,shift(@hi));
300           }
301         }
302         &add    ($Htbl,-128);
303         &mov    ($Zlo,"8($Xi)");
304         &mov    ($Zhi,"0($Xi)");
305         &add    ($len,$inp);            # pointer to the end of data
306         &lea    ($rem_8bit,".Lrem_8bit(%rip)");
307         &jmp    (".Louter_loop");
308
309 $code.=".align  16\n.Louter_loop:\n";
310         &xor    ($Zhi,"($inp)");
311         &mov    ("%rdx","8($inp)");
312         &lea    ($inp,"16($inp)");
313         &xor    ("%rdx",$Zlo);
314         &mov    ("($Xi)",$Zhi);
315         &mov    ("8($Xi)","%rdx");
316         &shr    ("%rdx",32);
317
318         &xor    ($nlo,$nlo);
319         &rol    ($dat,8);
320         &mov    (&LB($nlo),&LB($dat));
321         &movz   ($nhi[0],&LB($dat));
322         &shl    (&LB($nlo),4);
323         &shr    ($nhi[0],4);
324
325         for ($j=11,$i=0;$i<15;$i++) {
326             &rol        ($dat,8);
327             &xor        ($Zlo,"8($Htbl,$nlo)")                  if ($i>0);
328             &xor        ($Zhi,"($Htbl,$nlo)")                   if ($i>0);
329             &mov        ($Zlo,"8($Htbl,$nlo)")                  if ($i==0);
330             &mov        ($Zhi,"($Htbl,$nlo)")                   if ($i==0);
331
332             &mov        (&LB($nlo),&LB($dat));
333             &xor        ($Zlo,$tmp)                             if ($i>0);
334             &movzw      ($rem[1],"($rem_8bit,$rem[1],2)")       if ($i>0);
335
336             &movz       ($nhi[1],&LB($dat));
337             &shl        (&LB($nlo),4);
338             &movzb      ($rem[0],"(%rsp,$nhi[0])");
339
340             &shr        ($nhi[1],4)                             if ($i<14);
341             &and        ($nhi[1],0xf0)                          if ($i==14);
342             &shl        ($rem[1],48)                            if ($i>0);
343             &xor        ($rem[0],$Zlo);
344
345             &mov        ($tmp,$Zhi);
346             &xor        ($Zhi,$rem[1])                          if ($i>0);
347             &shr        ($Zlo,8);
348
349             &movz       ($rem[0],&LB($rem[0]));
350             &mov        ($dat,"$j($Xi)")                        if (--$j%4==0);
351             &shr        ($Zhi,8);
352
353             &xor        ($Zlo,"-128($Hshr4,$nhi[0],8)");
354             &shl        ($tmp,56);
355             &xor        ($Zhi,"($Hshr4,$nhi[0],8)");
356
357             unshift     (@nhi,pop(@nhi));               # "rotate" registers
358             unshift     (@rem,pop(@rem));
359         }
360         &movzw  ($rem[1],"($rem_8bit,$rem[1],2)");
361         &xor    ($Zlo,"8($Htbl,$nlo)");
362         &xor    ($Zhi,"($Htbl,$nlo)");
363
364         &shl    ($rem[1],48);
365         &xor    ($Zlo,$tmp);
366
367         &xor    ($Zhi,$rem[1]);
368         &movz   ($rem[0],&LB($Zlo));
369         &shr    ($Zlo,4);
370
371         &mov    ($tmp,$Zhi);
372         &shl    (&LB($rem[0]),4);
373         &shr    ($Zhi,4);
374
375         &xor    ($Zlo,"8($Htbl,$nhi[0])");
376         &movzw  ($rem[0],"($rem_8bit,$rem[0],2)");
377         &shl    ($tmp,60);
378
379         &xor    ($Zhi,"($Htbl,$nhi[0])");
380         &xor    ($Zlo,$tmp);
381         &shl    ($rem[0],48);
382
383         &bswap  ($Zlo);
384         &xor    ($Zhi,$rem[0]);
385
386         &bswap  ($Zhi);
387         &cmp    ($inp,$len);
388         &jb     (".Louter_loop");
389 }
390 $code.=<<___;
391         mov     $Zlo,8($Xi)
392         mov     $Zhi,($Xi)
393
394         lea     280(%rsp),%rsi
395         mov     0(%rsi),%r15
396         mov     8(%rsi),%r14
397         mov     16(%rsi),%r13
398         mov     24(%rsi),%r12
399         mov     32(%rsi),%rbp
400         mov     40(%rsi),%rbx
401         lea     48(%rsi),%rsp
402 .Lghash_epilogue:
403         ret
404 .size   gcm_ghash_4bit,.-gcm_ghash_4bit
405 ___
406 \f
407 ######################################################################
408 # PCLMULQDQ version.
409
410 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
411                 ("%rdi","%rsi","%rdx","%rcx");  # Unix order
412
413 ($Xi,$Xhi)=("%xmm0","%xmm1");   $Hkey="%xmm2";
414 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
415
416 sub clmul64x64_T2 {     # minimal register pressure
417 my ($Xhi,$Xi,$Hkey,$HK)=@_;
418
419 if (!defined($HK)) {    $HK = $T2;
420 $code.=<<___;
421         movdqa          $Xi,$Xhi                #
422         pshufd          \$0b01001110,$Xi,$T1
423         pshufd          \$0b01001110,$Hkey,$T2
424         pxor            $Xi,$T1                 #
425         pxor            $Hkey,$T2
426 ___
427 } else {
428 $code.=<<___;
429         movdqa          $Xi,$Xhi                #
430         pshufd          \$0b01001110,$Xi,$T1
431         pxor            $Xi,$T1                 #
432 ___
433 }
434 $code.=<<___;
435         pclmulqdq       \$0x00,$Hkey,$Xi        #######
436         pclmulqdq       \$0x11,$Hkey,$Xhi       #######
437         pclmulqdq       \$0x00,$HK,$T1          #######
438         pxor            $Xi,$T1                 #
439         pxor            $Xhi,$T1                #
440
441         movdqa          $T1,$T2                 #
442         psrldq          \$8,$T1
443         pslldq          \$8,$T2                 #
444         pxor            $T1,$Xhi
445         pxor            $T2,$Xi                 #
446 ___
447 }
448
449 sub reduction_alg9 {    # 17/11 times faster than Intel version
450 my ($Xhi,$Xi) = @_;
451
452 $code.=<<___;
453         # 1st phase
454         movdqa          $Xi,$T2                 #
455         movdqa          $Xi,$T1
456         psllq           \$5,$Xi
457         pxor            $Xi,$T1                 #
458         psllq           \$1,$Xi
459         pxor            $T1,$Xi                 #
460         psllq           \$57,$Xi                #
461         movdqa          $Xi,$T1                 #
462         pslldq          \$8,$Xi
463         psrldq          \$8,$T1                 #       
464         pxor            $T2,$Xi
465         pxor            $T1,$Xhi                #
466
467         # 2nd phase
468         movdqa          $Xi,$T2
469         psrlq           \$1,$Xi
470         pxor            $T2,$Xhi                #
471         pxor            $Xi,$T2
472         psrlq           \$5,$Xi
473         pxor            $T2,$Xi                 #
474         psrlq           \$1,$Xi                 #
475         pxor            $Xhi,$Xi                #
476 ___
477 }
478 \f
479 { my ($Htbl,$Xip)=@_4args;
480   my $HK="%xmm6";
481
482 $code.=<<___;
483 .globl  gcm_init_clmul
484 .type   gcm_init_clmul,\@abi-omnipotent
485 .align  16
486 gcm_init_clmul:
487 .L_init_clmul:
488 ___
489 $code.=<<___ if ($win64);
490 .LSEH_begin_gcm_init_clmul:
491         # I can't trust assembler to use specific encoding:-(
492         .byte   0x48,0x83,0xec,0x18             #sub    $0x18,%rsp
493         .byte   0x0f,0x29,0x34,0x24             #movaps %xmm6,(%rsp)
494 ___
495 $code.=<<___;
496         movdqu          ($Xip),$Hkey
497         pshufd          \$0b01001110,$Hkey,$Hkey        # dword swap
498
499         # <<1 twist
500         pshufd          \$0b11111111,$Hkey,$T2  # broadcast uppermost dword
501         movdqa          $Hkey,$T1
502         psllq           \$1,$Hkey
503         pxor            $T3,$T3                 #
504         psrlq           \$63,$T1
505         pcmpgtd         $T2,$T3                 # broadcast carry bit
506         pslldq          \$8,$T1
507         por             $T1,$Hkey               # H<<=1
508
509         # magic reduction
510         pand            .L0x1c2_polynomial(%rip),$T3
511         pxor            $T3,$Hkey               # if(carry) H^=0x1c2_polynomial
512
513         # calculate H^2
514         pshufd          \$0b01001110,$Hkey,$HK
515         movdqa          $Hkey,$Xi
516         pxor            $Hkey,$HK
517 ___
518         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);
519         &reduction_alg9 ($Xhi,$Xi);
520 $code.=<<___;
521         pshufd          \$0b01001110,$Hkey,$T1
522         pshufd          \$0b01001110,$Xi,$T2
523         pxor            $Hkey,$T1               # Karatsuba pre-processing
524         movdqu          $Hkey,0x00($Htbl)       # save H
525         pxor            $Xi,$T2                 # Karatsuba pre-processing
526         movdqu          $Xi,0x10($Htbl)         # save H^2
527         palignr         \$8,$T1,$T2             # low part is H.lo^H.hi...
528         movdqu          $T2,0x20($Htbl)         # save Karatsuba "salt"
529 ___
530 if ($do4xaggr) {
531         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);   # H^3
532         &reduction_alg9 ($Xhi,$Xi);
533 $code.=<<___;
534         movdqa          $Xi,$T3
535 ___
536         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);   # H^4
537         &reduction_alg9 ($Xhi,$Xi);
538 $code.=<<___;
539         pshufd          \$0b01001110,$T3,$T1
540         pshufd          \$0b01001110,$Xi,$T2
541         pxor            $T3,$T1                 # Karatsuba pre-processing
542         movdqu          $T3,0x30($Htbl)         # save H^3
543         pxor            $Xi,$T2                 # Karatsuba pre-processing
544         movdqu          $Xi,0x40($Htbl)         # save H^4
545         palignr         \$8,$T1,$T2             # low part is H^3.lo^H^3.hi...
546         movdqu          $T2,0x50($Htbl)         # save Karatsuba "salt"
547 ___
548 }
549 $code.=<<___ if ($win64);
550         movaps  (%rsp),%xmm6
551         lea     0x18(%rsp),%rsp
552 .LSEH_end_gcm_init_clmul:
553 ___
554 $code.=<<___;
555         ret
556 .size   gcm_init_clmul,.-gcm_init_clmul
557 ___
558 }
559
560 { my ($Xip,$Htbl)=@_4args;
561
562 $code.=<<___;
563 .globl  gcm_gmult_clmul
564 .type   gcm_gmult_clmul,\@abi-omnipotent
565 .align  16
566 gcm_gmult_clmul:
567 .L_gmult_clmul:
568         movdqu          ($Xip),$Xi
569         movdqa          .Lbswap_mask(%rip),$T3
570         movdqu          ($Htbl),$Hkey
571         movdqu          0x20($Htbl),$T2
572         pshufb          $T3,$Xi
573 ___
574         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$T2);
575 $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
576         # experimental alternative. special thing about is that there
577         # no dependency between the two multiplications... 
578         mov             \$`0xE1<<1`,%eax
579         mov             \$0xA040608020C0E000,%r10       # ((7..0)·0xE0)&0xff
580         mov             \$0x07,%r11d
581         movq            %rax,$T1
582         movq            %r10,$T2
583         movq            %r11,$T3                # borrow $T3
584         pand            $Xi,$T3
585         pshufb          $T3,$T2                 # ($Xi&7)·0xE0
586         movq            %rax,$T3
587         pclmulqdq       \$0x00,$Xi,$T1          # Â·(0xE1<<1)
588         pxor            $Xi,$T2
589         pslldq          \$15,$T2
590         paddd           $T2,$T2                 # <<(64+56+1)
591         pxor            $T2,$Xi
592         pclmulqdq       \$0x01,$T3,$Xi
593         movdqa          .Lbswap_mask(%rip),$T3  # reload $T3
594         psrldq          \$1,$T1
595         pxor            $T1,$Xhi
596         pslldq          \$7,$Xi
597         pxor            $Xhi,$Xi
598 ___
599 $code.=<<___;
600         pshufb          $T3,$Xi
601         movdqu          $Xi,($Xip)
602         ret
603 .size   gcm_gmult_clmul,.-gcm_gmult_clmul
604 ___
605 }
606 \f
607 { my ($Xip,$Htbl,$inp,$len)=@_4args;
608   my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
609   my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
610
611 $code.=<<___;
612 .globl  gcm_ghash_clmul
613 .type   gcm_ghash_clmul,\@abi-omnipotent
614 .align  32
615 gcm_ghash_clmul:
616 .L_ghash_clmul:
617 ___
618 $code.=<<___ if ($win64);
619         lea     -0x88(%rsp),%rax
620 .LSEH_begin_gcm_ghash_clmul:
621         # I can't trust assembler to use specific encoding:-(
622         .byte   0x48,0x8d,0x60,0xe0             #lea    -0x20(%rax),%rsp
623         .byte   0x0f,0x29,0x70,0xe0             #movaps %xmm6,-0x20(%rax)
624         .byte   0x0f,0x29,0x78,0xf0             #movaps %xmm7,-0x10(%rax)
625         .byte   0x44,0x0f,0x29,0x00             #movaps %xmm8,0(%rax)
626         .byte   0x44,0x0f,0x29,0x48,0x10        #movaps %xmm9,0x10(%rax)
627         .byte   0x44,0x0f,0x29,0x50,0x20        #movaps %xmm10,0x20(%rax)
628         .byte   0x44,0x0f,0x29,0x58,0x30        #movaps %xmm11,0x30(%rax)
629         .byte   0x44,0x0f,0x29,0x60,0x40        #movaps %xmm12,0x40(%rax)
630         .byte   0x44,0x0f,0x29,0x68,0x50        #movaps %xmm13,0x50(%rax)
631         .byte   0x44,0x0f,0x29,0x70,0x60        #movaps %xmm14,0x60(%rax)
632         .byte   0x44,0x0f,0x29,0x78,0x70        #movaps %xmm15,0x70(%rax)
633 ___
634 $code.=<<___;
635         movdqa          .Lbswap_mask(%rip),$T3
636
637         movdqu          ($Xip),$Xi
638         movdqu          ($Htbl),$Hkey
639         movdqu          0x20($Htbl),$HK
640         pshufb          $T3,$Xi
641
642         sub             \$0x10,$len
643         jz              .Lodd_tail
644
645         movdqu          0x10($Htbl),$Hkey2
646 ___
647 if ($do4xaggr) {
648 my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
649
650 $code.=<<___;
651         mov             OPENSSL_ia32cap_P+4(%rip),%eax
652         cmp             \$0x30,$len
653         jb              .Lskip4x
654
655         and             \$`1<<26|1<<22`,%eax    # isolate MOVBE+XSAVE
656         cmp             \$`1<<22`,%eax          # check for MOVBE without XSAVE
657         je              .Lskip4x
658
659         sub             \$0x30,$len
660         mov             \$0xA040608020C0E000,%rax       # ((7..0)·0xE0)&0xff
661         movdqu          0x30($Htbl),$Hkey3
662         movdqu          0x40($Htbl),$Hkey4
663
664         #######
665         # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
666         #
667         movdqu          0x30($inp),$Xln
668          movdqu         0x20($inp),$Xl
669         pshufb          $T3,$Xln
670          pshufb         $T3,$Xl
671         movdqa          $Xln,$Xhn
672         pshufd          \$0b01001110,$Xln,$Xmn
673         pxor            $Xln,$Xmn
674         pclmulqdq       \$0x00,$Hkey,$Xln
675         pclmulqdq       \$0x11,$Hkey,$Xhn
676         pclmulqdq       \$0x00,$HK,$Xmn
677
678         movdqa          $Xl,$Xh
679         pshufd          \$0b01001110,$Xl,$Xm
680         pxor            $Xl,$Xm
681         pclmulqdq       \$0x00,$Hkey2,$Xl
682         pclmulqdq       \$0x11,$Hkey2,$Xh
683         pclmulqdq       \$0x10,$HK,$Xm
684         xorps           $Xl,$Xln
685         xorps           $Xh,$Xhn
686         movups          0x50($Htbl),$HK
687         xorps           $Xm,$Xmn
688
689         movdqu          0x10($inp),$Xl
690          movdqu         0($inp),$T1
691         pshufb          $T3,$Xl
692          pshufb         $T3,$T1
693         movdqa          $Xl,$Xh
694         pshufd          \$0b01001110,$Xl,$Xm
695          pxor           $T1,$Xi
696         pxor            $Xl,$Xm
697         pclmulqdq       \$0x00,$Hkey3,$Xl
698          movdqa         $Xi,$Xhi
699          pshufd         \$0b01001110,$Xi,$T1
700          pxor           $Xi,$T1
701         pclmulqdq       \$0x11,$Hkey3,$Xh
702         pclmulqdq       \$0x00,$HK,$Xm
703         xorps           $Xl,$Xln
704         xorps           $Xh,$Xhn
705
706         lea     0x40($inp),$inp
707         sub     \$0x40,$len
708         jc      .Ltail4x
709
710         jmp     .Lmod4_loop
711 .align  32
712 .Lmod4_loop:
713         pclmulqdq       \$0x00,$Hkey4,$Xi
714         xorps           $Xm,$Xmn
715          movdqu         0x30($inp),$Xl
716          pshufb         $T3,$Xl
717         pclmulqdq       \$0x11,$Hkey4,$Xhi
718         xorps           $Xln,$Xi
719          movdqu         0x20($inp),$Xln
720          movdqa         $Xl,$Xh
721         pclmulqdq       \$0x10,$HK,$T1
722          pshufd         \$0b01001110,$Xl,$Xm
723         xorps           $Xhn,$Xhi
724          pxor           $Xl,$Xm
725          pshufb         $T3,$Xln
726         movups          0x20($Htbl),$HK
727         xorps           $Xmn,$T1
728          pclmulqdq      \$0x00,$Hkey,$Xl
729          pshufd         \$0b01001110,$Xln,$Xmn
730
731         pxor            $Xi,$T1                 # aggregated Karatsuba post-processing
732          movdqa         $Xln,$Xhn
733         pxor            $Xhi,$T1                #
734          pxor           $Xln,$Xmn
735         movdqa          $T1,$T2                 #
736          pclmulqdq      \$0x11,$Hkey,$Xh
737         pslldq          \$8,$T1
738         psrldq          \$8,$T2                 #
739         pxor            $T1,$Xi
740         movdqa          .L7_mask(%rip),$T1
741         pxor            $T2,$Xhi                #
742         movq            %rax,$T2
743
744         pand            $Xi,$T1                 # 1st phase
745         pshufb          $T1,$T2                 #
746         pxor            $Xi,$T2                 #
747          pclmulqdq      \$0x00,$HK,$Xm
748         psllq           \$57,$T2                #
749         movdqa          $T2,$T1                 #
750         pslldq          \$8,$T2
751          pclmulqdq      \$0x00,$Hkey2,$Xln
752         psrldq          \$8,$T1                 #       
753         pxor            $T2,$Xi
754         pxor            $T1,$Xhi                #
755         movdqu          0($inp),$T1
756
757         movdqa          $Xi,$T2                 # 2nd phase
758         psrlq           \$1,$Xi
759          pclmulqdq      \$0x11,$Hkey2,$Xhn
760          xorps          $Xl,$Xln
761          movdqu         0x10($inp),$Xl
762          pshufb         $T3,$Xl
763          pclmulqdq      \$0x10,$HK,$Xmn
764          xorps          $Xh,$Xhn
765          movups         0x50($Htbl),$HK
766         pshufb          $T3,$T1
767         pxor            $T2,$Xhi                #
768         pxor            $Xi,$T2
769         psrlq           \$5,$Xi
770
771          movdqa         $Xl,$Xh
772          pxor           $Xm,$Xmn
773          pshufd         \$0b01001110,$Xl,$Xm
774         pxor            $T2,$Xi                 #
775         pxor            $T1,$Xhi
776          pxor           $Xl,$Xm
777          pclmulqdq      \$0x00,$Hkey3,$Xl
778         psrlq           \$1,$Xi                 #
779         pxor            $Xhi,$Xi                #
780         movdqa          $Xi,$Xhi
781          pclmulqdq      \$0x11,$Hkey3,$Xh
782          xorps          $Xl,$Xln
783         pshufd          \$0b01001110,$Xi,$T1
784         pxor            $Xi,$T1
785
786          pclmulqdq      \$0x00,$HK,$Xm
787          xorps          $Xh,$Xhn
788
789         lea     0x40($inp),$inp
790         sub     \$0x40,$len
791         jnc     .Lmod4_loop
792
793 .Ltail4x:
794         pclmulqdq       \$0x00,$Hkey4,$Xi
795         pclmulqdq       \$0x11,$Hkey4,$Xhi
796         pclmulqdq       \$0x10,$HK,$T1
797         xorps           $Xm,$Xmn
798         xorps           $Xln,$Xi
799         xorps           $Xhn,$Xhi
800         pxor            $Xi,$Xhi                # aggregated Karatsuba post-processing
801         pxor            $Xmn,$T1
802
803         pxor            $Xhi,$T1                #
804         pxor            $Xi,$Xhi
805
806         movdqa          $T1,$T2                 #
807         psrldq          \$8,$T1
808         pslldq          \$8,$T2                 #
809         pxor            $T1,$Xhi
810         pxor            $T2,$Xi                 #
811 ___
812         &reduction_alg9($Xhi,$Xi);
813 $code.=<<___;
814         add     \$0x40,$len
815         jz      .Ldone
816         movdqu  0x20($Htbl),$HK
817         sub     \$0x10,$len
818         jz      .Lodd_tail
819 .Lskip4x:
820 ___
821 }
822 $code.=<<___;
823         #######
824         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
825         #       [(H*Ii+1) + (H*Xi+1)] mod P =
826         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
827         #
828         movdqu          ($inp),$T1              # Ii
829         movdqu          16($inp),$Xln           # Ii+1
830         pshufb          $T3,$T1
831         pshufb          $T3,$Xln
832         pxor            $T1,$Xi                 # Ii+Xi
833
834         movdqa          $Xln,$Xhn
835         pshufd          \$0b01001110,$Xln,$Xmn
836         pxor            $Xln,$Xmn
837         pclmulqdq       \$0x00,$Hkey,$Xln
838         pclmulqdq       \$0x11,$Hkey,$Xhn
839         pclmulqdq       \$0x00,$HK,$Xmn
840
841         lea             32($inp),$inp           # i+=2
842         nop
843         sub             \$0x20,$len
844         jbe             .Leven_tail
845         nop
846         jmp             .Lmod_loop
847
848 .align  32
849 .Lmod_loop:
850         movdqa          $Xi,$Xhi
851         movdqa          $Xmn,$T1
852         pshufd          \$0b01001110,$Xi,$Xmn   #
853         pxor            $Xi,$Xmn                #
854
855         pclmulqdq       \$0x00,$Hkey2,$Xi
856         pclmulqdq       \$0x11,$Hkey2,$Xhi
857         pclmulqdq       \$0x10,$HK,$Xmn
858
859         pxor            $Xln,$Xi                # (H*Ii+1) + H^2*(Ii+Xi)
860         pxor            $Xhn,$Xhi
861           movdqu        ($inp),$T2              # Ii
862         pxor            $Xi,$T1                 # aggregated Karatsuba post-processing
863           pshufb        $T3,$T2
864           movdqu        16($inp),$Xln           # Ii+1
865
866         pxor            $Xhi,$T1
867           pxor          $T2,$Xhi                # "Ii+Xi", consume early
868         pxor            $T1,$Xmn
869          pshufb         $T3,$Xln
870         movdqa          $Xmn,$T1                #
871         psrldq          \$8,$T1
872         pslldq          \$8,$Xmn                #
873         pxor            $T1,$Xhi
874         pxor            $Xmn,$Xi                #
875
876         movdqa          $Xln,$Xhn               #
877
878           movdqa        $Xi,$T2                 # 1st phase
879           movdqa        $Xi,$T1
880           psllq         \$5,$Xi
881           pxor          $Xi,$T1                 #
882         pclmulqdq       \$0x00,$Hkey,$Xln       #######
883           psllq         \$1,$Xi
884           pxor          $T1,$Xi                 #
885           psllq         \$57,$Xi                #
886           movdqa        $Xi,$T1                 #
887           pslldq        \$8,$Xi
888           psrldq        \$8,$T1                 #       
889           pxor          $T2,$Xi
890         pshufd          \$0b01001110,$Xhn,$Xmn
891           pxor          $T1,$Xhi                #
892         pxor            $Xhn,$Xmn               #
893
894           movdqa        $Xi,$T2                 # 2nd phase
895           psrlq         \$1,$Xi
896         pclmulqdq       \$0x11,$Hkey,$Xhn       #######
897           pxor          $T2,$Xhi                #
898           pxor          $Xi,$T2
899           psrlq         \$5,$Xi
900           pxor          $T2,$Xi                 #
901         lea             32($inp),$inp
902           psrlq         \$1,$Xi                 #
903         pclmulqdq       \$0x00,$HK,$Xmn         #######
904           pxor          $Xhi,$Xi                #
905
906         sub             \$0x20,$len
907         ja              .Lmod_loop
908
909 .Leven_tail:
910          movdqa         $Xi,$Xhi
911          movdqa         $Xmn,$T1
912          pshufd         \$0b01001110,$Xi,$Xmn   #
913          pxor           $Xi,$Xmn                #
914
915         pclmulqdq       \$0x00,$Hkey2,$Xi
916         pclmulqdq       \$0x11,$Hkey2,$Xhi
917         pclmulqdq       \$0x10,$HK,$Xmn
918
919         pxor            $Xln,$Xi                # (H*Ii+1) + H^2*(Ii+Xi)
920         pxor            $Xhn,$Xhi
921         pxor            $Xi,$T1
922         pxor            $Xhi,$T1
923         pxor            $T1,$Xmn
924         movdqa          $Xmn,$T1                #
925         psrldq          \$8,$T1
926         pslldq          \$8,$Xmn                #
927         pxor            $T1,$Xhi
928         pxor            $Xmn,$Xi                #
929 ___
930         &reduction_alg9 ($Xhi,$Xi);
931 $code.=<<___;
932         test            $len,$len
933         jnz             .Ldone
934
935 .Lodd_tail:
936         movdqu          ($inp),$T1              # Ii
937         pshufb          $T3,$T1
938         pxor            $T1,$Xi                 # Ii+Xi
939 ___
940         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);   # H*(Ii+Xi)
941         &reduction_alg9 ($Xhi,$Xi);
942 $code.=<<___;
943 .Ldone:
944         pshufb          $T3,$Xi
945         movdqu          $Xi,($Xip)
946 ___
947 $code.=<<___ if ($win64);
948         movaps  (%rsp),%xmm6
949         movaps  0x10(%rsp),%xmm7
950         movaps  0x20(%rsp),%xmm8
951         movaps  0x30(%rsp),%xmm9
952         movaps  0x40(%rsp),%xmm10
953         movaps  0x50(%rsp),%xmm11
954         movaps  0x60(%rsp),%xmm12
955         movaps  0x70(%rsp),%xmm13
956         movaps  0x80(%rsp),%xmm14
957         movaps  0x90(%rsp),%xmm15
958         lea     0xa8(%rsp),%rsp
959 .LSEH_end_gcm_ghash_clmul:
960 ___
961 $code.=<<___;
962         ret
963 .size   gcm_ghash_clmul,.-gcm_ghash_clmul
964 ___
965 }
966 \f
967 $code.=<<___;
968 .globl  gcm_init_avx
969 .type   gcm_init_avx,\@abi-omnipotent
970 .align  32
971 gcm_init_avx:
972 ___
973 if ($avx) {
974 my ($Htbl,$Xip)=@_4args;
975 my $HK="%xmm6";
976
977 $code.=<<___ if ($win64);
978 .LSEH_begin_gcm_init_avx:
979         # I can't trust assembler to use specific encoding:-(
980         .byte   0x48,0x83,0xec,0x18             #sub    $0x18,%rsp
981         .byte   0x0f,0x29,0x34,0x24             #movaps %xmm6,(%rsp)
982 ___
983 $code.=<<___;
984         vzeroupper
985
986         vmovdqu         ($Xip),$Hkey
987         vpshufd         \$0b01001110,$Hkey,$Hkey        # dword swap
988
989         # <<1 twist
990         vpshufd         \$0b11111111,$Hkey,$T2  # broadcast uppermost dword
991         vpsrlq          \$63,$Hkey,$T1
992         vpsllq          \$1,$Hkey,$Hkey
993         vpxor           $T3,$T3,$T3             #
994         vpcmpgtd        $T2,$T3,$T3             # broadcast carry bit
995         vpslldq         \$8,$T1,$T1
996         vpor            $T1,$Hkey,$Hkey         # H<<=1
997
998         # magic reduction
999         vpand           .L0x1c2_polynomial(%rip),$T3,$T3
1000         vpxor           $T3,$Hkey,$Hkey         # if(carry) H^=0x1c2_polynomial
1001
1002         vpunpckhqdq     $Hkey,$Hkey,$HK
1003         vmovdqa         $Hkey,$Xi
1004         vpxor           $Hkey,$HK,$HK
1005         mov             \$4,%r10                # up to H^8
1006         jmp             .Linit_start_avx
1007 ___
1008
1009 sub clmul64x64_avx {
1010 my ($Xhi,$Xi,$Hkey,$HK)=@_;
1011
1012 if (!defined($HK)) {    $HK = $T2;
1013 $code.=<<___;
1014         vpunpckhqdq     $Xi,$Xi,$T1
1015         vpunpckhqdq     $Hkey,$Hkey,$T2
1016         vpxor           $Xi,$T1,$T1             #
1017         vpxor           $Hkey,$T2,$T2
1018 ___
1019 } else {
1020 $code.=<<___;
1021         vpunpckhqdq     $Xi,$Xi,$T1
1022         vpxor           $Xi,$T1,$T1             #
1023 ___
1024 }
1025 $code.=<<___;
1026         vpclmulqdq      \$0x11,$Hkey,$Xi,$Xhi   #######
1027         vpclmulqdq      \$0x00,$Hkey,$Xi,$Xi    #######
1028         vpclmulqdq      \$0x00,$HK,$T1,$T1      #######
1029         vpxor           $Xi,$Xhi,$T2            #
1030         vpxor           $T2,$T1,$T1             #
1031
1032         vpslldq         \$8,$T1,$T2             #
1033         vpsrldq         \$8,$T1,$T1
1034         vpxor           $T2,$Xi,$Xi             #
1035         vpxor           $T1,$Xhi,$Xhi
1036 ___
1037 }
1038
1039 sub reduction_avx {
1040 my ($Xhi,$Xi) = @_;
1041
1042 $code.=<<___;
1043         vpsllq          \$57,$Xi,$T1            # 1st phase
1044         vpsllq          \$62,$Xi,$T2
1045         vpxor           $T1,$T2,$T2             #
1046         vpsllq          \$63,$Xi,$T1
1047         vpxor           $T1,$T2,$T2             #
1048         vpslldq         \$8,$T2,$T1             #
1049         vpsrldq         \$8,$T2,$T2
1050         vpxor           $T1,$Xi,$Xi             #
1051         vpxor           $T2,$Xhi,$Xhi
1052
1053         vpsrlq          \$1,$Xi,$T2             # 2nd phase
1054         vpxor           $Xi,$Xhi,$Xhi
1055         vpxor           $T2,$Xi,$Xi             #
1056         vpsrlq          \$5,$T2,$T2
1057         vpxor           $T2,$Xi,$Xi             #
1058         vpsrlq          \$1,$Xi,$Xi             #
1059         vpxor           $Xhi,$Xi,$Xi            #
1060 ___
1061 }
1062
1063 $code.=<<___;
1064 .align  32
1065 .Linit_loop_avx:
1066         vpalignr        \$8,$T1,$T2,$T3         # low part is H.lo^H.hi...
1067         vmovdqu         $T3,-0x10($Htbl)        # save Karatsuba "salt"
1068 ___
1069         &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK);   # calculate H^3,5,7
1070         &reduction_avx  ($Xhi,$Xi);
1071 $code.=<<___;
1072 .Linit_start_avx:
1073         vmovdqa         $Xi,$T3
1074 ___
1075         &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK);   # calculate H^2,4,6,8
1076         &reduction_avx  ($Xhi,$Xi);
1077 $code.=<<___;
1078         vpshufd         \$0b01001110,$T3,$T1
1079         vpshufd         \$0b01001110,$Xi,$T2
1080         vpxor           $T3,$T1,$T1             # Karatsuba pre-processing
1081         vmovdqu         $T3,0x00($Htbl)         # save H^1,3,5,7
1082         vpxor           $Xi,$T2,$T2             # Karatsuba pre-processing
1083         vmovdqu         $Xi,0x10($Htbl)         # save H^2,4,6,8
1084         lea             0x30($Htbl),$Htbl
1085         sub             \$1,%r10
1086         jnz             .Linit_loop_avx
1087
1088         vpalignr        \$8,$T2,$T1,$T3         # last "salt" is flipped
1089         vmovdqu         $T3,-0x10($Htbl)
1090
1091         vzeroupper
1092 ___
1093 $code.=<<___ if ($win64);
1094         movaps  (%rsp),%xmm6
1095         lea     0x18(%rsp),%rsp
1096 .LSEH_end_gcm_init_avx:
1097 ___
1098 $code.=<<___;
1099         ret
1100 .size   gcm_init_avx,.-gcm_init_avx
1101 ___
1102 } else {
1103 $code.=<<___;
1104         jmp     .L_init_clmul
1105 .size   gcm_init_avx,.-gcm_init_avx
1106 ___
1107 }
1108
1109 $code.=<<___;
1110 .globl  gcm_gmult_avx
1111 .type   gcm_gmult_avx,\@abi-omnipotent
1112 .align  32
1113 gcm_gmult_avx:
1114         jmp     .L_gmult_clmul
1115 .size   gcm_gmult_avx,.-gcm_gmult_avx
1116 ___
1117 \f
1118 $code.=<<___;
1119 .globl  gcm_ghash_avx
1120 .type   gcm_ghash_avx,\@abi-omnipotent
1121 .align  32
1122 gcm_ghash_avx:
1123 ___
1124 if ($avx) {
1125 my ($Xip,$Htbl,$inp,$len)=@_4args;
1126 my ($Xlo,$Xhi,$Xmi,
1127     $Zlo,$Zhi,$Zmi,
1128     $Hkey,$HK,$T1,$T2,
1129     $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
1130
1131 $code.=<<___ if ($win64);
1132         lea     -0x88(%rsp),%rax
1133 .LSEH_begin_gcm_ghash_avx:
1134         # I can't trust assembler to use specific encoding:-(
1135         .byte   0x48,0x8d,0x60,0xe0             #lea    -0x20(%rax),%rsp
1136         .byte   0x0f,0x29,0x70,0xe0             #movaps %xmm6,-0x20(%rax)
1137         .byte   0x0f,0x29,0x78,0xf0             #movaps %xmm7,-0x10(%rax)
1138         .byte   0x44,0x0f,0x29,0x00             #movaps %xmm8,0(%rax)
1139         .byte   0x44,0x0f,0x29,0x48,0x10        #movaps %xmm9,0x10(%rax)
1140         .byte   0x44,0x0f,0x29,0x50,0x20        #movaps %xmm10,0x20(%rax)
1141         .byte   0x44,0x0f,0x29,0x58,0x30        #movaps %xmm11,0x30(%rax)
1142         .byte   0x44,0x0f,0x29,0x60,0x40        #movaps %xmm12,0x40(%rax)
1143         .byte   0x44,0x0f,0x29,0x68,0x50        #movaps %xmm13,0x50(%rax)
1144         .byte   0x44,0x0f,0x29,0x70,0x60        #movaps %xmm14,0x60(%rax)
1145         .byte   0x44,0x0f,0x29,0x78,0x70        #movaps %xmm15,0x70(%rax)
1146 ___
1147 $code.=<<___;
1148         vzeroupper
1149
1150         vmovdqu         ($Xip),$Xi              # load $Xi
1151         lea             .L0x1c2_polynomial(%rip),%r10
1152         lea             0x40($Htbl),$Htbl       # size optimization
1153         vmovdqu         .Lbswap_mask(%rip),$bswap
1154         vpshufb         $bswap,$Xi,$Xi
1155         cmp             \$0x80,$len
1156         jb              .Lshort_avx
1157         sub             \$0x80,$len
1158
1159         vmovdqu         0x70($inp),$Ii          # I[7]
1160         vmovdqu         0x00-0x40($Htbl),$Hkey  # $Hkey^1
1161         vpshufb         $bswap,$Ii,$Ii
1162         vmovdqu         0x20-0x40($Htbl),$HK
1163
1164         vpunpckhqdq     $Ii,$Ii,$T2
1165          vmovdqu        0x60($inp),$Ij          # I[6]
1166         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1167         vpxor           $Ii,$T2,$T2
1168          vpshufb        $bswap,$Ij,$Ij
1169         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1170          vmovdqu        0x10-0x40($Htbl),$Hkey  # $Hkey^2
1171          vpunpckhqdq    $Ij,$Ij,$T1
1172          vmovdqu        0x50($inp),$Ii          # I[5]
1173         vpclmulqdq      \$0x00,$HK,$T2,$Xmi
1174          vpxor          $Ij,$T1,$T1
1175
1176          vpshufb        $bswap,$Ii,$Ii
1177         vpclmulqdq      \$0x00,$Hkey,$Ij,$Zlo
1178          vpunpckhqdq    $Ii,$Ii,$T2
1179         vpclmulqdq      \$0x11,$Hkey,$Ij,$Zhi
1180          vmovdqu        0x30-0x40($Htbl),$Hkey  # $Hkey^3
1181          vpxor          $Ii,$T2,$T2
1182          vmovdqu        0x40($inp),$Ij          # I[4]
1183         vpclmulqdq      \$0x10,$HK,$T1,$Zmi
1184          vmovdqu        0x50-0x40($Htbl),$HK
1185
1186          vpshufb        $bswap,$Ij,$Ij
1187         vpxor           $Xlo,$Zlo,$Zlo
1188         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1189         vpxor           $Xhi,$Zhi,$Zhi
1190          vpunpckhqdq    $Ij,$Ij,$T1
1191         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1192          vmovdqu        0x40-0x40($Htbl),$Hkey  # $Hkey^4
1193         vpxor           $Xmi,$Zmi,$Zmi
1194         vpclmulqdq      \$0x00,$HK,$T2,$Xmi
1195          vpxor          $Ij,$T1,$T1
1196
1197          vmovdqu        0x30($inp),$Ii          # I[3]
1198         vpxor           $Zlo,$Xlo,$Xlo
1199         vpclmulqdq      \$0x00,$Hkey,$Ij,$Zlo
1200         vpxor           $Zhi,$Xhi,$Xhi
1201          vpshufb        $bswap,$Ii,$Ii
1202         vpclmulqdq      \$0x11,$Hkey,$Ij,$Zhi
1203          vmovdqu        0x60-0x40($Htbl),$Hkey  # $Hkey^5
1204         vpxor           $Zmi,$Xmi,$Xmi
1205          vpunpckhqdq    $Ii,$Ii,$T2
1206         vpclmulqdq      \$0x10,$HK,$T1,$Zmi
1207          vmovdqu        0x80-0x40($Htbl),$HK
1208          vpxor          $Ii,$T2,$T2
1209
1210          vmovdqu        0x20($inp),$Ij          # I[2]
1211         vpxor           $Xlo,$Zlo,$Zlo
1212         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1213         vpxor           $Xhi,$Zhi,$Zhi
1214          vpshufb        $bswap,$Ij,$Ij
1215         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1216          vmovdqu        0x70-0x40($Htbl),$Hkey  # $Hkey^6
1217         vpxor           $Xmi,$Zmi,$Zmi
1218          vpunpckhqdq    $Ij,$Ij,$T1
1219         vpclmulqdq      \$0x00,$HK,$T2,$Xmi
1220          vpxor          $Ij,$T1,$T1
1221
1222          vmovdqu        0x10($inp),$Ii          # I[1]
1223         vpxor           $Zlo,$Xlo,$Xlo
1224         vpclmulqdq      \$0x00,$Hkey,$Ij,$Zlo
1225         vpxor           $Zhi,$Xhi,$Xhi
1226          vpshufb        $bswap,$Ii,$Ii
1227         vpclmulqdq      \$0x11,$Hkey,$Ij,$Zhi
1228          vmovdqu        0x90-0x40($Htbl),$Hkey  # $Hkey^7
1229         vpxor           $Zmi,$Xmi,$Xmi
1230          vpunpckhqdq    $Ii,$Ii,$T2
1231         vpclmulqdq      \$0x10,$HK,$T1,$Zmi
1232          vmovdqu        0xb0-0x40($Htbl),$HK
1233          vpxor          $Ii,$T2,$T2
1234
1235          vmovdqu        ($inp),$Ij              # I[0]
1236         vpxor           $Xlo,$Zlo,$Zlo
1237         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1238         vpxor           $Xhi,$Zhi,$Zhi
1239          vpshufb        $bswap,$Ij,$Ij
1240         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1241          vmovdqu        0xa0-0x40($Htbl),$Hkey  # $Hkey^8
1242         vpxor           $Xmi,$Zmi,$Zmi
1243         vpclmulqdq      \$0x10,$HK,$T2,$Xmi
1244
1245         lea             0x80($inp),$inp
1246         cmp             \$0x80,$len
1247         jb              .Ltail_avx
1248
1249         vpxor           $Xi,$Ij,$Ij             # accumulate $Xi
1250         sub             \$0x80,$len
1251         jmp             .Loop8x_avx
1252
1253 .align  32
1254 .Loop8x_avx:
1255         vpunpckhqdq     $Ij,$Ij,$T1
1256          vmovdqu        0x70($inp),$Ii          # I[7]
1257         vpxor           $Xlo,$Zlo,$Zlo
1258         vpxor           $Ij,$T1,$T1
1259         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xi
1260          vpshufb        $bswap,$Ii,$Ii
1261         vpxor           $Xhi,$Zhi,$Zhi
1262         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xo
1263          vmovdqu        0x00-0x40($Htbl),$Hkey  # $Hkey^1
1264          vpunpckhqdq    $Ii,$Ii,$T2
1265         vpxor           $Xmi,$Zmi,$Zmi
1266         vpclmulqdq      \$0x00,$HK,$T1,$Tred
1267          vmovdqu        0x20-0x40($Htbl),$HK
1268          vpxor          $Ii,$T2,$T2
1269
1270           vmovdqu       0x60($inp),$Ij          # I[6]
1271          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1272         vpxor           $Zlo,$Xi,$Xi            # collect result
1273           vpshufb       $bswap,$Ij,$Ij
1274          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1275         vxorps          $Zhi,$Xo,$Xo
1276           vmovdqu       0x10-0x40($Htbl),$Hkey  # $Hkey^2
1277          vpunpckhqdq    $Ij,$Ij,$T1
1278          vpclmulqdq     \$0x00,$HK,  $T2,$Xmi
1279         vpxor           $Zmi,$Tred,$Tred
1280          vxorps         $Ij,$T1,$T1
1281
1282           vmovdqu       0x50($inp),$Ii          # I[5]
1283         vpxor           $Xi,$Tred,$Tred         # aggregated Karatsuba post-processing
1284          vpclmulqdq     \$0x00,$Hkey,$Ij,$Zlo
1285         vpxor           $Xo,$Tred,$Tred
1286         vpslldq         \$8,$Tred,$T2
1287          vpxor          $Xlo,$Zlo,$Zlo
1288          vpclmulqdq     \$0x11,$Hkey,$Ij,$Zhi
1289         vpsrldq         \$8,$Tred,$Tred
1290         vpxor           $T2, $Xi, $Xi
1291           vmovdqu       0x30-0x40($Htbl),$Hkey  # $Hkey^3
1292           vpshufb       $bswap,$Ii,$Ii
1293         vxorps          $Tred,$Xo, $Xo
1294          vpxor          $Xhi,$Zhi,$Zhi
1295          vpunpckhqdq    $Ii,$Ii,$T2
1296          vpclmulqdq     \$0x10,$HK,  $T1,$Zmi
1297           vmovdqu       0x50-0x40($Htbl),$HK
1298          vpxor          $Ii,$T2,$T2
1299          vpxor          $Xmi,$Zmi,$Zmi
1300
1301           vmovdqu       0x40($inp),$Ij          # I[4]
1302         vpalignr        \$8,$Xi,$Xi,$Tred       # 1st phase
1303          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1304           vpshufb       $bswap,$Ij,$Ij
1305          vpxor          $Zlo,$Xlo,$Xlo
1306          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1307           vmovdqu       0x40-0x40($Htbl),$Hkey  # $Hkey^4
1308          vpunpckhqdq    $Ij,$Ij,$T1
1309          vpxor          $Zhi,$Xhi,$Xhi
1310          vpclmulqdq     \$0x00,$HK,  $T2,$Xmi
1311          vxorps         $Ij,$T1,$T1
1312          vpxor          $Zmi,$Xmi,$Xmi
1313
1314           vmovdqu       0x30($inp),$Ii          # I[3]
1315         vpclmulqdq      \$0x10,(%r10),$Xi,$Xi
1316          vpclmulqdq     \$0x00,$Hkey,$Ij,$Zlo
1317           vpshufb       $bswap,$Ii,$Ii
1318          vpxor          $Xlo,$Zlo,$Zlo
1319          vpclmulqdq     \$0x11,$Hkey,$Ij,$Zhi
1320           vmovdqu       0x60-0x40($Htbl),$Hkey  # $Hkey^5
1321          vpunpckhqdq    $Ii,$Ii,$T2
1322          vpxor          $Xhi,$Zhi,$Zhi
1323          vpclmulqdq     \$0x10,$HK,  $T1,$Zmi
1324           vmovdqu       0x80-0x40($Htbl),$HK
1325          vpxor          $Ii,$T2,$T2
1326          vpxor          $Xmi,$Zmi,$Zmi
1327
1328           vmovdqu       0x20($inp),$Ij          # I[2]
1329          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1330           vpshufb       $bswap,$Ij,$Ij
1331          vpxor          $Zlo,$Xlo,$Xlo
1332          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1333           vmovdqu       0x70-0x40($Htbl),$Hkey  # $Hkey^6
1334          vpunpckhqdq    $Ij,$Ij,$T1
1335          vpxor          $Zhi,$Xhi,$Xhi
1336          vpclmulqdq     \$0x00,$HK,  $T2,$Xmi
1337          vpxor          $Ij,$T1,$T1
1338          vpxor          $Zmi,$Xmi,$Xmi
1339         vxorps          $Tred,$Xi,$Xi
1340
1341           vmovdqu       0x10($inp),$Ii          # I[1]
1342         vpalignr        \$8,$Xi,$Xi,$Tred       # 2nd phase
1343          vpclmulqdq     \$0x00,$Hkey,$Ij,$Zlo
1344           vpshufb       $bswap,$Ii,$Ii
1345          vpxor          $Xlo,$Zlo,$Zlo
1346          vpclmulqdq     \$0x11,$Hkey,$Ij,$Zhi
1347           vmovdqu       0x90-0x40($Htbl),$Hkey  # $Hkey^7
1348         vpclmulqdq      \$0x10,(%r10),$Xi,$Xi
1349         vxorps          $Xo,$Tred,$Tred
1350          vpunpckhqdq    $Ii,$Ii,$T2
1351          vpxor          $Xhi,$Zhi,$Zhi
1352          vpclmulqdq     \$0x10,$HK,  $T1,$Zmi
1353           vmovdqu       0xb0-0x40($Htbl),$HK
1354          vpxor          $Ii,$T2,$T2
1355          vpxor          $Xmi,$Zmi,$Zmi
1356
1357           vmovdqu       ($inp),$Ij              # I[0]
1358          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1359           vpshufb       $bswap,$Ij,$Ij
1360          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1361           vmovdqu       0xa0-0x40($Htbl),$Hkey  # $Hkey^8
1362         vpxor           $Tred,$Ij,$Ij
1363          vpclmulqdq     \$0x10,$HK,  $T2,$Xmi
1364         vpxor           $Xi,$Ij,$Ij             # accumulate $Xi
1365
1366         lea             0x80($inp),$inp
1367         sub             \$0x80,$len
1368         jnc             .Loop8x_avx
1369
1370         add             \$0x80,$len
1371         jmp             .Ltail_no_xor_avx
1372
1373 .align  32
1374 .Lshort_avx:
1375         vmovdqu         -0x10($inp,$len),$Ii    # very last word
1376         lea             ($inp,$len),$inp
1377         vmovdqu         0x00-0x40($Htbl),$Hkey  # $Hkey^1
1378         vmovdqu         0x20-0x40($Htbl),$HK
1379         vpshufb         $bswap,$Ii,$Ij
1380
1381         vmovdqa         $Xlo,$Zlo               # subtle way to zero $Zlo,
1382         vmovdqa         $Xhi,$Zhi               # $Zhi and
1383         vmovdqa         $Xmi,$Zmi               # $Zmi
1384         sub             \$0x10,$len
1385         jz              .Ltail_avx
1386
1387         vpunpckhqdq     $Ij,$Ij,$T1
1388         vpxor           $Xlo,$Zlo,$Zlo
1389         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1390         vpxor           $Ij,$T1,$T1
1391          vmovdqu        -0x20($inp),$Ii
1392         vpxor           $Xhi,$Zhi,$Zhi
1393         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1394         vmovdqu         0x10-0x40($Htbl),$Hkey  # $Hkey^2
1395          vpshufb        $bswap,$Ii,$Ij
1396         vpxor           $Xmi,$Zmi,$Zmi
1397         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1398         vpsrldq         \$8,$HK,$HK
1399         sub             \$0x10,$len
1400         jz              .Ltail_avx
1401
1402         vpunpckhqdq     $Ij,$Ij,$T1
1403         vpxor           $Xlo,$Zlo,$Zlo
1404         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1405         vpxor           $Ij,$T1,$T1
1406          vmovdqu        -0x30($inp),$Ii
1407         vpxor           $Xhi,$Zhi,$Zhi
1408         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1409         vmovdqu         0x30-0x40($Htbl),$Hkey  # $Hkey^3
1410          vpshufb        $bswap,$Ii,$Ij
1411         vpxor           $Xmi,$Zmi,$Zmi
1412         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1413         vmovdqu         0x50-0x40($Htbl),$HK
1414         sub             \$0x10,$len
1415         jz              .Ltail_avx
1416
1417         vpunpckhqdq     $Ij,$Ij,$T1
1418         vpxor           $Xlo,$Zlo,$Zlo
1419         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1420         vpxor           $Ij,$T1,$T1
1421          vmovdqu        -0x40($inp),$Ii
1422         vpxor           $Xhi,$Zhi,$Zhi
1423         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1424         vmovdqu         0x40-0x40($Htbl),$Hkey  # $Hkey^4
1425          vpshufb        $bswap,$Ii,$Ij
1426         vpxor           $Xmi,$Zmi,$Zmi
1427         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1428         vpsrldq         \$8,$HK,$HK
1429         sub             \$0x10,$len
1430         jz              .Ltail_avx
1431
1432         vpunpckhqdq     $Ij,$Ij,$T1
1433         vpxor           $Xlo,$Zlo,$Zlo
1434         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1435         vpxor           $Ij,$T1,$T1
1436          vmovdqu        -0x50($inp),$Ii
1437         vpxor           $Xhi,$Zhi,$Zhi
1438         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1439         vmovdqu         0x60-0x40($Htbl),$Hkey  # $Hkey^5
1440          vpshufb        $bswap,$Ii,$Ij
1441         vpxor           $Xmi,$Zmi,$Zmi
1442         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1443         vmovdqu         0x80-0x40($Htbl),$HK
1444         sub             \$0x10,$len
1445         jz              .Ltail_avx
1446
1447         vpunpckhqdq     $Ij,$Ij,$T1
1448         vpxor           $Xlo,$Zlo,$Zlo
1449         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1450         vpxor           $Ij,$T1,$T1
1451          vmovdqu        -0x60($inp),$Ii
1452         vpxor           $Xhi,$Zhi,$Zhi
1453         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1454         vmovdqu         0x70-0x40($Htbl),$Hkey  # $Hkey^6
1455          vpshufb        $bswap,$Ii,$Ij
1456         vpxor           $Xmi,$Zmi,$Zmi
1457         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1458         vpsrldq         \$8,$HK,$HK
1459         sub             \$0x10,$len
1460         jz              .Ltail_avx
1461
1462         vpunpckhqdq     $Ij,$Ij,$T1
1463         vpxor           $Xlo,$Zlo,$Zlo
1464         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1465         vpxor           $Ij,$T1,$T1
1466          vmovdqu        -0x70($inp),$Ii
1467         vpxor           $Xhi,$Zhi,$Zhi
1468         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1469         vmovdqu         0x90-0x40($Htbl),$Hkey  # $Hkey^7
1470          vpshufb        $bswap,$Ii,$Ij
1471         vpxor           $Xmi,$Zmi,$Zmi
1472         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1473         vmovq           0xb8-0x40($Htbl),$HK
1474         sub             \$0x10,$len
1475         jmp             .Ltail_avx
1476
1477 .align  32
1478 .Ltail_avx:
1479         vpxor           $Xi,$Ij,$Ij             # accumulate $Xi
1480 .Ltail_no_xor_avx:
1481         vpunpckhqdq     $Ij,$Ij,$T1
1482         vpxor           $Xlo,$Zlo,$Zlo
1483         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1484         vpxor           $Ij,$T1,$T1
1485         vpxor           $Xhi,$Zhi,$Zhi
1486         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1487         vpxor           $Xmi,$Zmi,$Zmi
1488         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1489
1490         vmovdqu         (%r10),$Tred
1491
1492         vpxor           $Xlo,$Zlo,$Xi
1493         vpxor           $Xhi,$Zhi,$Xo
1494         vpxor           $Xmi,$Zmi,$Zmi
1495
1496         vpxor           $Xi, $Zmi,$Zmi          # aggregated Karatsuba post-processing
1497         vpxor           $Xo, $Zmi,$Zmi
1498         vpslldq         \$8, $Zmi,$T2
1499         vpsrldq         \$8, $Zmi,$Zmi
1500         vpxor           $T2, $Xi, $Xi
1501         vpxor           $Zmi,$Xo, $Xo
1502
1503         vpclmulqdq      \$0x10,$Tred,$Xi,$T2    # 1st phase
1504         vpalignr        \$8,$Xi,$Xi,$Xi
1505         vpxor           $T2,$Xi,$Xi
1506
1507         vpclmulqdq      \$0x10,$Tred,$Xi,$T2    # 2nd phase
1508         vpalignr        \$8,$Xi,$Xi,$Xi
1509         vpxor           $Xo,$Xi,$Xi
1510         vpxor           $T2,$Xi,$Xi
1511
1512         cmp             \$0,$len
1513         jne             .Lshort_avx
1514
1515         vpshufb         $bswap,$Xi,$Xi
1516         vmovdqu         $Xi,($Xip)
1517         vzeroupper
1518 ___
1519 $code.=<<___ if ($win64);
1520         movaps  (%rsp),%xmm6
1521         movaps  0x10(%rsp),%xmm7
1522         movaps  0x20(%rsp),%xmm8
1523         movaps  0x30(%rsp),%xmm9
1524         movaps  0x40(%rsp),%xmm10
1525         movaps  0x50(%rsp),%xmm11
1526         movaps  0x60(%rsp),%xmm12
1527         movaps  0x70(%rsp),%xmm13
1528         movaps  0x80(%rsp),%xmm14
1529         movaps  0x90(%rsp),%xmm15
1530         lea     0xa8(%rsp),%rsp
1531 .LSEH_end_gcm_ghash_avx:
1532 ___
1533 $code.=<<___;
1534         ret
1535 .size   gcm_ghash_avx,.-gcm_ghash_avx
1536 ___
1537 } else {
1538 $code.=<<___;
1539         jmp     .L_ghash_clmul
1540 .size   gcm_ghash_avx,.-gcm_ghash_avx
1541 ___
1542 }
1543 \f
1544 $code.=<<___;
1545 .align  64
1546 .Lbswap_mask:
1547         .byte   15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
1548 .L0x1c2_polynomial:
1549         .byte   1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
1550 .L7_mask:
1551         .long   7,0,7,0
1552 .L7_mask_poly:
1553         .long   7,0,`0xE1<<1`,0
1554 .align  64
1555 .type   .Lrem_4bit,\@object
1556 .Lrem_4bit:
1557         .long   0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
1558         .long   0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
1559         .long   0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
1560         .long   0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
1561 .type   .Lrem_8bit,\@object
1562 .Lrem_8bit:
1563         .value  0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
1564         .value  0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
1565         .value  0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
1566         .value  0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
1567         .value  0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
1568         .value  0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
1569         .value  0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
1570         .value  0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
1571         .value  0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
1572         .value  0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
1573         .value  0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
1574         .value  0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
1575         .value  0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
1576         .value  0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
1577         .value  0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
1578         .value  0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
1579         .value  0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
1580         .value  0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
1581         .value  0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
1582         .value  0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
1583         .value  0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
1584         .value  0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
1585         .value  0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
1586         .value  0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
1587         .value  0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
1588         .value  0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
1589         .value  0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
1590         .value  0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
1591         .value  0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
1592         .value  0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
1593         .value  0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
1594         .value  0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
1595
1596 .asciz  "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1597 .align  64
1598 ___
1599 \f
1600 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1601 #               CONTEXT *context,DISPATCHER_CONTEXT *disp)
1602 if ($win64) {
1603 $rec="%rcx";
1604 $frame="%rdx";
1605 $context="%r8";
1606 $disp="%r9";
1607
1608 $code.=<<___;
1609 .extern __imp_RtlVirtualUnwind
1610 .type   se_handler,\@abi-omnipotent
1611 .align  16
1612 se_handler:
1613         push    %rsi
1614         push    %rdi
1615         push    %rbx
1616         push    %rbp
1617         push    %r12
1618         push    %r13
1619         push    %r14
1620         push    %r15
1621         pushfq
1622         sub     \$64,%rsp
1623
1624         mov     120($context),%rax      # pull context->Rax
1625         mov     248($context),%rbx      # pull context->Rip
1626
1627         mov     8($disp),%rsi           # disp->ImageBase
1628         mov     56($disp),%r11          # disp->HandlerData
1629
1630         mov     0(%r11),%r10d           # HandlerData[0]
1631         lea     (%rsi,%r10),%r10        # prologue label
1632         cmp     %r10,%rbx               # context->Rip<prologue label
1633         jb      .Lin_prologue
1634
1635         mov     152($context),%rax      # pull context->Rsp
1636
1637         mov     4(%r11),%r10d           # HandlerData[1]
1638         lea     (%rsi,%r10),%r10        # epilogue label
1639         cmp     %r10,%rbx               # context->Rip>=epilogue label
1640         jae     .Lin_prologue
1641
1642         lea     24(%rax),%rax           # adjust "rsp"
1643
1644         mov     -8(%rax),%rbx
1645         mov     -16(%rax),%rbp
1646         mov     -24(%rax),%r12
1647         mov     %rbx,144($context)      # restore context->Rbx
1648         mov     %rbp,160($context)      # restore context->Rbp
1649         mov     %r12,216($context)      # restore context->R12
1650
1651 .Lin_prologue:
1652         mov     8(%rax),%rdi
1653         mov     16(%rax),%rsi
1654         mov     %rax,152($context)      # restore context->Rsp
1655         mov     %rsi,168($context)      # restore context->Rsi
1656         mov     %rdi,176($context)      # restore context->Rdi
1657
1658         mov     40($disp),%rdi          # disp->ContextRecord
1659         mov     $context,%rsi           # context
1660         mov     \$`1232/8`,%ecx         # sizeof(CONTEXT)
1661         .long   0xa548f3fc              # cld; rep movsq
1662
1663         mov     $disp,%rsi
1664         xor     %rcx,%rcx               # arg1, UNW_FLAG_NHANDLER
1665         mov     8(%rsi),%rdx            # arg2, disp->ImageBase
1666         mov     0(%rsi),%r8             # arg3, disp->ControlPc
1667         mov     16(%rsi),%r9            # arg4, disp->FunctionEntry
1668         mov     40(%rsi),%r10           # disp->ContextRecord
1669         lea     56(%rsi),%r11           # &disp->HandlerData
1670         lea     24(%rsi),%r12           # &disp->EstablisherFrame
1671         mov     %r10,32(%rsp)           # arg5
1672         mov     %r11,40(%rsp)           # arg6
1673         mov     %r12,48(%rsp)           # arg7
1674         mov     %rcx,56(%rsp)           # arg8, (NULL)
1675         call    *__imp_RtlVirtualUnwind(%rip)
1676
1677         mov     \$1,%eax                # ExceptionContinueSearch
1678         add     \$64,%rsp
1679         popfq
1680         pop     %r15
1681         pop     %r14
1682         pop     %r13
1683         pop     %r12
1684         pop     %rbp
1685         pop     %rbx
1686         pop     %rdi
1687         pop     %rsi
1688         ret
1689 .size   se_handler,.-se_handler
1690
1691 .section        .pdata
1692 .align  4
1693         .rva    .LSEH_begin_gcm_gmult_4bit
1694         .rva    .LSEH_end_gcm_gmult_4bit
1695         .rva    .LSEH_info_gcm_gmult_4bit
1696
1697         .rva    .LSEH_begin_gcm_ghash_4bit
1698         .rva    .LSEH_end_gcm_ghash_4bit
1699         .rva    .LSEH_info_gcm_ghash_4bit
1700
1701         .rva    .LSEH_begin_gcm_init_clmul
1702         .rva    .LSEH_end_gcm_init_clmul
1703         .rva    .LSEH_info_gcm_init_clmul
1704
1705         .rva    .LSEH_begin_gcm_ghash_clmul
1706         .rva    .LSEH_end_gcm_ghash_clmul
1707         .rva    .LSEH_info_gcm_ghash_clmul
1708 ___
1709 $code.=<<___    if ($avx);
1710         .rva    .LSEH_begin_gcm_init_avx
1711         .rva    .LSEH_end_gcm_init_avx
1712         .rva    .LSEH_info_gcm_init_clmul
1713
1714         .rva    .LSEH_begin_gcm_ghash_avx
1715         .rva    .LSEH_end_gcm_ghash_avx
1716         .rva    .LSEH_info_gcm_ghash_clmul
1717 ___
1718 $code.=<<___;
1719 .section        .xdata
1720 .align  8
1721 .LSEH_info_gcm_gmult_4bit:
1722         .byte   9,0,0,0
1723         .rva    se_handler
1724         .rva    .Lgmult_prologue,.Lgmult_epilogue       # HandlerData
1725 .LSEH_info_gcm_ghash_4bit:
1726         .byte   9,0,0,0
1727         .rva    se_handler
1728         .rva    .Lghash_prologue,.Lghash_epilogue       # HandlerData
1729 .LSEH_info_gcm_init_clmul:
1730         .byte   0x01,0x08,0x03,0x00
1731         .byte   0x08,0x68,0x00,0x00     #movaps 0x00(rsp),xmm6
1732         .byte   0x04,0x22,0x00,0x00     #sub    rsp,0x18
1733 .LSEH_info_gcm_ghash_clmul:
1734         .byte   0x01,0x33,0x16,0x00
1735         .byte   0x33,0xf8,0x09,0x00     #movaps 0x90(rsp),xmm15
1736         .byte   0x2e,0xe8,0x08,0x00     #movaps 0x80(rsp),xmm14
1737         .byte   0x29,0xd8,0x07,0x00     #movaps 0x70(rsp),xmm13
1738         .byte   0x24,0xc8,0x06,0x00     #movaps 0x60(rsp),xmm12
1739         .byte   0x1f,0xb8,0x05,0x00     #movaps 0x50(rsp),xmm11
1740         .byte   0x1a,0xa8,0x04,0x00     #movaps 0x40(rsp),xmm10
1741         .byte   0x15,0x98,0x03,0x00     #movaps 0x30(rsp),xmm9
1742         .byte   0x10,0x88,0x02,0x00     #movaps 0x20(rsp),xmm8
1743         .byte   0x0c,0x78,0x01,0x00     #movaps 0x10(rsp),xmm7
1744         .byte   0x08,0x68,0x00,0x00     #movaps 0x00(rsp),xmm6
1745         .byte   0x04,0x01,0x15,0x00     #sub    rsp,0xa8
1746 ___
1747 }
1748 \f
1749 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
1750
1751 print $code;
1752
1753 close STDOUT;