3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
12 # The module implements "4-bit" Galois field multiplication and
13 # streamed GHASH function. "4-bit" means that it uses 256 bytes
14 # per-key table [+128 bytes shared table]. Streamed GHASH performance
15 # was measured to be 6.35 cycles per processed byte on Itanium 2,
16 # which is >90% better than Microsoft compiler generated code. Well,
17 # the number should have been ~6.5. The deviation has everything to do
18 # with the way performance is measured, as difference between GCM and
19 # straightforward 128-bit counter mode. To anchor to something else
20 # sha1-ia64.pl module processes one byte in 6.0 cycles. On Itanium
21 # GHASH should run at ~8.5 cycles per byte.
23 $output=shift and (open STDOUT,">$output" or die "can't open $output: $!");
27 for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
28 } else { $ADDP="add"; }
29 for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/);
30 $big_endian=0 if (/\-DL_ENDIAN/); }
31 if (!defined($big_endian))
32 { $big_endian=(unpack('L',pack('N',1))==1); }
36 my ($p16,$p17)=(shift)?("p63","p63"):("p16","p17"); # mask references to inp
38 # Loop is scheduled for 6 ticks on Itanium 2 and 8 on Itanium, i.e.
39 # in scalable manner;-) Naturally assuming data in L1 cache...
40 # Special note about 'dep' instruction, which is used to construct
41 # &rem_4bit[Zlo&0xf]. It works, because rem_4bit is aligned at 128
42 # bytes boundary and lower 7 bits of its address are guaranteed to
46 { .mfi; (p18) ld8 Hlo=[Hi[1]],-8
47 (p19) dep rem=Zlo,rem_4bitp,3,4 }
48 { .mfi; (p19) xor Zhi=Zhi,Hhi
49 ($p17) xor xi[1]=xi[1],in[1] };;
50 { .mfi; (p18) ld8 Hhi=[Hi[1]]
51 (p19) shrp Zlo=Zhi,Zlo,4 }
52 { .mfi; (p19) ld8 rem=[rem]
53 (p18) and Hi[1]=mask0xf0,xi[2] };;
54 { .mmi; ($p16) ld1 in[0]=[inp],-1
56 (p19) shr.u Zhi=Zhi,4 }
57 { .mib; (p19) xor Hhi=Hhi,rem
58 (p18) add Hi[1]=Htbl,Hi[1] };;
60 { .mfi; (p18) ld8 Hlo=[Hi[1]],-8
61 (p18) dep rem=Zlo,rem_4bitp,3,4 }
62 { .mfi; (p17) shladd Hi[0]=xi[1],4,r0
63 (p18) xor Zhi=Zhi,Hhi };;
64 { .mfi; (p18) ld8 Hhi=[Hi[1]]
65 (p18) shrp Zlo=Zhi,Zlo,4 }
66 { .mfi; (p18) ld8 rem=[rem]
67 (p17) and Hi[0]=mask0xf0,Hi[0] };;
68 { .mmi; (p16) ld1 xi[0]=[Xi],-1
70 (p18) shr.u Zhi=Zhi,4 }
71 { .mib; (p18) xor Hhi=Hhi,rem
72 (p17) add Hi[0]=Htbl,Hi[0]
73 br.ctop.sptk $label };;
81 prevfs=r2; prevlc=r3; prevpr=r8;
83 rem=r22; rem_4bitp=r23;
89 .global gcm_gmult_4bit#
92 .skip 16;; // aligns loop body
95 { .mmi; .save ar.pfs,prevfs
96 alloc prevfs=ar.pfs,2,6,0,8
97 $ADDP Xi=15,in0 // &Xi[15]
99 { .mii; $ADDP Htbl=8,in1 // &Htbl[0].lo
106 .rotr in[3],xi[3],Hi[2]
108 { .mib; ld1 xi[2]=[Xi],-1 // Xi[15]
110 brp.loop.imp .Loop1,.Lend1-16};;
111 { .mmi; ld1 xi[1]=[Xi],-1 // Xi[14]
113 { .mii; shladd Hi[1]=xi[2],4,r0
116 { .mii; and Hi[1]=mask0xf0,Hi[1]
119 { .mii; add Hi[1]=Htbl,Hi[1] // &Htbl[nlo].lo
120 add rem_4bitp=rem_4bit#-gcm_gmult_4bit#,rem_4bitp
126 { .mib; xor Zhi=Zhi,Hhi };; // modulo-scheduling artefact
127 { .mib; mux1 Zlo=Zlo,\@rev };;
128 { .mib; mux1 Zhi=Zhi,\@rev };;
129 { .mmi; add Hlo=9,Xi;; // ;; is here to prevent
130 add Hhi=1,Xi };; // pipeline flush on Itanium
131 { .mib; st8 [Hlo]=Zlo
133 { .mib; st8 [Hhi]=Zhi
135 br.ret.sptk.many b0 };;
136 .endp gcm_gmult_4bit#
138 .global gcm_ghash_4bit#
139 .proc gcm_ghash_4bit#
143 { .mmi; .save ar.pfs,prevfs
144 alloc prevfs=ar.pfs,4,4,0,8
145 $ADDP inp=15,in0 // &inp[15]
147 { .mmi; $ADDP end=in1,in0 // &inp[len]
148 $ADDP Xi=15,in2 // &Xi[15]
151 { .mmi; $ADDP Htbl=8,in3 // &Htbl[0].lo
157 .rotr in[3],xi[3],Hi[2]
159 { .mmi; ld1 in[2]=[inp],-1 // inp[15]
160 ld1 xi[2]=[Xi],-1 // Xi[15]
162 { .mmi; ld1 in[1]=[inp],-1 // inp[14]
163 ld1 xi[1]=[Xi],-1 // Xi[14]
164 xor xi[2]=xi[2],in[2] };;
165 { .mii; shladd Hi[1]=xi[2],4,r0
168 { .mii; and Hi[1]=mask0xf0,Hi[1]
171 { .mii; add Hi[1]=Htbl,Hi[1] // &Htbl[nlo].lo
172 add rem_4bitp=rem_4bit#-gcm_ghash_4bit#,rem_4bitp
177 { .mib; xor Zhi=Zhi,Hhi // modulo-scheduling artefact
178 extr.u xi[2]=Zlo,0,8 } // Xi[15]
179 { .mib; cmp.ltu p6,p0=inp,end // are we done?
180 add inp=32,inp // advance inp
183 (p6) ld1 in[2]=[inp],-1 // inp[15]
184 (p6) extr.u xi[1]=Zlo,8,8 // Xi[14]
185 (p6) mov ar.lc=13 };;
187 (p6) ld1 in[1]=[inp],-1 // inp[14]
189 mux1 Zlo=Zlo,\@rev };;
191 (p6) xor xi[2]=xi[2],in[2]
192 mux1 Zhi=Zhi,\@rev };;
194 (p6) shladd Hi[1]=xi[2],4,r0
195 add Hlo=9,Xi // Xi is &Xi[-1]
198 (p6) and Hi[1]=mask0xf0,Hi[1]
199 (p6) add Xi=14,Xi // &Xi[13]
200 (p6) mov pr.rot=0x7<<16 };;
202 { .mii; st8 [Hlo]=Zlo
204 (p6) add Hi[1]=Htbl,Hi[1] };;
205 { .mib; st8 [Hhi]=Zhi
207 (p6) br.cond.dptk.many .LoopN };;
209 { .mib; mov pr=prevpr,-2 }
210 { .mib; mov ar.lc=prevlc
211 br.ret.sptk.many b0 };;
212 .endp gcm_ghash_4bit#
215 .type rem_4bit#,\@object
217 data8 0x0000<<48, 0x1C20<<48, 0x3840<<48, 0x2460<<48
218 data8 0x7080<<48, 0x6CA0<<48, 0x48C0<<48, 0x54E0<<48
219 data8 0xE100<<48, 0xFD20<<48, 0xD940<<48, 0xC560<<48
220 data8 0x9180<<48, 0x8DA0<<48, 0xA9C0<<48, 0xB5E0<<48
222 stringz "GHASH for IA64, CRYPTOGAMS by <appro\@openssl.org>"
225 $code =~ s/mux1(\s+)\S+\@rev/nop.i$1 0x0/gm if ($big_endian);