006215ecb1891c7dceb2dab25f557c72304ee9e4
[openssl.git] / crypto / modes / asm / ghash-x86_64.pl
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9 #
10 # March, June 2010
11 #
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
19 #
20 #               gcc 3.4.x(*)    assembler
21 #
22 # P4            28.6            14.0            +100%
23 # Opteron       19.3            7.7             +150%
24 # Core2         17.8            8.1(**)         +120%
25 # Atom          31.6            16.8            +88%
26 # VIA Nano      21.8            10.1            +115%
27 #
28 # (*)   comparison is not completely fair, because C results are
29 #       for vanilla "256B" implementation, while assembler results
30 #       are for "528B";-)
31 # (**)  it's mystery [to me] why Core2 result is not same as for
32 #       Opteron;
33
34 # May 2010
35 #
36 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
37 # See ghash-x86.pl for background information and details about coding
38 # techniques.
39 #
40 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
41 # providing access to a Westmere-based system on behalf of Intel
42 # Open Source Technology Centre.
43
44 # December 2012
45 #
46 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
47 # reduction_alg9, increase reduction aggregate factor to 4x. As for
48 # the latter. ghash-x86.pl discusses that it makes lesser sense to
49 # increase aggregate factor. Then why increase here? Critical path
50 # consists of 3 independent pclmulqdq instructions, Karatsuba post-
51 # processing and reduction. "On top" of this we lay down aggregated
52 # multiplication operations, triplets of independent pclmulqdq's. As
53 # issue rate for pclmulqdq is limited, it makes lesser sense to
54 # aggregate more multiplications than it takes to perform remaining
55 # non-multiplication operations. 2x is near-optimal coefficient for
56 # contemporary Intel CPUs (therefore modest improvement coefficient),
57 # but not for Bulldozer. Latter is because logical SIMD operations
58 # are twice as slow in comparison to Intel, so that critical path is
59 # longer. A CPU with higher pclmulqdq issue rate would also benefit
60 # from higher aggregate factor...
61 #
62 # Westmere      1.78(+13%)
63 # Sandy Bridge  1.80(+8%)
64 # Ivy Bridge    1.80(+7%)
65 # Haswell       0.55(+93%) (if system doesn't support AVX)
66 # Broadwell     0.45(+110%)(if system doesn't support AVX)
67 # Skylake       0.44(+110%)(if system doesn't support AVX)
68 # Bulldozer     1.49(+27%)
69 # Silvermont    2.88(+13%)
70
71 # March 2013
72 #
73 # ... 8x aggregate factor AVX code path is using reduction algorithm
74 # suggested by Shay Gueron[1]. Even though contemporary AVX-capable
75 # CPUs such as Sandy and Ivy Bridge can execute it, the code performs
76 # sub-optimally in comparison to above mentioned version. But thanks
77 # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
78 # it performs in 0.41 cycles per byte on Haswell processor, in
79 # 0.29 on Broadwell, and in 0.36 on Skylake.
80 #
81 # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
82
83 $flavour = shift;
84 $output  = shift;
85 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
86
87 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
88
89 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
90 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
91 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
92 die "can't locate x86_64-xlate.pl";
93
94 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
95                 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
96         $avx = ($1>=2.20) + ($1>=2.22);
97 }
98
99 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
100             `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
101         $avx = ($1>=2.09) + ($1>=2.10);
102 }
103
104 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
105             `ml64 2>&1` =~ /Version ([0-9]+)\./) {
106         $avx = ($1>=10) + ($1>=11);
107 }
108
109 if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9]\.[0-9]+)/) {
110         $avx = ($2>=3.0) + ($2>3.0);
111 }
112
113 open OUT,"| \"$^X\" $xlate $flavour $output";
114 *STDOUT=*OUT;
115
116 $do4xaggr=1;
117
118 # common register layout
119 $nlo="%rax";
120 $nhi="%rbx";
121 $Zlo="%r8";
122 $Zhi="%r9";
123 $tmp="%r10";
124 $rem_4bit = "%r11";
125
126 $Xi="%rdi";
127 $Htbl="%rsi";
128
129 # per-function register layout
130 $cnt="%rcx";
131 $rem="%rdx";
132
133 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/     or
134                         $r =~ s/%[er]([sd]i)/%\1l/      or
135                         $r =~ s/%[er](bp)/%\1l/         or
136                         $r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
137
138 sub AUTOLOAD()          # thunk [simplified] 32-bit style perlasm
139 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
140   my $arg = pop;
141     $arg = "\$$arg" if ($arg*1 eq $arg);
142     $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
143 }
144 \f
145 { my $N;
146   sub loop() {
147   my $inp = shift;
148
149         $N++;
150 $code.=<<___;
151         xor     $nlo,$nlo
152         xor     $nhi,$nhi
153         mov     `&LB("$Zlo")`,`&LB("$nlo")`
154         mov     `&LB("$Zlo")`,`&LB("$nhi")`
155         shl     \$4,`&LB("$nlo")`
156         mov     \$14,$cnt
157         mov     8($Htbl,$nlo),$Zlo
158         mov     ($Htbl,$nlo),$Zhi
159         and     \$0xf0,`&LB("$nhi")`
160         mov     $Zlo,$rem
161         jmp     .Loop$N
162
163 .align  16
164 .Loop$N:
165         shr     \$4,$Zlo
166         and     \$0xf,$rem
167         mov     $Zhi,$tmp
168         mov     ($inp,$cnt),`&LB("$nlo")`
169         shr     \$4,$Zhi
170         xor     8($Htbl,$nhi),$Zlo
171         shl     \$60,$tmp
172         xor     ($Htbl,$nhi),$Zhi
173         mov     `&LB("$nlo")`,`&LB("$nhi")`
174         xor     ($rem_4bit,$rem,8),$Zhi
175         mov     $Zlo,$rem
176         shl     \$4,`&LB("$nlo")`
177         xor     $tmp,$Zlo
178         dec     $cnt
179         js      .Lbreak$N
180
181         shr     \$4,$Zlo
182         and     \$0xf,$rem
183         mov     $Zhi,$tmp
184         shr     \$4,$Zhi
185         xor     8($Htbl,$nlo),$Zlo
186         shl     \$60,$tmp
187         xor     ($Htbl,$nlo),$Zhi
188         and     \$0xf0,`&LB("$nhi")`
189         xor     ($rem_4bit,$rem,8),$Zhi
190         mov     $Zlo,$rem
191         xor     $tmp,$Zlo
192         jmp     .Loop$N
193
194 .align  16
195 .Lbreak$N:
196         shr     \$4,$Zlo
197         and     \$0xf,$rem
198         mov     $Zhi,$tmp
199         shr     \$4,$Zhi
200         xor     8($Htbl,$nlo),$Zlo
201         shl     \$60,$tmp
202         xor     ($Htbl,$nlo),$Zhi
203         and     \$0xf0,`&LB("$nhi")`
204         xor     ($rem_4bit,$rem,8),$Zhi
205         mov     $Zlo,$rem
206         xor     $tmp,$Zlo
207
208         shr     \$4,$Zlo
209         and     \$0xf,$rem
210         mov     $Zhi,$tmp
211         shr     \$4,$Zhi
212         xor     8($Htbl,$nhi),$Zlo
213         shl     \$60,$tmp
214         xor     ($Htbl,$nhi),$Zhi
215         xor     $tmp,$Zlo
216         xor     ($rem_4bit,$rem,8),$Zhi
217
218         bswap   $Zlo
219         bswap   $Zhi
220 ___
221 }}
222
223 $code=<<___;
224 .text
225 .extern OPENSSL_ia32cap_P
226
227 .globl  gcm_gmult_4bit
228 .type   gcm_gmult_4bit,\@function,2
229 .align  16
230 gcm_gmult_4bit:
231         push    %rbx
232         push    %rbp            # %rbp and %r12 are pushed exclusively in
233         push    %r12            # order to reuse Win64 exception handler...
234 .Lgmult_prologue:
235
236         movzb   15($Xi),$Zlo
237         lea     .Lrem_4bit(%rip),$rem_4bit
238 ___
239         &loop   ($Xi);
240 $code.=<<___;
241         mov     $Zlo,8($Xi)
242         mov     $Zhi,($Xi)
243
244         mov     16(%rsp),%rbx
245         lea     24(%rsp),%rsp
246 .Lgmult_epilogue:
247         ret
248 .size   gcm_gmult_4bit,.-gcm_gmult_4bit
249 ___
250 \f
251 # per-function register layout
252 $inp="%rdx";
253 $len="%rcx";
254 $rem_8bit=$rem_4bit;
255
256 $code.=<<___;
257 .globl  gcm_ghash_4bit
258 .type   gcm_ghash_4bit,\@function,4
259 .align  16
260 gcm_ghash_4bit:
261         push    %rbx
262         push    %rbp
263         push    %r12
264         push    %r13
265         push    %r14
266         push    %r15
267         sub     \$280,%rsp
268 .Lghash_prologue:
269         mov     $inp,%r14               # reassign couple of args
270         mov     $len,%r15
271 ___
272 { my $inp="%r14";
273   my $dat="%edx";
274   my $len="%r15";
275   my @nhi=("%ebx","%ecx");
276   my @rem=("%r12","%r13");
277   my $Hshr4="%rbp";
278
279         &sub    ($Htbl,-128);           # size optimization
280         &lea    ($Hshr4,"16+128(%rsp)");
281         { my @lo =($nlo,$nhi);
282           my @hi =($Zlo,$Zhi);
283
284           &xor  ($dat,$dat);
285           for ($i=0,$j=-2;$i<18;$i++,$j++) {
286             &mov        ("$j(%rsp)",&LB($dat))          if ($i>1);
287             &or         ($lo[0],$tmp)                   if ($i>1);
288             &mov        (&LB($dat),&LB($lo[1]))         if ($i>0 && $i<17);
289             &shr        ($lo[1],4)                      if ($i>0 && $i<17);
290             &mov        ($tmp,$hi[1])                   if ($i>0 && $i<17);
291             &shr        ($hi[1],4)                      if ($i>0 && $i<17);
292             &mov        ("8*$j($Hshr4)",$hi[0])         if ($i>1);
293             &mov        ($hi[0],"16*$i+0-128($Htbl)")   if ($i<16);
294             &shl        (&LB($dat),4)                   if ($i>0 && $i<17);
295             &mov        ("8*$j-128($Hshr4)",$lo[0])     if ($i>1);
296             &mov        ($lo[0],"16*$i+8-128($Htbl)")   if ($i<16);
297             &shl        ($tmp,60)                       if ($i>0 && $i<17);
298
299             push        (@lo,shift(@lo));
300             push        (@hi,shift(@hi));
301           }
302         }
303         &add    ($Htbl,-128);
304         &mov    ($Zlo,"8($Xi)");
305         &mov    ($Zhi,"0($Xi)");
306         &add    ($len,$inp);            # pointer to the end of data
307         &lea    ($rem_8bit,".Lrem_8bit(%rip)");
308         &jmp    (".Louter_loop");
309
310 $code.=".align  16\n.Louter_loop:\n";
311         &xor    ($Zhi,"($inp)");
312         &mov    ("%rdx","8($inp)");
313         &lea    ($inp,"16($inp)");
314         &xor    ("%rdx",$Zlo);
315         &mov    ("($Xi)",$Zhi);
316         &mov    ("8($Xi)","%rdx");
317         &shr    ("%rdx",32);
318
319         &xor    ($nlo,$nlo);
320         &rol    ($dat,8);
321         &mov    (&LB($nlo),&LB($dat));
322         &movz   ($nhi[0],&LB($dat));
323         &shl    (&LB($nlo),4);
324         &shr    ($nhi[0],4);
325
326         for ($j=11,$i=0;$i<15;$i++) {
327             &rol        ($dat,8);
328             &xor        ($Zlo,"8($Htbl,$nlo)")                  if ($i>0);
329             &xor        ($Zhi,"($Htbl,$nlo)")                   if ($i>0);
330             &mov        ($Zlo,"8($Htbl,$nlo)")                  if ($i==0);
331             &mov        ($Zhi,"($Htbl,$nlo)")                   if ($i==0);
332
333             &mov        (&LB($nlo),&LB($dat));
334             &xor        ($Zlo,$tmp)                             if ($i>0);
335             &movzw      ($rem[1],"($rem_8bit,$rem[1],2)")       if ($i>0);
336
337             &movz       ($nhi[1],&LB($dat));
338             &shl        (&LB($nlo),4);
339             &movzb      ($rem[0],"(%rsp,$nhi[0])");
340
341             &shr        ($nhi[1],4)                             if ($i<14);
342             &and        ($nhi[1],0xf0)                          if ($i==14);
343             &shl        ($rem[1],48)                            if ($i>0);
344             &xor        ($rem[0],$Zlo);
345
346             &mov        ($tmp,$Zhi);
347             &xor        ($Zhi,$rem[1])                          if ($i>0);
348             &shr        ($Zlo,8);
349
350             &movz       ($rem[0],&LB($rem[0]));
351             &mov        ($dat,"$j($Xi)")                        if (--$j%4==0);
352             &shr        ($Zhi,8);
353
354             &xor        ($Zlo,"-128($Hshr4,$nhi[0],8)");
355             &shl        ($tmp,56);
356             &xor        ($Zhi,"($Hshr4,$nhi[0],8)");
357
358             unshift     (@nhi,pop(@nhi));               # "rotate" registers
359             unshift     (@rem,pop(@rem));
360         }
361         &movzw  ($rem[1],"($rem_8bit,$rem[1],2)");
362         &xor    ($Zlo,"8($Htbl,$nlo)");
363         &xor    ($Zhi,"($Htbl,$nlo)");
364
365         &shl    ($rem[1],48);
366         &xor    ($Zlo,$tmp);
367
368         &xor    ($Zhi,$rem[1]);
369         &movz   ($rem[0],&LB($Zlo));
370         &shr    ($Zlo,4);
371
372         &mov    ($tmp,$Zhi);
373         &shl    (&LB($rem[0]),4);
374         &shr    ($Zhi,4);
375
376         &xor    ($Zlo,"8($Htbl,$nhi[0])");
377         &movzw  ($rem[0],"($rem_8bit,$rem[0],2)");
378         &shl    ($tmp,60);
379
380         &xor    ($Zhi,"($Htbl,$nhi[0])");
381         &xor    ($Zlo,$tmp);
382         &shl    ($rem[0],48);
383
384         &bswap  ($Zlo);
385         &xor    ($Zhi,$rem[0]);
386
387         &bswap  ($Zhi);
388         &cmp    ($inp,$len);
389         &jb     (".Louter_loop");
390 }
391 $code.=<<___;
392         mov     $Zlo,8($Xi)
393         mov     $Zhi,($Xi)
394
395         lea     280(%rsp),%rsi
396         mov     0(%rsi),%r15
397         mov     8(%rsi),%r14
398         mov     16(%rsi),%r13
399         mov     24(%rsi),%r12
400         mov     32(%rsi),%rbp
401         mov     40(%rsi),%rbx
402         lea     48(%rsi),%rsp
403 .Lghash_epilogue:
404         ret
405 .size   gcm_ghash_4bit,.-gcm_ghash_4bit
406 ___
407 \f
408 ######################################################################
409 # PCLMULQDQ version.
410
411 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
412                 ("%rdi","%rsi","%rdx","%rcx");  # Unix order
413
414 ($Xi,$Xhi)=("%xmm0","%xmm1");   $Hkey="%xmm2";
415 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
416
417 sub clmul64x64_T2 {     # minimal register pressure
418 my ($Xhi,$Xi,$Hkey,$HK)=@_;
419
420 if (!defined($HK)) {    $HK = $T2;
421 $code.=<<___;
422         movdqa          $Xi,$Xhi                #
423         pshufd          \$0b01001110,$Xi,$T1
424         pshufd          \$0b01001110,$Hkey,$T2
425         pxor            $Xi,$T1                 #
426         pxor            $Hkey,$T2
427 ___
428 } else {
429 $code.=<<___;
430         movdqa          $Xi,$Xhi                #
431         pshufd          \$0b01001110,$Xi,$T1
432         pxor            $Xi,$T1                 #
433 ___
434 }
435 $code.=<<___;
436         pclmulqdq       \$0x00,$Hkey,$Xi        #######
437         pclmulqdq       \$0x11,$Hkey,$Xhi       #######
438         pclmulqdq       \$0x00,$HK,$T1          #######
439         pxor            $Xi,$T1                 #
440         pxor            $Xhi,$T1                #
441
442         movdqa          $T1,$T2                 #
443         psrldq          \$8,$T1
444         pslldq          \$8,$T2                 #
445         pxor            $T1,$Xhi
446         pxor            $T2,$Xi                 #
447 ___
448 }
449
450 sub reduction_alg9 {    # 17/11 times faster than Intel version
451 my ($Xhi,$Xi) = @_;
452
453 $code.=<<___;
454         # 1st phase
455         movdqa          $Xi,$T2                 #
456         movdqa          $Xi,$T1
457         psllq           \$5,$Xi
458         pxor            $Xi,$T1                 #
459         psllq           \$1,$Xi
460         pxor            $T1,$Xi                 #
461         psllq           \$57,$Xi                #
462         movdqa          $Xi,$T1                 #
463         pslldq          \$8,$Xi
464         psrldq          \$8,$T1                 #       
465         pxor            $T2,$Xi
466         pxor            $T1,$Xhi                #
467
468         # 2nd phase
469         movdqa          $Xi,$T2
470         psrlq           \$1,$Xi
471         pxor            $T2,$Xhi                #
472         pxor            $Xi,$T2
473         psrlq           \$5,$Xi
474         pxor            $T2,$Xi                 #
475         psrlq           \$1,$Xi                 #
476         pxor            $Xhi,$Xi                #
477 ___
478 }
479 \f
480 { my ($Htbl,$Xip)=@_4args;
481   my $HK="%xmm6";
482
483 $code.=<<___;
484 .globl  gcm_init_clmul
485 .type   gcm_init_clmul,\@abi-omnipotent
486 .align  16
487 gcm_init_clmul:
488 .L_init_clmul:
489 ___
490 $code.=<<___ if ($win64);
491 .LSEH_begin_gcm_init_clmul:
492         # I can't trust assembler to use specific encoding:-(
493         .byte   0x48,0x83,0xec,0x18             #sub    $0x18,%rsp
494         .byte   0x0f,0x29,0x34,0x24             #movaps %xmm6,(%rsp)
495 ___
496 $code.=<<___;
497         movdqu          ($Xip),$Hkey
498         pshufd          \$0b01001110,$Hkey,$Hkey        # dword swap
499
500         # <<1 twist
501         pshufd          \$0b11111111,$Hkey,$T2  # broadcast uppermost dword
502         movdqa          $Hkey,$T1
503         psllq           \$1,$Hkey
504         pxor            $T3,$T3                 #
505         psrlq           \$63,$T1
506         pcmpgtd         $T2,$T3                 # broadcast carry bit
507         pslldq          \$8,$T1
508         por             $T1,$Hkey               # H<<=1
509
510         # magic reduction
511         pand            .L0x1c2_polynomial(%rip),$T3
512         pxor            $T3,$Hkey               # if(carry) H^=0x1c2_polynomial
513
514         # calculate H^2
515         pshufd          \$0b01001110,$Hkey,$HK
516         movdqa          $Hkey,$Xi
517         pxor            $Hkey,$HK
518 ___
519         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);
520         &reduction_alg9 ($Xhi,$Xi);
521 $code.=<<___;
522         pshufd          \$0b01001110,$Hkey,$T1
523         pshufd          \$0b01001110,$Xi,$T2
524         pxor            $Hkey,$T1               # Karatsuba pre-processing
525         movdqu          $Hkey,0x00($Htbl)       # save H
526         pxor            $Xi,$T2                 # Karatsuba pre-processing
527         movdqu          $Xi,0x10($Htbl)         # save H^2
528         palignr         \$8,$T1,$T2             # low part is H.lo^H.hi...
529         movdqu          $T2,0x20($Htbl)         # save Karatsuba "salt"
530 ___
531 if ($do4xaggr) {
532         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);   # H^3
533         &reduction_alg9 ($Xhi,$Xi);
534 $code.=<<___;
535         movdqa          $Xi,$T3
536 ___
537         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);   # H^4
538         &reduction_alg9 ($Xhi,$Xi);
539 $code.=<<___;
540         pshufd          \$0b01001110,$T3,$T1
541         pshufd          \$0b01001110,$Xi,$T2
542         pxor            $T3,$T1                 # Karatsuba pre-processing
543         movdqu          $T3,0x30($Htbl)         # save H^3
544         pxor            $Xi,$T2                 # Karatsuba pre-processing
545         movdqu          $Xi,0x40($Htbl)         # save H^4
546         palignr         \$8,$T1,$T2             # low part is H^3.lo^H^3.hi...
547         movdqu          $T2,0x50($Htbl)         # save Karatsuba "salt"
548 ___
549 }
550 $code.=<<___ if ($win64);
551         movaps  (%rsp),%xmm6
552         lea     0x18(%rsp),%rsp
553 .LSEH_end_gcm_init_clmul:
554 ___
555 $code.=<<___;
556         ret
557 .size   gcm_init_clmul,.-gcm_init_clmul
558 ___
559 }
560
561 { my ($Xip,$Htbl)=@_4args;
562
563 $code.=<<___;
564 .globl  gcm_gmult_clmul
565 .type   gcm_gmult_clmul,\@abi-omnipotent
566 .align  16
567 gcm_gmult_clmul:
568 .L_gmult_clmul:
569         movdqu          ($Xip),$Xi
570         movdqa          .Lbswap_mask(%rip),$T3
571         movdqu          ($Htbl),$Hkey
572         movdqu          0x20($Htbl),$T2
573         pshufb          $T3,$Xi
574 ___
575         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$T2);
576 $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
577         # experimental alternative. special thing about is that there
578         # no dependency between the two multiplications... 
579         mov             \$`0xE1<<1`,%eax
580         mov             \$0xA040608020C0E000,%r10       # ((7..0)·0xE0)&0xff
581         mov             \$0x07,%r11d
582         movq            %rax,$T1
583         movq            %r10,$T2
584         movq            %r11,$T3                # borrow $T3
585         pand            $Xi,$T3
586         pshufb          $T3,$T2                 # ($Xi&7)·0xE0
587         movq            %rax,$T3
588         pclmulqdq       \$0x00,$Xi,$T1          # Â·(0xE1<<1)
589         pxor            $Xi,$T2
590         pslldq          \$15,$T2
591         paddd           $T2,$T2                 # <<(64+56+1)
592         pxor            $T2,$Xi
593         pclmulqdq       \$0x01,$T3,$Xi
594         movdqa          .Lbswap_mask(%rip),$T3  # reload $T3
595         psrldq          \$1,$T1
596         pxor            $T1,$Xhi
597         pslldq          \$7,$Xi
598         pxor            $Xhi,$Xi
599 ___
600 $code.=<<___;
601         pshufb          $T3,$Xi
602         movdqu          $Xi,($Xip)
603         ret
604 .size   gcm_gmult_clmul,.-gcm_gmult_clmul
605 ___
606 }
607 \f
608 { my ($Xip,$Htbl,$inp,$len)=@_4args;
609   my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
610   my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
611
612 $code.=<<___;
613 .globl  gcm_ghash_clmul
614 .type   gcm_ghash_clmul,\@abi-omnipotent
615 .align  32
616 gcm_ghash_clmul:
617 .L_ghash_clmul:
618 ___
619 $code.=<<___ if ($win64);
620         lea     -0x88(%rsp),%rax
621 .LSEH_begin_gcm_ghash_clmul:
622         # I can't trust assembler to use specific encoding:-(
623         .byte   0x48,0x8d,0x60,0xe0             #lea    -0x20(%rax),%rsp
624         .byte   0x0f,0x29,0x70,0xe0             #movaps %xmm6,-0x20(%rax)
625         .byte   0x0f,0x29,0x78,0xf0             #movaps %xmm7,-0x10(%rax)
626         .byte   0x44,0x0f,0x29,0x00             #movaps %xmm8,0(%rax)
627         .byte   0x44,0x0f,0x29,0x48,0x10        #movaps %xmm9,0x10(%rax)
628         .byte   0x44,0x0f,0x29,0x50,0x20        #movaps %xmm10,0x20(%rax)
629         .byte   0x44,0x0f,0x29,0x58,0x30        #movaps %xmm11,0x30(%rax)
630         .byte   0x44,0x0f,0x29,0x60,0x40        #movaps %xmm12,0x40(%rax)
631         .byte   0x44,0x0f,0x29,0x68,0x50        #movaps %xmm13,0x50(%rax)
632         .byte   0x44,0x0f,0x29,0x70,0x60        #movaps %xmm14,0x60(%rax)
633         .byte   0x44,0x0f,0x29,0x78,0x70        #movaps %xmm15,0x70(%rax)
634 ___
635 $code.=<<___;
636         movdqa          .Lbswap_mask(%rip),$T3
637
638         movdqu          ($Xip),$Xi
639         movdqu          ($Htbl),$Hkey
640         movdqu          0x20($Htbl),$HK
641         pshufb          $T3,$Xi
642
643         sub             \$0x10,$len
644         jz              .Lodd_tail
645
646         movdqu          0x10($Htbl),$Hkey2
647 ___
648 if ($do4xaggr) {
649 my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
650
651 $code.=<<___;
652         mov             OPENSSL_ia32cap_P+4(%rip),%eax
653         cmp             \$0x30,$len
654         jb              .Lskip4x
655
656         and             \$`1<<26|1<<22`,%eax    # isolate MOVBE+XSAVE
657         cmp             \$`1<<22`,%eax          # check for MOVBE without XSAVE
658         je              .Lskip4x
659
660         sub             \$0x30,$len
661         mov             \$0xA040608020C0E000,%rax       # ((7..0)·0xE0)&0xff
662         movdqu          0x30($Htbl),$Hkey3
663         movdqu          0x40($Htbl),$Hkey4
664
665         #######
666         # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
667         #
668         movdqu          0x30($inp),$Xln
669          movdqu         0x20($inp),$Xl
670         pshufb          $T3,$Xln
671          pshufb         $T3,$Xl
672         movdqa          $Xln,$Xhn
673         pshufd          \$0b01001110,$Xln,$Xmn
674         pxor            $Xln,$Xmn
675         pclmulqdq       \$0x00,$Hkey,$Xln
676         pclmulqdq       \$0x11,$Hkey,$Xhn
677         pclmulqdq       \$0x00,$HK,$Xmn
678
679         movdqa          $Xl,$Xh
680         pshufd          \$0b01001110,$Xl,$Xm
681         pxor            $Xl,$Xm
682         pclmulqdq       \$0x00,$Hkey2,$Xl
683         pclmulqdq       \$0x11,$Hkey2,$Xh
684         pclmulqdq       \$0x10,$HK,$Xm
685         xorps           $Xl,$Xln
686         xorps           $Xh,$Xhn
687         movups          0x50($Htbl),$HK
688         xorps           $Xm,$Xmn
689
690         movdqu          0x10($inp),$Xl
691          movdqu         0($inp),$T1
692         pshufb          $T3,$Xl
693          pshufb         $T3,$T1
694         movdqa          $Xl,$Xh
695         pshufd          \$0b01001110,$Xl,$Xm
696          pxor           $T1,$Xi
697         pxor            $Xl,$Xm
698         pclmulqdq       \$0x00,$Hkey3,$Xl
699          movdqa         $Xi,$Xhi
700          pshufd         \$0b01001110,$Xi,$T1
701          pxor           $Xi,$T1
702         pclmulqdq       \$0x11,$Hkey3,$Xh
703         pclmulqdq       \$0x00,$HK,$Xm
704         xorps           $Xl,$Xln
705         xorps           $Xh,$Xhn
706
707         lea     0x40($inp),$inp
708         sub     \$0x40,$len
709         jc      .Ltail4x
710
711         jmp     .Lmod4_loop
712 .align  32
713 .Lmod4_loop:
714         pclmulqdq       \$0x00,$Hkey4,$Xi
715         xorps           $Xm,$Xmn
716          movdqu         0x30($inp),$Xl
717          pshufb         $T3,$Xl
718         pclmulqdq       \$0x11,$Hkey4,$Xhi
719         xorps           $Xln,$Xi
720          movdqu         0x20($inp),$Xln
721          movdqa         $Xl,$Xh
722         pclmulqdq       \$0x10,$HK,$T1
723          pshufd         \$0b01001110,$Xl,$Xm
724         xorps           $Xhn,$Xhi
725          pxor           $Xl,$Xm
726          pshufb         $T3,$Xln
727         movups          0x20($Htbl),$HK
728         xorps           $Xmn,$T1
729          pclmulqdq      \$0x00,$Hkey,$Xl
730          pshufd         \$0b01001110,$Xln,$Xmn
731
732         pxor            $Xi,$T1                 # aggregated Karatsuba post-processing
733          movdqa         $Xln,$Xhn
734         pxor            $Xhi,$T1                #
735          pxor           $Xln,$Xmn
736         movdqa          $T1,$T2                 #
737          pclmulqdq      \$0x11,$Hkey,$Xh
738         pslldq          \$8,$T1
739         psrldq          \$8,$T2                 #
740         pxor            $T1,$Xi
741         movdqa          .L7_mask(%rip),$T1
742         pxor            $T2,$Xhi                #
743         movq            %rax,$T2
744
745         pand            $Xi,$T1                 # 1st phase
746         pshufb          $T1,$T2                 #
747         pxor            $Xi,$T2                 #
748          pclmulqdq      \$0x00,$HK,$Xm
749         psllq           \$57,$T2                #
750         movdqa          $T2,$T1                 #
751         pslldq          \$8,$T2
752          pclmulqdq      \$0x00,$Hkey2,$Xln
753         psrldq          \$8,$T1                 #       
754         pxor            $T2,$Xi
755         pxor            $T1,$Xhi                #
756         movdqu          0($inp),$T1
757
758         movdqa          $Xi,$T2                 # 2nd phase
759         psrlq           \$1,$Xi
760          pclmulqdq      \$0x11,$Hkey2,$Xhn
761          xorps          $Xl,$Xln
762          movdqu         0x10($inp),$Xl
763          pshufb         $T3,$Xl
764          pclmulqdq      \$0x10,$HK,$Xmn
765          xorps          $Xh,$Xhn
766          movups         0x50($Htbl),$HK
767         pshufb          $T3,$T1
768         pxor            $T2,$Xhi                #
769         pxor            $Xi,$T2
770         psrlq           \$5,$Xi
771
772          movdqa         $Xl,$Xh
773          pxor           $Xm,$Xmn
774          pshufd         \$0b01001110,$Xl,$Xm
775         pxor            $T2,$Xi                 #
776         pxor            $T1,$Xhi
777          pxor           $Xl,$Xm
778          pclmulqdq      \$0x00,$Hkey3,$Xl
779         psrlq           \$1,$Xi                 #
780         pxor            $Xhi,$Xi                #
781         movdqa          $Xi,$Xhi
782          pclmulqdq      \$0x11,$Hkey3,$Xh
783          xorps          $Xl,$Xln
784         pshufd          \$0b01001110,$Xi,$T1
785         pxor            $Xi,$T1
786
787          pclmulqdq      \$0x00,$HK,$Xm
788          xorps          $Xh,$Xhn
789
790         lea     0x40($inp),$inp
791         sub     \$0x40,$len
792         jnc     .Lmod4_loop
793
794 .Ltail4x:
795         pclmulqdq       \$0x00,$Hkey4,$Xi
796         pclmulqdq       \$0x11,$Hkey4,$Xhi
797         pclmulqdq       \$0x10,$HK,$T1
798         xorps           $Xm,$Xmn
799         xorps           $Xln,$Xi
800         xorps           $Xhn,$Xhi
801         pxor            $Xi,$Xhi                # aggregated Karatsuba post-processing
802         pxor            $Xmn,$T1
803
804         pxor            $Xhi,$T1                #
805         pxor            $Xi,$Xhi
806
807         movdqa          $T1,$T2                 #
808         psrldq          \$8,$T1
809         pslldq          \$8,$T2                 #
810         pxor            $T1,$Xhi
811         pxor            $T2,$Xi                 #
812 ___
813         &reduction_alg9($Xhi,$Xi);
814 $code.=<<___;
815         add     \$0x40,$len
816         jz      .Ldone
817         movdqu  0x20($Htbl),$HK
818         sub     \$0x10,$len
819         jz      .Lodd_tail
820 .Lskip4x:
821 ___
822 }
823 $code.=<<___;
824         #######
825         # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
826         #       [(H*Ii+1) + (H*Xi+1)] mod P =
827         #       [(H*Ii+1) + H^2*(Ii+Xi)] mod P
828         #
829         movdqu          ($inp),$T1              # Ii
830         movdqu          16($inp),$Xln           # Ii+1
831         pshufb          $T3,$T1
832         pshufb          $T3,$Xln
833         pxor            $T1,$Xi                 # Ii+Xi
834
835         movdqa          $Xln,$Xhn
836         pshufd          \$0b01001110,$Xln,$Xmn
837         pxor            $Xln,$Xmn
838         pclmulqdq       \$0x00,$Hkey,$Xln
839         pclmulqdq       \$0x11,$Hkey,$Xhn
840         pclmulqdq       \$0x00,$HK,$Xmn
841
842         lea             32($inp),$inp           # i+=2
843         nop
844         sub             \$0x20,$len
845         jbe             .Leven_tail
846         nop
847         jmp             .Lmod_loop
848
849 .align  32
850 .Lmod_loop:
851         movdqa          $Xi,$Xhi
852         movdqa          $Xmn,$T1
853         pshufd          \$0b01001110,$Xi,$Xmn   #
854         pxor            $Xi,$Xmn                #
855
856         pclmulqdq       \$0x00,$Hkey2,$Xi
857         pclmulqdq       \$0x11,$Hkey2,$Xhi
858         pclmulqdq       \$0x10,$HK,$Xmn
859
860         pxor            $Xln,$Xi                # (H*Ii+1) + H^2*(Ii+Xi)
861         pxor            $Xhn,$Xhi
862           movdqu        ($inp),$T2              # Ii
863         pxor            $Xi,$T1                 # aggregated Karatsuba post-processing
864           pshufb        $T3,$T2
865           movdqu        16($inp),$Xln           # Ii+1
866
867         pxor            $Xhi,$T1
868           pxor          $T2,$Xhi                # "Ii+Xi", consume early
869         pxor            $T1,$Xmn
870          pshufb         $T3,$Xln
871         movdqa          $Xmn,$T1                #
872         psrldq          \$8,$T1
873         pslldq          \$8,$Xmn                #
874         pxor            $T1,$Xhi
875         pxor            $Xmn,$Xi                #
876
877         movdqa          $Xln,$Xhn               #
878
879           movdqa        $Xi,$T2                 # 1st phase
880           movdqa        $Xi,$T1
881           psllq         \$5,$Xi
882           pxor          $Xi,$T1                 #
883         pclmulqdq       \$0x00,$Hkey,$Xln       #######
884           psllq         \$1,$Xi
885           pxor          $T1,$Xi                 #
886           psllq         \$57,$Xi                #
887           movdqa        $Xi,$T1                 #
888           pslldq        \$8,$Xi
889           psrldq        \$8,$T1                 #       
890           pxor          $T2,$Xi
891         pshufd          \$0b01001110,$Xhn,$Xmn
892           pxor          $T1,$Xhi                #
893         pxor            $Xhn,$Xmn               #
894
895           movdqa        $Xi,$T2                 # 2nd phase
896           psrlq         \$1,$Xi
897         pclmulqdq       \$0x11,$Hkey,$Xhn       #######
898           pxor          $T2,$Xhi                #
899           pxor          $Xi,$T2
900           psrlq         \$5,$Xi
901           pxor          $T2,$Xi                 #
902         lea             32($inp),$inp
903           psrlq         \$1,$Xi                 #
904         pclmulqdq       \$0x00,$HK,$Xmn         #######
905           pxor          $Xhi,$Xi                #
906
907         sub             \$0x20,$len
908         ja              .Lmod_loop
909
910 .Leven_tail:
911          movdqa         $Xi,$Xhi
912          movdqa         $Xmn,$T1
913          pshufd         \$0b01001110,$Xi,$Xmn   #
914          pxor           $Xi,$Xmn                #
915
916         pclmulqdq       \$0x00,$Hkey2,$Xi
917         pclmulqdq       \$0x11,$Hkey2,$Xhi
918         pclmulqdq       \$0x10,$HK,$Xmn
919
920         pxor            $Xln,$Xi                # (H*Ii+1) + H^2*(Ii+Xi)
921         pxor            $Xhn,$Xhi
922         pxor            $Xi,$T1
923         pxor            $Xhi,$T1
924         pxor            $T1,$Xmn
925         movdqa          $Xmn,$T1                #
926         psrldq          \$8,$T1
927         pslldq          \$8,$Xmn                #
928         pxor            $T1,$Xhi
929         pxor            $Xmn,$Xi                #
930 ___
931         &reduction_alg9 ($Xhi,$Xi);
932 $code.=<<___;
933         test            $len,$len
934         jnz             .Ldone
935
936 .Lodd_tail:
937         movdqu          ($inp),$T1              # Ii
938         pshufb          $T3,$T1
939         pxor            $T1,$Xi                 # Ii+Xi
940 ___
941         &clmul64x64_T2  ($Xhi,$Xi,$Hkey,$HK);   # H*(Ii+Xi)
942         &reduction_alg9 ($Xhi,$Xi);
943 $code.=<<___;
944 .Ldone:
945         pshufb          $T3,$Xi
946         movdqu          $Xi,($Xip)
947 ___
948 $code.=<<___ if ($win64);
949         movaps  (%rsp),%xmm6
950         movaps  0x10(%rsp),%xmm7
951         movaps  0x20(%rsp),%xmm8
952         movaps  0x30(%rsp),%xmm9
953         movaps  0x40(%rsp),%xmm10
954         movaps  0x50(%rsp),%xmm11
955         movaps  0x60(%rsp),%xmm12
956         movaps  0x70(%rsp),%xmm13
957         movaps  0x80(%rsp),%xmm14
958         movaps  0x90(%rsp),%xmm15
959         lea     0xa8(%rsp),%rsp
960 .LSEH_end_gcm_ghash_clmul:
961 ___
962 $code.=<<___;
963         ret
964 .size   gcm_ghash_clmul,.-gcm_ghash_clmul
965 ___
966 }
967 \f
968 $code.=<<___;
969 .globl  gcm_init_avx
970 .type   gcm_init_avx,\@abi-omnipotent
971 .align  32
972 gcm_init_avx:
973 ___
974 if ($avx) {
975 my ($Htbl,$Xip)=@_4args;
976 my $HK="%xmm6";
977
978 $code.=<<___ if ($win64);
979 .LSEH_begin_gcm_init_avx:
980         # I can't trust assembler to use specific encoding:-(
981         .byte   0x48,0x83,0xec,0x18             #sub    $0x18,%rsp
982         .byte   0x0f,0x29,0x34,0x24             #movaps %xmm6,(%rsp)
983 ___
984 $code.=<<___;
985         vzeroupper
986
987         vmovdqu         ($Xip),$Hkey
988         vpshufd         \$0b01001110,$Hkey,$Hkey        # dword swap
989
990         # <<1 twist
991         vpshufd         \$0b11111111,$Hkey,$T2  # broadcast uppermost dword
992         vpsrlq          \$63,$Hkey,$T1
993         vpsllq          \$1,$Hkey,$Hkey
994         vpxor           $T3,$T3,$T3             #
995         vpcmpgtd        $T2,$T3,$T3             # broadcast carry bit
996         vpslldq         \$8,$T1,$T1
997         vpor            $T1,$Hkey,$Hkey         # H<<=1
998
999         # magic reduction
1000         vpand           .L0x1c2_polynomial(%rip),$T3,$T3
1001         vpxor           $T3,$Hkey,$Hkey         # if(carry) H^=0x1c2_polynomial
1002
1003         vpunpckhqdq     $Hkey,$Hkey,$HK
1004         vmovdqa         $Hkey,$Xi
1005         vpxor           $Hkey,$HK,$HK
1006         mov             \$4,%r10                # up to H^8
1007         jmp             .Linit_start_avx
1008 ___
1009
1010 sub clmul64x64_avx {
1011 my ($Xhi,$Xi,$Hkey,$HK)=@_;
1012
1013 if (!defined($HK)) {    $HK = $T2;
1014 $code.=<<___;
1015         vpunpckhqdq     $Xi,$Xi,$T1
1016         vpunpckhqdq     $Hkey,$Hkey,$T2
1017         vpxor           $Xi,$T1,$T1             #
1018         vpxor           $Hkey,$T2,$T2
1019 ___
1020 } else {
1021 $code.=<<___;
1022         vpunpckhqdq     $Xi,$Xi,$T1
1023         vpxor           $Xi,$T1,$T1             #
1024 ___
1025 }
1026 $code.=<<___;
1027         vpclmulqdq      \$0x11,$Hkey,$Xi,$Xhi   #######
1028         vpclmulqdq      \$0x00,$Hkey,$Xi,$Xi    #######
1029         vpclmulqdq      \$0x00,$HK,$T1,$T1      #######
1030         vpxor           $Xi,$Xhi,$T2            #
1031         vpxor           $T2,$T1,$T1             #
1032
1033         vpslldq         \$8,$T1,$T2             #
1034         vpsrldq         \$8,$T1,$T1
1035         vpxor           $T2,$Xi,$Xi             #
1036         vpxor           $T1,$Xhi,$Xhi
1037 ___
1038 }
1039
1040 sub reduction_avx {
1041 my ($Xhi,$Xi) = @_;
1042
1043 $code.=<<___;
1044         vpsllq          \$57,$Xi,$T1            # 1st phase
1045         vpsllq          \$62,$Xi,$T2
1046         vpxor           $T1,$T2,$T2             #
1047         vpsllq          \$63,$Xi,$T1
1048         vpxor           $T1,$T2,$T2             #
1049         vpslldq         \$8,$T2,$T1             #
1050         vpsrldq         \$8,$T2,$T2
1051         vpxor           $T1,$Xi,$Xi             #
1052         vpxor           $T2,$Xhi,$Xhi
1053
1054         vpsrlq          \$1,$Xi,$T2             # 2nd phase
1055         vpxor           $Xi,$Xhi,$Xhi
1056         vpxor           $T2,$Xi,$Xi             #
1057         vpsrlq          \$5,$T2,$T2
1058         vpxor           $T2,$Xi,$Xi             #
1059         vpsrlq          \$1,$Xi,$Xi             #
1060         vpxor           $Xhi,$Xi,$Xi            #
1061 ___
1062 }
1063
1064 $code.=<<___;
1065 .align  32
1066 .Linit_loop_avx:
1067         vpalignr        \$8,$T1,$T2,$T3         # low part is H.lo^H.hi...
1068         vmovdqu         $T3,-0x10($Htbl)        # save Karatsuba "salt"
1069 ___
1070         &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK);   # calculate H^3,5,7
1071         &reduction_avx  ($Xhi,$Xi);
1072 $code.=<<___;
1073 .Linit_start_avx:
1074         vmovdqa         $Xi,$T3
1075 ___
1076         &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK);   # calculate H^2,4,6,8
1077         &reduction_avx  ($Xhi,$Xi);
1078 $code.=<<___;
1079         vpshufd         \$0b01001110,$T3,$T1
1080         vpshufd         \$0b01001110,$Xi,$T2
1081         vpxor           $T3,$T1,$T1             # Karatsuba pre-processing
1082         vmovdqu         $T3,0x00($Htbl)         # save H^1,3,5,7
1083         vpxor           $Xi,$T2,$T2             # Karatsuba pre-processing
1084         vmovdqu         $Xi,0x10($Htbl)         # save H^2,4,6,8
1085         lea             0x30($Htbl),$Htbl
1086         sub             \$1,%r10
1087         jnz             .Linit_loop_avx
1088
1089         vpalignr        \$8,$T2,$T1,$T3         # last "salt" is flipped
1090         vmovdqu         $T3,-0x10($Htbl)
1091
1092         vzeroupper
1093 ___
1094 $code.=<<___ if ($win64);
1095         movaps  (%rsp),%xmm6
1096         lea     0x18(%rsp),%rsp
1097 .LSEH_end_gcm_init_avx:
1098 ___
1099 $code.=<<___;
1100         ret
1101 .size   gcm_init_avx,.-gcm_init_avx
1102 ___
1103 } else {
1104 $code.=<<___;
1105         jmp     .L_init_clmul
1106 .size   gcm_init_avx,.-gcm_init_avx
1107 ___
1108 }
1109
1110 $code.=<<___;
1111 .globl  gcm_gmult_avx
1112 .type   gcm_gmult_avx,\@abi-omnipotent
1113 .align  32
1114 gcm_gmult_avx:
1115         jmp     .L_gmult_clmul
1116 .size   gcm_gmult_avx,.-gcm_gmult_avx
1117 ___
1118 \f
1119 $code.=<<___;
1120 .globl  gcm_ghash_avx
1121 .type   gcm_ghash_avx,\@abi-omnipotent
1122 .align  32
1123 gcm_ghash_avx:
1124 ___
1125 if ($avx) {
1126 my ($Xip,$Htbl,$inp,$len)=@_4args;
1127 my ($Xlo,$Xhi,$Xmi,
1128     $Zlo,$Zhi,$Zmi,
1129     $Hkey,$HK,$T1,$T2,
1130     $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
1131
1132 $code.=<<___ if ($win64);
1133         lea     -0x88(%rsp),%rax
1134 .LSEH_begin_gcm_ghash_avx:
1135         # I can't trust assembler to use specific encoding:-(
1136         .byte   0x48,0x8d,0x60,0xe0             #lea    -0x20(%rax),%rsp
1137         .byte   0x0f,0x29,0x70,0xe0             #movaps %xmm6,-0x20(%rax)
1138         .byte   0x0f,0x29,0x78,0xf0             #movaps %xmm7,-0x10(%rax)
1139         .byte   0x44,0x0f,0x29,0x00             #movaps %xmm8,0(%rax)
1140         .byte   0x44,0x0f,0x29,0x48,0x10        #movaps %xmm9,0x10(%rax)
1141         .byte   0x44,0x0f,0x29,0x50,0x20        #movaps %xmm10,0x20(%rax)
1142         .byte   0x44,0x0f,0x29,0x58,0x30        #movaps %xmm11,0x30(%rax)
1143         .byte   0x44,0x0f,0x29,0x60,0x40        #movaps %xmm12,0x40(%rax)
1144         .byte   0x44,0x0f,0x29,0x68,0x50        #movaps %xmm13,0x50(%rax)
1145         .byte   0x44,0x0f,0x29,0x70,0x60        #movaps %xmm14,0x60(%rax)
1146         .byte   0x44,0x0f,0x29,0x78,0x70        #movaps %xmm15,0x70(%rax)
1147 ___
1148 $code.=<<___;
1149         vzeroupper
1150
1151         vmovdqu         ($Xip),$Xi              # load $Xi
1152         lea             .L0x1c2_polynomial(%rip),%r10
1153         lea             0x40($Htbl),$Htbl       # size optimization
1154         vmovdqu         .Lbswap_mask(%rip),$bswap
1155         vpshufb         $bswap,$Xi,$Xi
1156         cmp             \$0x80,$len
1157         jb              .Lshort_avx
1158         sub             \$0x80,$len
1159
1160         vmovdqu         0x70($inp),$Ii          # I[7]
1161         vmovdqu         0x00-0x40($Htbl),$Hkey  # $Hkey^1
1162         vpshufb         $bswap,$Ii,$Ii
1163         vmovdqu         0x20-0x40($Htbl),$HK
1164
1165         vpunpckhqdq     $Ii,$Ii,$T2
1166          vmovdqu        0x60($inp),$Ij          # I[6]
1167         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1168         vpxor           $Ii,$T2,$T2
1169          vpshufb        $bswap,$Ij,$Ij
1170         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1171          vmovdqu        0x10-0x40($Htbl),$Hkey  # $Hkey^2
1172          vpunpckhqdq    $Ij,$Ij,$T1
1173          vmovdqu        0x50($inp),$Ii          # I[5]
1174         vpclmulqdq      \$0x00,$HK,$T2,$Xmi
1175          vpxor          $Ij,$T1,$T1
1176
1177          vpshufb        $bswap,$Ii,$Ii
1178         vpclmulqdq      \$0x00,$Hkey,$Ij,$Zlo
1179          vpunpckhqdq    $Ii,$Ii,$T2
1180         vpclmulqdq      \$0x11,$Hkey,$Ij,$Zhi
1181          vmovdqu        0x30-0x40($Htbl),$Hkey  # $Hkey^3
1182          vpxor          $Ii,$T2,$T2
1183          vmovdqu        0x40($inp),$Ij          # I[4]
1184         vpclmulqdq      \$0x10,$HK,$T1,$Zmi
1185          vmovdqu        0x50-0x40($Htbl),$HK
1186
1187          vpshufb        $bswap,$Ij,$Ij
1188         vpxor           $Xlo,$Zlo,$Zlo
1189         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1190         vpxor           $Xhi,$Zhi,$Zhi
1191          vpunpckhqdq    $Ij,$Ij,$T1
1192         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1193          vmovdqu        0x40-0x40($Htbl),$Hkey  # $Hkey^4
1194         vpxor           $Xmi,$Zmi,$Zmi
1195         vpclmulqdq      \$0x00,$HK,$T2,$Xmi
1196          vpxor          $Ij,$T1,$T1
1197
1198          vmovdqu        0x30($inp),$Ii          # I[3]
1199         vpxor           $Zlo,$Xlo,$Xlo
1200         vpclmulqdq      \$0x00,$Hkey,$Ij,$Zlo
1201         vpxor           $Zhi,$Xhi,$Xhi
1202          vpshufb        $bswap,$Ii,$Ii
1203         vpclmulqdq      \$0x11,$Hkey,$Ij,$Zhi
1204          vmovdqu        0x60-0x40($Htbl),$Hkey  # $Hkey^5
1205         vpxor           $Zmi,$Xmi,$Xmi
1206          vpunpckhqdq    $Ii,$Ii,$T2
1207         vpclmulqdq      \$0x10,$HK,$T1,$Zmi
1208          vmovdqu        0x80-0x40($Htbl),$HK
1209          vpxor          $Ii,$T2,$T2
1210
1211          vmovdqu        0x20($inp),$Ij          # I[2]
1212         vpxor           $Xlo,$Zlo,$Zlo
1213         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1214         vpxor           $Xhi,$Zhi,$Zhi
1215          vpshufb        $bswap,$Ij,$Ij
1216         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1217          vmovdqu        0x70-0x40($Htbl),$Hkey  # $Hkey^6
1218         vpxor           $Xmi,$Zmi,$Zmi
1219          vpunpckhqdq    $Ij,$Ij,$T1
1220         vpclmulqdq      \$0x00,$HK,$T2,$Xmi
1221          vpxor          $Ij,$T1,$T1
1222
1223          vmovdqu        0x10($inp),$Ii          # I[1]
1224         vpxor           $Zlo,$Xlo,$Xlo
1225         vpclmulqdq      \$0x00,$Hkey,$Ij,$Zlo
1226         vpxor           $Zhi,$Xhi,$Xhi
1227          vpshufb        $bswap,$Ii,$Ii
1228         vpclmulqdq      \$0x11,$Hkey,$Ij,$Zhi
1229          vmovdqu        0x90-0x40($Htbl),$Hkey  # $Hkey^7
1230         vpxor           $Zmi,$Xmi,$Xmi
1231          vpunpckhqdq    $Ii,$Ii,$T2
1232         vpclmulqdq      \$0x10,$HK,$T1,$Zmi
1233          vmovdqu        0xb0-0x40($Htbl),$HK
1234          vpxor          $Ii,$T2,$T2
1235
1236          vmovdqu        ($inp),$Ij              # I[0]
1237         vpxor           $Xlo,$Zlo,$Zlo
1238         vpclmulqdq      \$0x00,$Hkey,$Ii,$Xlo
1239         vpxor           $Xhi,$Zhi,$Zhi
1240          vpshufb        $bswap,$Ij,$Ij
1241         vpclmulqdq      \$0x11,$Hkey,$Ii,$Xhi
1242          vmovdqu        0xa0-0x40($Htbl),$Hkey  # $Hkey^8
1243         vpxor           $Xmi,$Zmi,$Zmi
1244         vpclmulqdq      \$0x10,$HK,$T2,$Xmi
1245
1246         lea             0x80($inp),$inp
1247         cmp             \$0x80,$len
1248         jb              .Ltail_avx
1249
1250         vpxor           $Xi,$Ij,$Ij             # accumulate $Xi
1251         sub             \$0x80,$len
1252         jmp             .Loop8x_avx
1253
1254 .align  32
1255 .Loop8x_avx:
1256         vpunpckhqdq     $Ij,$Ij,$T1
1257          vmovdqu        0x70($inp),$Ii          # I[7]
1258         vpxor           $Xlo,$Zlo,$Zlo
1259         vpxor           $Ij,$T1,$T1
1260         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xi
1261          vpshufb        $bswap,$Ii,$Ii
1262         vpxor           $Xhi,$Zhi,$Zhi
1263         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xo
1264          vmovdqu        0x00-0x40($Htbl),$Hkey  # $Hkey^1
1265          vpunpckhqdq    $Ii,$Ii,$T2
1266         vpxor           $Xmi,$Zmi,$Zmi
1267         vpclmulqdq      \$0x00,$HK,$T1,$Tred
1268          vmovdqu        0x20-0x40($Htbl),$HK
1269          vpxor          $Ii,$T2,$T2
1270
1271           vmovdqu       0x60($inp),$Ij          # I[6]
1272          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1273         vpxor           $Zlo,$Xi,$Xi            # collect result
1274           vpshufb       $bswap,$Ij,$Ij
1275          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1276         vxorps          $Zhi,$Xo,$Xo
1277           vmovdqu       0x10-0x40($Htbl),$Hkey  # $Hkey^2
1278          vpunpckhqdq    $Ij,$Ij,$T1
1279          vpclmulqdq     \$0x00,$HK,  $T2,$Xmi
1280         vpxor           $Zmi,$Tred,$Tred
1281          vxorps         $Ij,$T1,$T1
1282
1283           vmovdqu       0x50($inp),$Ii          # I[5]
1284         vpxor           $Xi,$Tred,$Tred         # aggregated Karatsuba post-processing
1285          vpclmulqdq     \$0x00,$Hkey,$Ij,$Zlo
1286         vpxor           $Xo,$Tred,$Tred
1287         vpslldq         \$8,$Tred,$T2
1288          vpxor          $Xlo,$Zlo,$Zlo
1289          vpclmulqdq     \$0x11,$Hkey,$Ij,$Zhi
1290         vpsrldq         \$8,$Tred,$Tred
1291         vpxor           $T2, $Xi, $Xi
1292           vmovdqu       0x30-0x40($Htbl),$Hkey  # $Hkey^3
1293           vpshufb       $bswap,$Ii,$Ii
1294         vxorps          $Tred,$Xo, $Xo
1295          vpxor          $Xhi,$Zhi,$Zhi
1296          vpunpckhqdq    $Ii,$Ii,$T2
1297          vpclmulqdq     \$0x10,$HK,  $T1,$Zmi
1298           vmovdqu       0x50-0x40($Htbl),$HK
1299          vpxor          $Ii,$T2,$T2
1300          vpxor          $Xmi,$Zmi,$Zmi
1301
1302           vmovdqu       0x40($inp),$Ij          # I[4]
1303         vpalignr        \$8,$Xi,$Xi,$Tred       # 1st phase
1304          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1305           vpshufb       $bswap,$Ij,$Ij
1306          vpxor          $Zlo,$Xlo,$Xlo
1307          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1308           vmovdqu       0x40-0x40($Htbl),$Hkey  # $Hkey^4
1309          vpunpckhqdq    $Ij,$Ij,$T1
1310          vpxor          $Zhi,$Xhi,$Xhi
1311          vpclmulqdq     \$0x00,$HK,  $T2,$Xmi
1312          vxorps         $Ij,$T1,$T1
1313          vpxor          $Zmi,$Xmi,$Xmi
1314
1315           vmovdqu       0x30($inp),$Ii          # I[3]
1316         vpclmulqdq      \$0x10,(%r10),$Xi,$Xi
1317          vpclmulqdq     \$0x00,$Hkey,$Ij,$Zlo
1318           vpshufb       $bswap,$Ii,$Ii
1319          vpxor          $Xlo,$Zlo,$Zlo
1320          vpclmulqdq     \$0x11,$Hkey,$Ij,$Zhi
1321           vmovdqu       0x60-0x40($Htbl),$Hkey  # $Hkey^5
1322          vpunpckhqdq    $Ii,$Ii,$T2
1323          vpxor          $Xhi,$Zhi,$Zhi
1324          vpclmulqdq     \$0x10,$HK,  $T1,$Zmi
1325           vmovdqu       0x80-0x40($Htbl),$HK
1326          vpxor          $Ii,$T2,$T2
1327          vpxor          $Xmi,$Zmi,$Zmi
1328
1329           vmovdqu       0x20($inp),$Ij          # I[2]
1330          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1331           vpshufb       $bswap,$Ij,$Ij
1332          vpxor          $Zlo,$Xlo,$Xlo
1333          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1334           vmovdqu       0x70-0x40($Htbl),$Hkey  # $Hkey^6
1335          vpunpckhqdq    $Ij,$Ij,$T1
1336          vpxor          $Zhi,$Xhi,$Xhi
1337          vpclmulqdq     \$0x00,$HK,  $T2,$Xmi
1338          vpxor          $Ij,$T1,$T1
1339          vpxor          $Zmi,$Xmi,$Xmi
1340         vxorps          $Tred,$Xi,$Xi
1341
1342           vmovdqu       0x10($inp),$Ii          # I[1]
1343         vpalignr        \$8,$Xi,$Xi,$Tred       # 2nd phase
1344          vpclmulqdq     \$0x00,$Hkey,$Ij,$Zlo
1345           vpshufb       $bswap,$Ii,$Ii
1346          vpxor          $Xlo,$Zlo,$Zlo
1347          vpclmulqdq     \$0x11,$Hkey,$Ij,$Zhi
1348           vmovdqu       0x90-0x40($Htbl),$Hkey  # $Hkey^7
1349         vpclmulqdq      \$0x10,(%r10),$Xi,$Xi
1350         vxorps          $Xo,$Tred,$Tred
1351          vpunpckhqdq    $Ii,$Ii,$T2
1352          vpxor          $Xhi,$Zhi,$Zhi
1353          vpclmulqdq     \$0x10,$HK,  $T1,$Zmi
1354           vmovdqu       0xb0-0x40($Htbl),$HK
1355          vpxor          $Ii,$T2,$T2
1356          vpxor          $Xmi,$Zmi,$Zmi
1357
1358           vmovdqu       ($inp),$Ij              # I[0]
1359          vpclmulqdq     \$0x00,$Hkey,$Ii,$Xlo
1360           vpshufb       $bswap,$Ij,$Ij
1361          vpclmulqdq     \$0x11,$Hkey,$Ii,$Xhi
1362           vmovdqu       0xa0-0x40($Htbl),$Hkey  # $Hkey^8
1363         vpxor           $Tred,$Ij,$Ij
1364          vpclmulqdq     \$0x10,$HK,  $T2,$Xmi
1365         vpxor           $Xi,$Ij,$Ij             # accumulate $Xi
1366
1367         lea             0x80($inp),$inp
1368         sub             \$0x80,$len
1369         jnc             .Loop8x_avx
1370
1371         add             \$0x80,$len
1372         jmp             .Ltail_no_xor_avx
1373
1374 .align  32
1375 .Lshort_avx:
1376         vmovdqu         -0x10($inp,$len),$Ii    # very last word
1377         lea             ($inp,$len),$inp
1378         vmovdqu         0x00-0x40($Htbl),$Hkey  # $Hkey^1
1379         vmovdqu         0x20-0x40($Htbl),$HK
1380         vpshufb         $bswap,$Ii,$Ij
1381
1382         vmovdqa         $Xlo,$Zlo               # subtle way to zero $Zlo,
1383         vmovdqa         $Xhi,$Zhi               # $Zhi and
1384         vmovdqa         $Xmi,$Zmi               # $Zmi
1385         sub             \$0x10,$len
1386         jz              .Ltail_avx
1387
1388         vpunpckhqdq     $Ij,$Ij,$T1
1389         vpxor           $Xlo,$Zlo,$Zlo
1390         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1391         vpxor           $Ij,$T1,$T1
1392          vmovdqu        -0x20($inp),$Ii
1393         vpxor           $Xhi,$Zhi,$Zhi
1394         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1395         vmovdqu         0x10-0x40($Htbl),$Hkey  # $Hkey^2
1396          vpshufb        $bswap,$Ii,$Ij
1397         vpxor           $Xmi,$Zmi,$Zmi
1398         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1399         vpsrldq         \$8,$HK,$HK
1400         sub             \$0x10,$len
1401         jz              .Ltail_avx
1402
1403         vpunpckhqdq     $Ij,$Ij,$T1
1404         vpxor           $Xlo,$Zlo,$Zlo
1405         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1406         vpxor           $Ij,$T1,$T1
1407          vmovdqu        -0x30($inp),$Ii
1408         vpxor           $Xhi,$Zhi,$Zhi
1409         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1410         vmovdqu         0x30-0x40($Htbl),$Hkey  # $Hkey^3
1411          vpshufb        $bswap,$Ii,$Ij
1412         vpxor           $Xmi,$Zmi,$Zmi
1413         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1414         vmovdqu         0x50-0x40($Htbl),$HK
1415         sub             \$0x10,$len
1416         jz              .Ltail_avx
1417
1418         vpunpckhqdq     $Ij,$Ij,$T1
1419         vpxor           $Xlo,$Zlo,$Zlo
1420         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1421         vpxor           $Ij,$T1,$T1
1422          vmovdqu        -0x40($inp),$Ii
1423         vpxor           $Xhi,$Zhi,$Zhi
1424         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1425         vmovdqu         0x40-0x40($Htbl),$Hkey  # $Hkey^4
1426          vpshufb        $bswap,$Ii,$Ij
1427         vpxor           $Xmi,$Zmi,$Zmi
1428         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1429         vpsrldq         \$8,$HK,$HK
1430         sub             \$0x10,$len
1431         jz              .Ltail_avx
1432
1433         vpunpckhqdq     $Ij,$Ij,$T1
1434         vpxor           $Xlo,$Zlo,$Zlo
1435         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1436         vpxor           $Ij,$T1,$T1
1437          vmovdqu        -0x50($inp),$Ii
1438         vpxor           $Xhi,$Zhi,$Zhi
1439         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1440         vmovdqu         0x60-0x40($Htbl),$Hkey  # $Hkey^5
1441          vpshufb        $bswap,$Ii,$Ij
1442         vpxor           $Xmi,$Zmi,$Zmi
1443         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1444         vmovdqu         0x80-0x40($Htbl),$HK
1445         sub             \$0x10,$len
1446         jz              .Ltail_avx
1447
1448         vpunpckhqdq     $Ij,$Ij,$T1
1449         vpxor           $Xlo,$Zlo,$Zlo
1450         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1451         vpxor           $Ij,$T1,$T1
1452          vmovdqu        -0x60($inp),$Ii
1453         vpxor           $Xhi,$Zhi,$Zhi
1454         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1455         vmovdqu         0x70-0x40($Htbl),$Hkey  # $Hkey^6
1456          vpshufb        $bswap,$Ii,$Ij
1457         vpxor           $Xmi,$Zmi,$Zmi
1458         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1459         vpsrldq         \$8,$HK,$HK
1460         sub             \$0x10,$len
1461         jz              .Ltail_avx
1462
1463         vpunpckhqdq     $Ij,$Ij,$T1
1464         vpxor           $Xlo,$Zlo,$Zlo
1465         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1466         vpxor           $Ij,$T1,$T1
1467          vmovdqu        -0x70($inp),$Ii
1468         vpxor           $Xhi,$Zhi,$Zhi
1469         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1470         vmovdqu         0x90-0x40($Htbl),$Hkey  # $Hkey^7
1471          vpshufb        $bswap,$Ii,$Ij
1472         vpxor           $Xmi,$Zmi,$Zmi
1473         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1474         vmovq           0xb8-0x40($Htbl),$HK
1475         sub             \$0x10,$len
1476         jmp             .Ltail_avx
1477
1478 .align  32
1479 .Ltail_avx:
1480         vpxor           $Xi,$Ij,$Ij             # accumulate $Xi
1481 .Ltail_no_xor_avx:
1482         vpunpckhqdq     $Ij,$Ij,$T1
1483         vpxor           $Xlo,$Zlo,$Zlo
1484         vpclmulqdq      \$0x00,$Hkey,$Ij,$Xlo
1485         vpxor           $Ij,$T1,$T1
1486         vpxor           $Xhi,$Zhi,$Zhi
1487         vpclmulqdq      \$0x11,$Hkey,$Ij,$Xhi
1488         vpxor           $Xmi,$Zmi,$Zmi
1489         vpclmulqdq      \$0x00,$HK,$T1,$Xmi
1490
1491         vmovdqu         (%r10),$Tred
1492
1493         vpxor           $Xlo,$Zlo,$Xi
1494         vpxor           $Xhi,$Zhi,$Xo
1495         vpxor           $Xmi,$Zmi,$Zmi
1496
1497         vpxor           $Xi, $Zmi,$Zmi          # aggregated Karatsuba post-processing
1498         vpxor           $Xo, $Zmi,$Zmi
1499         vpslldq         \$8, $Zmi,$T2
1500         vpsrldq         \$8, $Zmi,$Zmi
1501         vpxor           $T2, $Xi, $Xi
1502         vpxor           $Zmi,$Xo, $Xo
1503
1504         vpclmulqdq      \$0x10,$Tred,$Xi,$T2    # 1st phase
1505         vpalignr        \$8,$Xi,$Xi,$Xi
1506         vpxor           $T2,$Xi,$Xi
1507
1508         vpclmulqdq      \$0x10,$Tred,$Xi,$T2    # 2nd phase
1509         vpalignr        \$8,$Xi,$Xi,$Xi
1510         vpxor           $Xo,$Xi,$Xi
1511         vpxor           $T2,$Xi,$Xi
1512
1513         cmp             \$0,$len
1514         jne             .Lshort_avx
1515
1516         vpshufb         $bswap,$Xi,$Xi
1517         vmovdqu         $Xi,($Xip)
1518         vzeroupper
1519 ___
1520 $code.=<<___ if ($win64);
1521         movaps  (%rsp),%xmm6
1522         movaps  0x10(%rsp),%xmm7
1523         movaps  0x20(%rsp),%xmm8
1524         movaps  0x30(%rsp),%xmm9
1525         movaps  0x40(%rsp),%xmm10
1526         movaps  0x50(%rsp),%xmm11
1527         movaps  0x60(%rsp),%xmm12
1528         movaps  0x70(%rsp),%xmm13
1529         movaps  0x80(%rsp),%xmm14
1530         movaps  0x90(%rsp),%xmm15
1531         lea     0xa8(%rsp),%rsp
1532 .LSEH_end_gcm_ghash_avx:
1533 ___
1534 $code.=<<___;
1535         ret
1536 .size   gcm_ghash_avx,.-gcm_ghash_avx
1537 ___
1538 } else {
1539 $code.=<<___;
1540         jmp     .L_ghash_clmul
1541 .size   gcm_ghash_avx,.-gcm_ghash_avx
1542 ___
1543 }
1544 \f
1545 $code.=<<___;
1546 .align  64
1547 .Lbswap_mask:
1548         .byte   15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
1549 .L0x1c2_polynomial:
1550         .byte   1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
1551 .L7_mask:
1552         .long   7,0,7,0
1553 .L7_mask_poly:
1554         .long   7,0,`0xE1<<1`,0
1555 .align  64
1556 .type   .Lrem_4bit,\@object
1557 .Lrem_4bit:
1558         .long   0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
1559         .long   0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
1560         .long   0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
1561         .long   0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
1562 .type   .Lrem_8bit,\@object
1563 .Lrem_8bit:
1564         .value  0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
1565         .value  0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
1566         .value  0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
1567         .value  0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
1568         .value  0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
1569         .value  0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
1570         .value  0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
1571         .value  0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
1572         .value  0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
1573         .value  0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
1574         .value  0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
1575         .value  0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
1576         .value  0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
1577         .value  0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
1578         .value  0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
1579         .value  0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
1580         .value  0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
1581         .value  0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
1582         .value  0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
1583         .value  0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
1584         .value  0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
1585         .value  0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
1586         .value  0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
1587         .value  0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
1588         .value  0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
1589         .value  0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
1590         .value  0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
1591         .value  0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
1592         .value  0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
1593         .value  0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
1594         .value  0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
1595         .value  0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
1596
1597 .asciz  "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1598 .align  64
1599 ___
1600 \f
1601 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1602 #               CONTEXT *context,DISPATCHER_CONTEXT *disp)
1603 if ($win64) {
1604 $rec="%rcx";
1605 $frame="%rdx";
1606 $context="%r8";
1607 $disp="%r9";
1608
1609 $code.=<<___;
1610 .extern __imp_RtlVirtualUnwind
1611 .type   se_handler,\@abi-omnipotent
1612 .align  16
1613 se_handler:
1614         push    %rsi
1615         push    %rdi
1616         push    %rbx
1617         push    %rbp
1618         push    %r12
1619         push    %r13
1620         push    %r14
1621         push    %r15
1622         pushfq
1623         sub     \$64,%rsp
1624
1625         mov     120($context),%rax      # pull context->Rax
1626         mov     248($context),%rbx      # pull context->Rip
1627
1628         mov     8($disp),%rsi           # disp->ImageBase
1629         mov     56($disp),%r11          # disp->HandlerData
1630
1631         mov     0(%r11),%r10d           # HandlerData[0]
1632         lea     (%rsi,%r10),%r10        # prologue label
1633         cmp     %r10,%rbx               # context->Rip<prologue label
1634         jb      .Lin_prologue
1635
1636         mov     152($context),%rax      # pull context->Rsp
1637
1638         mov     4(%r11),%r10d           # HandlerData[1]
1639         lea     (%rsi,%r10),%r10        # epilogue label
1640         cmp     %r10,%rbx               # context->Rip>=epilogue label
1641         jae     .Lin_prologue
1642
1643         lea     24(%rax),%rax           # adjust "rsp"
1644
1645         mov     -8(%rax),%rbx
1646         mov     -16(%rax),%rbp
1647         mov     -24(%rax),%r12
1648         mov     %rbx,144($context)      # restore context->Rbx
1649         mov     %rbp,160($context)      # restore context->Rbp
1650         mov     %r12,216($context)      # restore context->R12
1651
1652 .Lin_prologue:
1653         mov     8(%rax),%rdi
1654         mov     16(%rax),%rsi
1655         mov     %rax,152($context)      # restore context->Rsp
1656         mov     %rsi,168($context)      # restore context->Rsi
1657         mov     %rdi,176($context)      # restore context->Rdi
1658
1659         mov     40($disp),%rdi          # disp->ContextRecord
1660         mov     $context,%rsi           # context
1661         mov     \$`1232/8`,%ecx         # sizeof(CONTEXT)
1662         .long   0xa548f3fc              # cld; rep movsq
1663
1664         mov     $disp,%rsi
1665         xor     %rcx,%rcx               # arg1, UNW_FLAG_NHANDLER
1666         mov     8(%rsi),%rdx            # arg2, disp->ImageBase
1667         mov     0(%rsi),%r8             # arg3, disp->ControlPc
1668         mov     16(%rsi),%r9            # arg4, disp->FunctionEntry
1669         mov     40(%rsi),%r10           # disp->ContextRecord
1670         lea     56(%rsi),%r11           # &disp->HandlerData
1671         lea     24(%rsi),%r12           # &disp->EstablisherFrame
1672         mov     %r10,32(%rsp)           # arg5
1673         mov     %r11,40(%rsp)           # arg6
1674         mov     %r12,48(%rsp)           # arg7
1675         mov     %rcx,56(%rsp)           # arg8, (NULL)
1676         call    *__imp_RtlVirtualUnwind(%rip)
1677
1678         mov     \$1,%eax                # ExceptionContinueSearch
1679         add     \$64,%rsp
1680         popfq
1681         pop     %r15
1682         pop     %r14
1683         pop     %r13
1684         pop     %r12
1685         pop     %rbp
1686         pop     %rbx
1687         pop     %rdi
1688         pop     %rsi
1689         ret
1690 .size   se_handler,.-se_handler
1691
1692 .section        .pdata
1693 .align  4
1694         .rva    .LSEH_begin_gcm_gmult_4bit
1695         .rva    .LSEH_end_gcm_gmult_4bit
1696         .rva    .LSEH_info_gcm_gmult_4bit
1697
1698         .rva    .LSEH_begin_gcm_ghash_4bit
1699         .rva    .LSEH_end_gcm_ghash_4bit
1700         .rva    .LSEH_info_gcm_ghash_4bit
1701
1702         .rva    .LSEH_begin_gcm_init_clmul
1703         .rva    .LSEH_end_gcm_init_clmul
1704         .rva    .LSEH_info_gcm_init_clmul
1705
1706         .rva    .LSEH_begin_gcm_ghash_clmul
1707         .rva    .LSEH_end_gcm_ghash_clmul
1708         .rva    .LSEH_info_gcm_ghash_clmul
1709 ___
1710 $code.=<<___    if ($avx);
1711         .rva    .LSEH_begin_gcm_init_avx
1712         .rva    .LSEH_end_gcm_init_avx
1713         .rva    .LSEH_info_gcm_init_clmul
1714
1715         .rva    .LSEH_begin_gcm_ghash_avx
1716         .rva    .LSEH_end_gcm_ghash_avx
1717         .rva    .LSEH_info_gcm_ghash_clmul
1718 ___
1719 $code.=<<___;
1720 .section        .xdata
1721 .align  8
1722 .LSEH_info_gcm_gmult_4bit:
1723         .byte   9,0,0,0
1724         .rva    se_handler
1725         .rva    .Lgmult_prologue,.Lgmult_epilogue       # HandlerData
1726 .LSEH_info_gcm_ghash_4bit:
1727         .byte   9,0,0,0
1728         .rva    se_handler
1729         .rva    .Lghash_prologue,.Lghash_epilogue       # HandlerData
1730 .LSEH_info_gcm_init_clmul:
1731         .byte   0x01,0x08,0x03,0x00
1732         .byte   0x08,0x68,0x00,0x00     #movaps 0x00(rsp),xmm6
1733         .byte   0x04,0x22,0x00,0x00     #sub    rsp,0x18
1734 .LSEH_info_gcm_ghash_clmul:
1735         .byte   0x01,0x33,0x16,0x00
1736         .byte   0x33,0xf8,0x09,0x00     #movaps 0x90(rsp),xmm15
1737         .byte   0x2e,0xe8,0x08,0x00     #movaps 0x80(rsp),xmm14
1738         .byte   0x29,0xd8,0x07,0x00     #movaps 0x70(rsp),xmm13
1739         .byte   0x24,0xc8,0x06,0x00     #movaps 0x60(rsp),xmm12
1740         .byte   0x1f,0xb8,0x05,0x00     #movaps 0x50(rsp),xmm11
1741         .byte   0x1a,0xa8,0x04,0x00     #movaps 0x40(rsp),xmm10
1742         .byte   0x15,0x98,0x03,0x00     #movaps 0x30(rsp),xmm9
1743         .byte   0x10,0x88,0x02,0x00     #movaps 0x20(rsp),xmm8
1744         .byte   0x0c,0x78,0x01,0x00     #movaps 0x10(rsp),xmm7
1745         .byte   0x08,0x68,0x00,0x00     #movaps 0x00(rsp),xmm6
1746         .byte   0x04,0x01,0x15,0x00     #sub    rsp,0xa8
1747 ___
1748 }
1749 \f
1750 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
1751
1752 print $code;
1753
1754 close STDOUT;