Remove some unneeded code
[openssl.git] / crypto / ec / ecp_nistp521.c
1 /*
2  * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /* Copyright 2011 Google Inc.
11  *
12  * Licensed under the Apache License, Version 2.0 (the "License");
13  *
14  * you may not use this file except in compliance with the License.
15  * You may obtain a copy of the License at
16  *
17  *     http://www.apache.org/licenses/LICENSE-2.0
18  *
19  *  Unless required by applicable law or agreed to in writing, software
20  *  distributed under the License is distributed on an "AS IS" BASIS,
21  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  *  See the License for the specific language governing permissions and
23  *  limitations under the License.
24  */
25
26 /*
27  * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28  *
29  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31  * work which got its smarts from Daniel J. Bernstein's work on the same.
32  */
33
34 #include <openssl/e_os2.h>
35 #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36 NON_EMPTY_TRANSLATION_UNIT
37 #else
38
39 # include <string.h>
40 # include <openssl/err.h>
41 # include "ec_lcl.h"
42
43 # if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
44   /* even with gcc, the typedef won't work for 32-bit platforms */
45 typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46                                  * platforms */
47 # else
48 #  error "Need GCC 3.1 or later to define type uint128_t"
49 # endif
50
51 typedef uint8_t u8;
52 typedef uint64_t u64;
53
54 /*
55  * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56  * element of this field into 66 bytes where the most significant byte
57  * contains only a single bit. We call this an felem_bytearray.
58  */
59
60 typedef u8 felem_bytearray[66];
61
62 /*
63  * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64  * These values are big-endian.
65  */
66 static const felem_bytearray nistp521_curve_params[5] = {
67     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75      0xff, 0xff},
76     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84      0xff, 0xfc},
85     {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86      0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87      0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88      0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89      0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90      0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91      0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92      0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93      0x3f, 0x00},
94     {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95      0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96      0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97      0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98      0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99      0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100      0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101      0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102      0xbd, 0x66},
103     {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104      0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105      0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106      0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107      0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108      0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109      0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110      0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111      0x66, 0x50}
112 };
113
114 /*-
115  * The representation of field elements.
116  * ------------------------------------
117  *
118  * We represent field elements with nine values. These values are either 64 or
119  * 128 bits and the field element represented is:
120  *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121  * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122  * 58 bits apart, but are greater than 58 bits in length, the most significant
123  * bits of each limb overlap with the least significant bits of the next.
124  *
125  * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126  * 'largefelem' */
127
128 # define NLIMBS 9
129
130 typedef uint64_t limb;
131 typedef limb felem[NLIMBS];
132 typedef uint128_t largefelem[NLIMBS];
133
134 static const limb bottom57bits = 0x1ffffffffffffff;
135 static const limb bottom58bits = 0x3ffffffffffffff;
136
137 /*
138  * bin66_to_felem takes a little-endian byte array and converts it into felem
139  * form. This assumes that the CPU is little-endian.
140  */
141 static void bin66_to_felem(felem out, const u8 in[66])
142 {
143     out[0] = (*((limb *) & in[0])) & bottom58bits;
144     out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
145     out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
146     out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
147     out[4] = (*((limb *) & in[29])) & bottom58bits;
148     out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
149     out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
150     out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
151     out[8] = (*((limb *) & in[58])) & bottom57bits;
152 }
153
154 /*
155  * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
156  * array. This assumes that the CPU is little-endian.
157  */
158 static void felem_to_bin66(u8 out[66], const felem in)
159 {
160     memset(out, 0, 66);
161     (*((limb *) & out[0])) = in[0];
162     (*((limb *) & out[7])) |= in[1] << 2;
163     (*((limb *) & out[14])) |= in[2] << 4;
164     (*((limb *) & out[21])) |= in[3] << 6;
165     (*((limb *) & out[29])) = in[4];
166     (*((limb *) & out[36])) |= in[5] << 2;
167     (*((limb *) & out[43])) |= in[6] << 4;
168     (*((limb *) & out[50])) |= in[7] << 6;
169     (*((limb *) & out[58])) = in[8];
170 }
171
172 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
173 static void flip_endian(u8 *out, const u8 *in, unsigned len)
174 {
175     unsigned i;
176     for (i = 0; i < len; ++i)
177         out[i] = in[len - 1 - i];
178 }
179
180 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
181 static int BN_to_felem(felem out, const BIGNUM *bn)
182 {
183     felem_bytearray b_in;
184     felem_bytearray b_out;
185     unsigned num_bytes;
186
187     /* BN_bn2bin eats leading zeroes */
188     memset(b_out, 0, sizeof(b_out));
189     num_bytes = BN_num_bytes(bn);
190     if (num_bytes > sizeof(b_out)) {
191         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
192         return 0;
193     }
194     if (BN_is_negative(bn)) {
195         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
196         return 0;
197     }
198     num_bytes = BN_bn2bin(bn, b_in);
199     flip_endian(b_out, b_in, num_bytes);
200     bin66_to_felem(out, b_out);
201     return 1;
202 }
203
204 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
205 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
206 {
207     felem_bytearray b_in, b_out;
208     felem_to_bin66(b_in, in);
209     flip_endian(b_out, b_in, sizeof(b_out));
210     return BN_bin2bn(b_out, sizeof(b_out), out);
211 }
212
213 /*-
214  * Field operations
215  * ----------------
216  */
217
218 static void felem_one(felem out)
219 {
220     out[0] = 1;
221     out[1] = 0;
222     out[2] = 0;
223     out[3] = 0;
224     out[4] = 0;
225     out[5] = 0;
226     out[6] = 0;
227     out[7] = 0;
228     out[8] = 0;
229 }
230
231 static void felem_assign(felem out, const felem in)
232 {
233     out[0] = in[0];
234     out[1] = in[1];
235     out[2] = in[2];
236     out[3] = in[3];
237     out[4] = in[4];
238     out[5] = in[5];
239     out[6] = in[6];
240     out[7] = in[7];
241     out[8] = in[8];
242 }
243
244 /* felem_sum64 sets out = out + in. */
245 static void felem_sum64(felem out, const felem in)
246 {
247     out[0] += in[0];
248     out[1] += in[1];
249     out[2] += in[2];
250     out[3] += in[3];
251     out[4] += in[4];
252     out[5] += in[5];
253     out[6] += in[6];
254     out[7] += in[7];
255     out[8] += in[8];
256 }
257
258 /* felem_scalar sets out = in * scalar */
259 static void felem_scalar(felem out, const felem in, limb scalar)
260 {
261     out[0] = in[0] * scalar;
262     out[1] = in[1] * scalar;
263     out[2] = in[2] * scalar;
264     out[3] = in[3] * scalar;
265     out[4] = in[4] * scalar;
266     out[5] = in[5] * scalar;
267     out[6] = in[6] * scalar;
268     out[7] = in[7] * scalar;
269     out[8] = in[8] * scalar;
270 }
271
272 /* felem_scalar64 sets out = out * scalar */
273 static void felem_scalar64(felem out, limb scalar)
274 {
275     out[0] *= scalar;
276     out[1] *= scalar;
277     out[2] *= scalar;
278     out[3] *= scalar;
279     out[4] *= scalar;
280     out[5] *= scalar;
281     out[6] *= scalar;
282     out[7] *= scalar;
283     out[8] *= scalar;
284 }
285
286 /* felem_scalar128 sets out = out * scalar */
287 static void felem_scalar128(largefelem out, limb scalar)
288 {
289     out[0] *= scalar;
290     out[1] *= scalar;
291     out[2] *= scalar;
292     out[3] *= scalar;
293     out[4] *= scalar;
294     out[5] *= scalar;
295     out[6] *= scalar;
296     out[7] *= scalar;
297     out[8] *= scalar;
298 }
299
300 /*-
301  * felem_neg sets |out| to |-in|
302  * On entry:
303  *   in[i] < 2^59 + 2^14
304  * On exit:
305  *   out[i] < 2^62
306  */
307 static void felem_neg(felem out, const felem in)
308 {
309     /* In order to prevent underflow, we subtract from 0 mod p. */
310     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
311     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
312
313     out[0] = two62m3 - in[0];
314     out[1] = two62m2 - in[1];
315     out[2] = two62m2 - in[2];
316     out[3] = two62m2 - in[3];
317     out[4] = two62m2 - in[4];
318     out[5] = two62m2 - in[5];
319     out[6] = two62m2 - in[6];
320     out[7] = two62m2 - in[7];
321     out[8] = two62m2 - in[8];
322 }
323
324 /*-
325  * felem_diff64 subtracts |in| from |out|
326  * On entry:
327  *   in[i] < 2^59 + 2^14
328  * On exit:
329  *   out[i] < out[i] + 2^62
330  */
331 static void felem_diff64(felem out, const felem in)
332 {
333     /*
334      * In order to prevent underflow, we add 0 mod p before subtracting.
335      */
336     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
337     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
338
339     out[0] += two62m3 - in[0];
340     out[1] += two62m2 - in[1];
341     out[2] += two62m2 - in[2];
342     out[3] += two62m2 - in[3];
343     out[4] += two62m2 - in[4];
344     out[5] += two62m2 - in[5];
345     out[6] += two62m2 - in[6];
346     out[7] += two62m2 - in[7];
347     out[8] += two62m2 - in[8];
348 }
349
350 /*-
351  * felem_diff_128_64 subtracts |in| from |out|
352  * On entry:
353  *   in[i] < 2^62 + 2^17
354  * On exit:
355  *   out[i] < out[i] + 2^63
356  */
357 static void felem_diff_128_64(largefelem out, const felem in)
358 {
359     /*
360      * In order to prevent underflow, we add 0 mod p before subtracting.
361      */
362     static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
363     static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
364
365     out[0] += two63m6 - in[0];
366     out[1] += two63m5 - in[1];
367     out[2] += two63m5 - in[2];
368     out[3] += two63m5 - in[3];
369     out[4] += two63m5 - in[4];
370     out[5] += two63m5 - in[5];
371     out[6] += two63m5 - in[6];
372     out[7] += two63m5 - in[7];
373     out[8] += two63m5 - in[8];
374 }
375
376 /*-
377  * felem_diff_128_64 subtracts |in| from |out|
378  * On entry:
379  *   in[i] < 2^126
380  * On exit:
381  *   out[i] < out[i] + 2^127 - 2^69
382  */
383 static void felem_diff128(largefelem out, const largefelem in)
384 {
385     /*
386      * In order to prevent underflow, we add 0 mod p before subtracting.
387      */
388     static const uint128_t two127m70 =
389         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
390     static const uint128_t two127m69 =
391         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
392
393     out[0] += (two127m70 - in[0]);
394     out[1] += (two127m69 - in[1]);
395     out[2] += (two127m69 - in[2]);
396     out[3] += (two127m69 - in[3]);
397     out[4] += (two127m69 - in[4]);
398     out[5] += (two127m69 - in[5]);
399     out[6] += (two127m69 - in[6]);
400     out[7] += (two127m69 - in[7]);
401     out[8] += (two127m69 - in[8]);
402 }
403
404 /*-
405  * felem_square sets |out| = |in|^2
406  * On entry:
407  *   in[i] < 2^62
408  * On exit:
409  *   out[i] < 17 * max(in[i]) * max(in[i])
410  */
411 static void felem_square(largefelem out, const felem in)
412 {
413     felem inx2, inx4;
414     felem_scalar(inx2, in, 2);
415     felem_scalar(inx4, in, 4);
416
417     /*-
418      * We have many cases were we want to do
419      *   in[x] * in[y] +
420      *   in[y] * in[x]
421      * This is obviously just
422      *   2 * in[x] * in[y]
423      * However, rather than do the doubling on the 128 bit result, we
424      * double one of the inputs to the multiplication by reading from
425      * |inx2|
426      */
427
428     out[0] = ((uint128_t) in[0]) * in[0];
429     out[1] = ((uint128_t) in[0]) * inx2[1];
430     out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
431     out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
432     out[4] = ((uint128_t) in[0]) * inx2[4] +
433              ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
434     out[5] = ((uint128_t) in[0]) * inx2[5] +
435              ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
436     out[6] = ((uint128_t) in[0]) * inx2[6] +
437              ((uint128_t) in[1]) * inx2[5] +
438              ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
439     out[7] = ((uint128_t) in[0]) * inx2[7] +
440              ((uint128_t) in[1]) * inx2[6] +
441              ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
442     out[8] = ((uint128_t) in[0]) * inx2[8] +
443              ((uint128_t) in[1]) * inx2[7] +
444              ((uint128_t) in[2]) * inx2[6] +
445              ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
446
447     /*
448      * The remaining limbs fall above 2^521, with the first falling at 2^522.
449      * They correspond to locations one bit up from the limbs produced above
450      * so we would have to multiply by two to align them. Again, rather than
451      * operate on the 128-bit result, we double one of the inputs to the
452      * multiplication. If we want to double for both this reason, and the
453      * reason above, then we end up multiplying by four.
454      */
455
456     /* 9 */
457     out[0] += ((uint128_t) in[1]) * inx4[8] +
458               ((uint128_t) in[2]) * inx4[7] +
459               ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
460
461     /* 10 */
462     out[1] += ((uint128_t) in[2]) * inx4[8] +
463               ((uint128_t) in[3]) * inx4[7] +
464               ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
465
466     /* 11 */
467     out[2] += ((uint128_t) in[3]) * inx4[8] +
468               ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
469
470     /* 12 */
471     out[3] += ((uint128_t) in[4]) * inx4[8] +
472               ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
473
474     /* 13 */
475     out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
476
477     /* 14 */
478     out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
479
480     /* 15 */
481     out[6] += ((uint128_t) in[7]) * inx4[8];
482
483     /* 16 */
484     out[7] += ((uint128_t) in[8]) * inx2[8];
485 }
486
487 /*-
488  * felem_mul sets |out| = |in1| * |in2|
489  * On entry:
490  *   in1[i] < 2^64
491  *   in2[i] < 2^63
492  * On exit:
493  *   out[i] < 17 * max(in1[i]) * max(in2[i])
494  */
495 static void felem_mul(largefelem out, const felem in1, const felem in2)
496 {
497     felem in2x2;
498     felem_scalar(in2x2, in2, 2);
499
500     out[0] = ((uint128_t) in1[0]) * in2[0];
501
502     out[1] = ((uint128_t) in1[0]) * in2[1] +
503              ((uint128_t) in1[1]) * in2[0];
504
505     out[2] = ((uint128_t) in1[0]) * in2[2] +
506              ((uint128_t) in1[1]) * in2[1] +
507              ((uint128_t) in1[2]) * in2[0];
508
509     out[3] = ((uint128_t) in1[0]) * in2[3] +
510              ((uint128_t) in1[1]) * in2[2] +
511              ((uint128_t) in1[2]) * in2[1] +
512              ((uint128_t) in1[3]) * in2[0];
513
514     out[4] = ((uint128_t) in1[0]) * in2[4] +
515              ((uint128_t) in1[1]) * in2[3] +
516              ((uint128_t) in1[2]) * in2[2] +
517              ((uint128_t) in1[3]) * in2[1] +
518              ((uint128_t) in1[4]) * in2[0];
519
520     out[5] = ((uint128_t) in1[0]) * in2[5] +
521              ((uint128_t) in1[1]) * in2[4] +
522              ((uint128_t) in1[2]) * in2[3] +
523              ((uint128_t) in1[3]) * in2[2] +
524              ((uint128_t) in1[4]) * in2[1] +
525              ((uint128_t) in1[5]) * in2[0];
526
527     out[6] = ((uint128_t) in1[0]) * in2[6] +
528              ((uint128_t) in1[1]) * in2[5] +
529              ((uint128_t) in1[2]) * in2[4] +
530              ((uint128_t) in1[3]) * in2[3] +
531              ((uint128_t) in1[4]) * in2[2] +
532              ((uint128_t) in1[5]) * in2[1] +
533              ((uint128_t) in1[6]) * in2[0];
534
535     out[7] = ((uint128_t) in1[0]) * in2[7] +
536              ((uint128_t) in1[1]) * in2[6] +
537              ((uint128_t) in1[2]) * in2[5] +
538              ((uint128_t) in1[3]) * in2[4] +
539              ((uint128_t) in1[4]) * in2[3] +
540              ((uint128_t) in1[5]) * in2[2] +
541              ((uint128_t) in1[6]) * in2[1] +
542              ((uint128_t) in1[7]) * in2[0];
543
544     out[8] = ((uint128_t) in1[0]) * in2[8] +
545              ((uint128_t) in1[1]) * in2[7] +
546              ((uint128_t) in1[2]) * in2[6] +
547              ((uint128_t) in1[3]) * in2[5] +
548              ((uint128_t) in1[4]) * in2[4] +
549              ((uint128_t) in1[5]) * in2[3] +
550              ((uint128_t) in1[6]) * in2[2] +
551              ((uint128_t) in1[7]) * in2[1] +
552              ((uint128_t) in1[8]) * in2[0];
553
554     /* See comment in felem_square about the use of in2x2 here */
555
556     out[0] += ((uint128_t) in1[1]) * in2x2[8] +
557               ((uint128_t) in1[2]) * in2x2[7] +
558               ((uint128_t) in1[3]) * in2x2[6] +
559               ((uint128_t) in1[4]) * in2x2[5] +
560               ((uint128_t) in1[5]) * in2x2[4] +
561               ((uint128_t) in1[6]) * in2x2[3] +
562               ((uint128_t) in1[7]) * in2x2[2] +
563               ((uint128_t) in1[8]) * in2x2[1];
564
565     out[1] += ((uint128_t) in1[2]) * in2x2[8] +
566               ((uint128_t) in1[3]) * in2x2[7] +
567               ((uint128_t) in1[4]) * in2x2[6] +
568               ((uint128_t) in1[5]) * in2x2[5] +
569               ((uint128_t) in1[6]) * in2x2[4] +
570               ((uint128_t) in1[7]) * in2x2[3] +
571               ((uint128_t) in1[8]) * in2x2[2];
572
573     out[2] += ((uint128_t) in1[3]) * in2x2[8] +
574               ((uint128_t) in1[4]) * in2x2[7] +
575               ((uint128_t) in1[5]) * in2x2[6] +
576               ((uint128_t) in1[6]) * in2x2[5] +
577               ((uint128_t) in1[7]) * in2x2[4] +
578               ((uint128_t) in1[8]) * in2x2[3];
579
580     out[3] += ((uint128_t) in1[4]) * in2x2[8] +
581               ((uint128_t) in1[5]) * in2x2[7] +
582               ((uint128_t) in1[6]) * in2x2[6] +
583               ((uint128_t) in1[7]) * in2x2[5] +
584               ((uint128_t) in1[8]) * in2x2[4];
585
586     out[4] += ((uint128_t) in1[5]) * in2x2[8] +
587               ((uint128_t) in1[6]) * in2x2[7] +
588               ((uint128_t) in1[7]) * in2x2[6] +
589               ((uint128_t) in1[8]) * in2x2[5];
590
591     out[5] += ((uint128_t) in1[6]) * in2x2[8] +
592               ((uint128_t) in1[7]) * in2x2[7] +
593               ((uint128_t) in1[8]) * in2x2[6];
594
595     out[6] += ((uint128_t) in1[7]) * in2x2[8] +
596               ((uint128_t) in1[8]) * in2x2[7];
597
598     out[7] += ((uint128_t) in1[8]) * in2x2[8];
599 }
600
601 static const limb bottom52bits = 0xfffffffffffff;
602
603 /*-
604  * felem_reduce converts a largefelem to an felem.
605  * On entry:
606  *   in[i] < 2^128
607  * On exit:
608  *   out[i] < 2^59 + 2^14
609  */
610 static void felem_reduce(felem out, const largefelem in)
611 {
612     u64 overflow1, overflow2;
613
614     out[0] = ((limb) in[0]) & bottom58bits;
615     out[1] = ((limb) in[1]) & bottom58bits;
616     out[2] = ((limb) in[2]) & bottom58bits;
617     out[3] = ((limb) in[3]) & bottom58bits;
618     out[4] = ((limb) in[4]) & bottom58bits;
619     out[5] = ((limb) in[5]) & bottom58bits;
620     out[6] = ((limb) in[6]) & bottom58bits;
621     out[7] = ((limb) in[7]) & bottom58bits;
622     out[8] = ((limb) in[8]) & bottom58bits;
623
624     /* out[i] < 2^58 */
625
626     out[1] += ((limb) in[0]) >> 58;
627     out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
628     /*-
629      * out[1] < 2^58 + 2^6 + 2^58
630      *        = 2^59 + 2^6
631      */
632     out[2] += ((limb) (in[0] >> 64)) >> 52;
633
634     out[2] += ((limb) in[1]) >> 58;
635     out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
636     out[3] += ((limb) (in[1] >> 64)) >> 52;
637
638     out[3] += ((limb) in[2]) >> 58;
639     out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
640     out[4] += ((limb) (in[2] >> 64)) >> 52;
641
642     out[4] += ((limb) in[3]) >> 58;
643     out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
644     out[5] += ((limb) (in[3] >> 64)) >> 52;
645
646     out[5] += ((limb) in[4]) >> 58;
647     out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
648     out[6] += ((limb) (in[4] >> 64)) >> 52;
649
650     out[6] += ((limb) in[5]) >> 58;
651     out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
652     out[7] += ((limb) (in[5] >> 64)) >> 52;
653
654     out[7] += ((limb) in[6]) >> 58;
655     out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
656     out[8] += ((limb) (in[6] >> 64)) >> 52;
657
658     out[8] += ((limb) in[7]) >> 58;
659     out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
660     /*-
661      * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
662      *            < 2^59 + 2^13
663      */
664     overflow1 = ((limb) (in[7] >> 64)) >> 52;
665
666     overflow1 += ((limb) in[8]) >> 58;
667     overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
668     overflow2 = ((limb) (in[8] >> 64)) >> 52;
669
670     overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
671     overflow2 <<= 1;            /* overflow2 < 2^13 */
672
673     out[0] += overflow1;        /* out[0] < 2^60 */
674     out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
675
676     out[1] += out[0] >> 58;
677     out[0] &= bottom58bits;
678     /*-
679      * out[0] < 2^58
680      * out[1] < 2^59 + 2^6 + 2^13 + 2^2
681      *        < 2^59 + 2^14
682      */
683 }
684
685 static void felem_square_reduce(felem out, const felem in)
686 {
687     largefelem tmp;
688     felem_square(tmp, in);
689     felem_reduce(out, tmp);
690 }
691
692 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
693 {
694     largefelem tmp;
695     felem_mul(tmp, in1, in2);
696     felem_reduce(out, tmp);
697 }
698
699 /*-
700  * felem_inv calculates |out| = |in|^{-1}
701  *
702  * Based on Fermat's Little Theorem:
703  *   a^p = a (mod p)
704  *   a^{p-1} = 1 (mod p)
705  *   a^{p-2} = a^{-1} (mod p)
706  */
707 static void felem_inv(felem out, const felem in)
708 {
709     felem ftmp, ftmp2, ftmp3, ftmp4;
710     largefelem tmp;
711     unsigned i;
712
713     felem_square(tmp, in);
714     felem_reduce(ftmp, tmp);    /* 2^1 */
715     felem_mul(tmp, in, ftmp);
716     felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
717     felem_assign(ftmp2, ftmp);
718     felem_square(tmp, ftmp);
719     felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
720     felem_mul(tmp, in, ftmp);
721     felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
722     felem_square(tmp, ftmp);
723     felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
724
725     felem_square(tmp, ftmp2);
726     felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
727     felem_square(tmp, ftmp3);
728     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
729     felem_mul(tmp, ftmp3, ftmp2);
730     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
731
732     felem_assign(ftmp2, ftmp3);
733     felem_square(tmp, ftmp3);
734     felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
735     felem_square(tmp, ftmp3);
736     felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
737     felem_square(tmp, ftmp3);
738     felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
739     felem_square(tmp, ftmp3);
740     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
741     felem_assign(ftmp4, ftmp3);
742     felem_mul(tmp, ftmp3, ftmp);
743     felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
744     felem_square(tmp, ftmp4);
745     felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
746     felem_mul(tmp, ftmp3, ftmp2);
747     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
748     felem_assign(ftmp2, ftmp3);
749
750     for (i = 0; i < 8; i++) {
751         felem_square(tmp, ftmp3);
752         felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
753     }
754     felem_mul(tmp, ftmp3, ftmp2);
755     felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
756     felem_assign(ftmp2, ftmp3);
757
758     for (i = 0; i < 16; i++) {
759         felem_square(tmp, ftmp3);
760         felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
761     }
762     felem_mul(tmp, ftmp3, ftmp2);
763     felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
764     felem_assign(ftmp2, ftmp3);
765
766     for (i = 0; i < 32; i++) {
767         felem_square(tmp, ftmp3);
768         felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
769     }
770     felem_mul(tmp, ftmp3, ftmp2);
771     felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
772     felem_assign(ftmp2, ftmp3);
773
774     for (i = 0; i < 64; i++) {
775         felem_square(tmp, ftmp3);
776         felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
777     }
778     felem_mul(tmp, ftmp3, ftmp2);
779     felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
780     felem_assign(ftmp2, ftmp3);
781
782     for (i = 0; i < 128; i++) {
783         felem_square(tmp, ftmp3);
784         felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
785     }
786     felem_mul(tmp, ftmp3, ftmp2);
787     felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
788     felem_assign(ftmp2, ftmp3);
789
790     for (i = 0; i < 256; i++) {
791         felem_square(tmp, ftmp3);
792         felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
793     }
794     felem_mul(tmp, ftmp3, ftmp2);
795     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
796
797     for (i = 0; i < 9; i++) {
798         felem_square(tmp, ftmp3);
799         felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
800     }
801     felem_mul(tmp, ftmp3, ftmp4);
802     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
803     felem_mul(tmp, ftmp3, in);
804     felem_reduce(out, tmp);     /* 2^512 - 3 */
805 }
806
807 /* This is 2^521-1, expressed as an felem */
808 static const felem kPrime = {
809     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
810     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
811     0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
812 };
813
814 /*-
815  * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
816  * otherwise.
817  * On entry:
818  *   in[i] < 2^59 + 2^14
819  */
820 static limb felem_is_zero(const felem in)
821 {
822     felem ftmp;
823     limb is_zero, is_p;
824     felem_assign(ftmp, in);
825
826     ftmp[0] += ftmp[8] >> 57;
827     ftmp[8] &= bottom57bits;
828     /* ftmp[8] < 2^57 */
829     ftmp[1] += ftmp[0] >> 58;
830     ftmp[0] &= bottom58bits;
831     ftmp[2] += ftmp[1] >> 58;
832     ftmp[1] &= bottom58bits;
833     ftmp[3] += ftmp[2] >> 58;
834     ftmp[2] &= bottom58bits;
835     ftmp[4] += ftmp[3] >> 58;
836     ftmp[3] &= bottom58bits;
837     ftmp[5] += ftmp[4] >> 58;
838     ftmp[4] &= bottom58bits;
839     ftmp[6] += ftmp[5] >> 58;
840     ftmp[5] &= bottom58bits;
841     ftmp[7] += ftmp[6] >> 58;
842     ftmp[6] &= bottom58bits;
843     ftmp[8] += ftmp[7] >> 58;
844     ftmp[7] &= bottom58bits;
845     /* ftmp[8] < 2^57 + 4 */
846
847     /*
848      * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
849      * than our bound for ftmp[8]. Therefore we only have to check if the
850      * zero is zero or 2^521-1.
851      */
852
853     is_zero = 0;
854     is_zero |= ftmp[0];
855     is_zero |= ftmp[1];
856     is_zero |= ftmp[2];
857     is_zero |= ftmp[3];
858     is_zero |= ftmp[4];
859     is_zero |= ftmp[5];
860     is_zero |= ftmp[6];
861     is_zero |= ftmp[7];
862     is_zero |= ftmp[8];
863
864     is_zero--;
865     /*
866      * We know that ftmp[i] < 2^63, therefore the only way that the top bit
867      * can be set is if is_zero was 0 before the decrement.
868      */
869     is_zero = 0 - (is_zero >> 63);
870
871     is_p = ftmp[0] ^ kPrime[0];
872     is_p |= ftmp[1] ^ kPrime[1];
873     is_p |= ftmp[2] ^ kPrime[2];
874     is_p |= ftmp[3] ^ kPrime[3];
875     is_p |= ftmp[4] ^ kPrime[4];
876     is_p |= ftmp[5] ^ kPrime[5];
877     is_p |= ftmp[6] ^ kPrime[6];
878     is_p |= ftmp[7] ^ kPrime[7];
879     is_p |= ftmp[8] ^ kPrime[8];
880
881     is_p--;
882     is_p = 0 - (is_p >> 63);
883
884     is_zero |= is_p;
885     return is_zero;
886 }
887
888 static int felem_is_zero_int(const void *in)
889 {
890     return (int)(felem_is_zero(in) & ((limb) 1));
891 }
892
893 /*-
894  * felem_contract converts |in| to its unique, minimal representation.
895  * On entry:
896  *   in[i] < 2^59 + 2^14
897  */
898 static void felem_contract(felem out, const felem in)
899 {
900     limb is_p, is_greater, sign;
901     static const limb two58 = ((limb) 1) << 58;
902
903     felem_assign(out, in);
904
905     out[0] += out[8] >> 57;
906     out[8] &= bottom57bits;
907     /* out[8] < 2^57 */
908     out[1] += out[0] >> 58;
909     out[0] &= bottom58bits;
910     out[2] += out[1] >> 58;
911     out[1] &= bottom58bits;
912     out[3] += out[2] >> 58;
913     out[2] &= bottom58bits;
914     out[4] += out[3] >> 58;
915     out[3] &= bottom58bits;
916     out[5] += out[4] >> 58;
917     out[4] &= bottom58bits;
918     out[6] += out[5] >> 58;
919     out[5] &= bottom58bits;
920     out[7] += out[6] >> 58;
921     out[6] &= bottom58bits;
922     out[8] += out[7] >> 58;
923     out[7] &= bottom58bits;
924     /* out[8] < 2^57 + 4 */
925
926     /*
927      * If the value is greater than 2^521-1 then we have to subtract 2^521-1
928      * out. See the comments in felem_is_zero regarding why we don't test for
929      * other multiples of the prime.
930      */
931
932     /*
933      * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
934      */
935
936     is_p = out[0] ^ kPrime[0];
937     is_p |= out[1] ^ kPrime[1];
938     is_p |= out[2] ^ kPrime[2];
939     is_p |= out[3] ^ kPrime[3];
940     is_p |= out[4] ^ kPrime[4];
941     is_p |= out[5] ^ kPrime[5];
942     is_p |= out[6] ^ kPrime[6];
943     is_p |= out[7] ^ kPrime[7];
944     is_p |= out[8] ^ kPrime[8];
945
946     is_p--;
947     is_p &= is_p << 32;
948     is_p &= is_p << 16;
949     is_p &= is_p << 8;
950     is_p &= is_p << 4;
951     is_p &= is_p << 2;
952     is_p &= is_p << 1;
953     is_p = 0 - (is_p >> 63);
954     is_p = ~is_p;
955
956     /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
957
958     out[0] &= is_p;
959     out[1] &= is_p;
960     out[2] &= is_p;
961     out[3] &= is_p;
962     out[4] &= is_p;
963     out[5] &= is_p;
964     out[6] &= is_p;
965     out[7] &= is_p;
966     out[8] &= is_p;
967
968     /*
969      * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
970      * 57 is greater than zero as (2^521-1) + x >= 2^522
971      */
972     is_greater = out[8] >> 57;
973     is_greater |= is_greater << 32;
974     is_greater |= is_greater << 16;
975     is_greater |= is_greater << 8;
976     is_greater |= is_greater << 4;
977     is_greater |= is_greater << 2;
978     is_greater |= is_greater << 1;
979     is_greater = 0 - (is_greater >> 63);
980
981     out[0] -= kPrime[0] & is_greater;
982     out[1] -= kPrime[1] & is_greater;
983     out[2] -= kPrime[2] & is_greater;
984     out[3] -= kPrime[3] & is_greater;
985     out[4] -= kPrime[4] & is_greater;
986     out[5] -= kPrime[5] & is_greater;
987     out[6] -= kPrime[6] & is_greater;
988     out[7] -= kPrime[7] & is_greater;
989     out[8] -= kPrime[8] & is_greater;
990
991     /* Eliminate negative coefficients */
992     sign = -(out[0] >> 63);
993     out[0] += (two58 & sign);
994     out[1] -= (1 & sign);
995     sign = -(out[1] >> 63);
996     out[1] += (two58 & sign);
997     out[2] -= (1 & sign);
998     sign = -(out[2] >> 63);
999     out[2] += (two58 & sign);
1000     out[3] -= (1 & sign);
1001     sign = -(out[3] >> 63);
1002     out[3] += (two58 & sign);
1003     out[4] -= (1 & sign);
1004     sign = -(out[4] >> 63);
1005     out[4] += (two58 & sign);
1006     out[5] -= (1 & sign);
1007     sign = -(out[0] >> 63);
1008     out[5] += (two58 & sign);
1009     out[6] -= (1 & sign);
1010     sign = -(out[6] >> 63);
1011     out[6] += (two58 & sign);
1012     out[7] -= (1 & sign);
1013     sign = -(out[7] >> 63);
1014     out[7] += (two58 & sign);
1015     out[8] -= (1 & sign);
1016     sign = -(out[5] >> 63);
1017     out[5] += (two58 & sign);
1018     out[6] -= (1 & sign);
1019     sign = -(out[6] >> 63);
1020     out[6] += (two58 & sign);
1021     out[7] -= (1 & sign);
1022     sign = -(out[7] >> 63);
1023     out[7] += (two58 & sign);
1024     out[8] -= (1 & sign);
1025 }
1026
1027 /*-
1028  * Group operations
1029  * ----------------
1030  *
1031  * Building on top of the field operations we have the operations on the
1032  * elliptic curve group itself. Points on the curve are represented in Jacobian
1033  * coordinates */
1034
1035 /*-
1036  * point_double calculates 2*(x_in, y_in, z_in)
1037  *
1038  * The method is taken from:
1039  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1040  *
1041  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1042  * while x_out == y_in is not (maybe this works, but it's not tested). */
1043 static void
1044 point_double(felem x_out, felem y_out, felem z_out,
1045              const felem x_in, const felem y_in, const felem z_in)
1046 {
1047     largefelem tmp, tmp2;
1048     felem delta, gamma, beta, alpha, ftmp, ftmp2;
1049
1050     felem_assign(ftmp, x_in);
1051     felem_assign(ftmp2, x_in);
1052
1053     /* delta = z^2 */
1054     felem_square(tmp, z_in);
1055     felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1056
1057     /* gamma = y^2 */
1058     felem_square(tmp, y_in);
1059     felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1060
1061     /* beta = x*gamma */
1062     felem_mul(tmp, x_in, gamma);
1063     felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1064
1065     /* alpha = 3*(x-delta)*(x+delta) */
1066     felem_diff64(ftmp, delta);
1067     /* ftmp[i] < 2^61 */
1068     felem_sum64(ftmp2, delta);
1069     /* ftmp2[i] < 2^60 + 2^15 */
1070     felem_scalar64(ftmp2, 3);
1071     /* ftmp2[i] < 3*2^60 + 3*2^15 */
1072     felem_mul(tmp, ftmp, ftmp2);
1073     /*-
1074      * tmp[i] < 17(3*2^121 + 3*2^76)
1075      *        = 61*2^121 + 61*2^76
1076      *        < 64*2^121 + 64*2^76
1077      *        = 2^127 + 2^82
1078      *        < 2^128
1079      */
1080     felem_reduce(alpha, tmp);
1081
1082     /* x' = alpha^2 - 8*beta */
1083     felem_square(tmp, alpha);
1084     /*
1085      * tmp[i] < 17*2^120 < 2^125
1086      */
1087     felem_assign(ftmp, beta);
1088     felem_scalar64(ftmp, 8);
1089     /* ftmp[i] < 2^62 + 2^17 */
1090     felem_diff_128_64(tmp, ftmp);
1091     /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1092     felem_reduce(x_out, tmp);
1093
1094     /* z' = (y + z)^2 - gamma - delta */
1095     felem_sum64(delta, gamma);
1096     /* delta[i] < 2^60 + 2^15 */
1097     felem_assign(ftmp, y_in);
1098     felem_sum64(ftmp, z_in);
1099     /* ftmp[i] < 2^60 + 2^15 */
1100     felem_square(tmp, ftmp);
1101     /*
1102      * tmp[i] < 17(2^122) < 2^127
1103      */
1104     felem_diff_128_64(tmp, delta);
1105     /* tmp[i] < 2^127 + 2^63 */
1106     felem_reduce(z_out, tmp);
1107
1108     /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1109     felem_scalar64(beta, 4);
1110     /* beta[i] < 2^61 + 2^16 */
1111     felem_diff64(beta, x_out);
1112     /* beta[i] < 2^61 + 2^60 + 2^16 */
1113     felem_mul(tmp, alpha, beta);
1114     /*-
1115      * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1116      *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1117      *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1118      *        < 2^128
1119      */
1120     felem_square(tmp2, gamma);
1121     /*-
1122      * tmp2[i] < 17*(2^59 + 2^14)^2
1123      *         = 17*(2^118 + 2^74 + 2^28)
1124      */
1125     felem_scalar128(tmp2, 8);
1126     /*-
1127      * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1128      *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1129      *         < 2^126
1130      */
1131     felem_diff128(tmp, tmp2);
1132     /*-
1133      * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1134      *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1135      *          2^74 + 2^69 + 2^34 + 2^30
1136      *        < 2^128
1137      */
1138     felem_reduce(y_out, tmp);
1139 }
1140
1141 /* copy_conditional copies in to out iff mask is all ones. */
1142 static void copy_conditional(felem out, const felem in, limb mask)
1143 {
1144     unsigned i;
1145     for (i = 0; i < NLIMBS; ++i) {
1146         const limb tmp = mask & (in[i] ^ out[i]);
1147         out[i] ^= tmp;
1148     }
1149 }
1150
1151 /*-
1152  * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1153  *
1154  * The method is taken from
1155  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1156  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1157  *
1158  * This function includes a branch for checking whether the two input points
1159  * are equal (while not equal to the point at infinity). See comment below
1160  * on constant-time.
1161  */
1162 static void point_add(felem x3, felem y3, felem z3,
1163                       const felem x1, const felem y1, const felem z1,
1164                       const int mixed, const felem x2, const felem y2,
1165                       const felem z2)
1166 {
1167     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1168     largefelem tmp, tmp2;
1169     limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1170
1171     z1_is_zero = felem_is_zero(z1);
1172     z2_is_zero = felem_is_zero(z2);
1173
1174     /* ftmp = z1z1 = z1**2 */
1175     felem_square(tmp, z1);
1176     felem_reduce(ftmp, tmp);
1177
1178     if (!mixed) {
1179         /* ftmp2 = z2z2 = z2**2 */
1180         felem_square(tmp, z2);
1181         felem_reduce(ftmp2, tmp);
1182
1183         /* u1 = ftmp3 = x1*z2z2 */
1184         felem_mul(tmp, x1, ftmp2);
1185         felem_reduce(ftmp3, tmp);
1186
1187         /* ftmp5 = z1 + z2 */
1188         felem_assign(ftmp5, z1);
1189         felem_sum64(ftmp5, z2);
1190         /* ftmp5[i] < 2^61 */
1191
1192         /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1193         felem_square(tmp, ftmp5);
1194         /* tmp[i] < 17*2^122 */
1195         felem_diff_128_64(tmp, ftmp);
1196         /* tmp[i] < 17*2^122 + 2^63 */
1197         felem_diff_128_64(tmp, ftmp2);
1198         /* tmp[i] < 17*2^122 + 2^64 */
1199         felem_reduce(ftmp5, tmp);
1200
1201         /* ftmp2 = z2 * z2z2 */
1202         felem_mul(tmp, ftmp2, z2);
1203         felem_reduce(ftmp2, tmp);
1204
1205         /* s1 = ftmp6 = y1 * z2**3 */
1206         felem_mul(tmp, y1, ftmp2);
1207         felem_reduce(ftmp6, tmp);
1208     } else {
1209         /*
1210          * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1211          */
1212
1213         /* u1 = ftmp3 = x1*z2z2 */
1214         felem_assign(ftmp3, x1);
1215
1216         /* ftmp5 = 2*z1z2 */
1217         felem_scalar(ftmp5, z1, 2);
1218
1219         /* s1 = ftmp6 = y1 * z2**3 */
1220         felem_assign(ftmp6, y1);
1221     }
1222
1223     /* u2 = x2*z1z1 */
1224     felem_mul(tmp, x2, ftmp);
1225     /* tmp[i] < 17*2^120 */
1226
1227     /* h = ftmp4 = u2 - u1 */
1228     felem_diff_128_64(tmp, ftmp3);
1229     /* tmp[i] < 17*2^120 + 2^63 */
1230     felem_reduce(ftmp4, tmp);
1231
1232     x_equal = felem_is_zero(ftmp4);
1233
1234     /* z_out = ftmp5 * h */
1235     felem_mul(tmp, ftmp5, ftmp4);
1236     felem_reduce(z_out, tmp);
1237
1238     /* ftmp = z1 * z1z1 */
1239     felem_mul(tmp, ftmp, z1);
1240     felem_reduce(ftmp, tmp);
1241
1242     /* s2 = tmp = y2 * z1**3 */
1243     felem_mul(tmp, y2, ftmp);
1244     /* tmp[i] < 17*2^120 */
1245
1246     /* r = ftmp5 = (s2 - s1)*2 */
1247     felem_diff_128_64(tmp, ftmp6);
1248     /* tmp[i] < 17*2^120 + 2^63 */
1249     felem_reduce(ftmp5, tmp);
1250     y_equal = felem_is_zero(ftmp5);
1251     felem_scalar64(ftmp5, 2);
1252     /* ftmp5[i] < 2^61 */
1253
1254     if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1255         /*
1256          * This is obviously not constant-time but it will almost-never happen
1257          * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1258          * where the intermediate value gets very close to the group order.
1259          * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1260          * the scalar, it's possible for the intermediate value to be a small
1261          * negative multiple of the base point, and for the final signed digit
1262          * to be the same value. We believe that this only occurs for the scalar
1263          * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1264          * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1265          * 71e913863f7, in that case the penultimate intermediate is -9G and
1266          * the final digit is also -9G. Since this only happens for a single
1267          * scalar, the timing leak is irrelevent. (Any attacker who wanted to
1268          * check whether a secret scalar was that exact value, can already do
1269          * so.)
1270          */
1271         point_double(x3, y3, z3, x1, y1, z1);
1272         return;
1273     }
1274
1275     /* I = ftmp = (2h)**2 */
1276     felem_assign(ftmp, ftmp4);
1277     felem_scalar64(ftmp, 2);
1278     /* ftmp[i] < 2^61 */
1279     felem_square(tmp, ftmp);
1280     /* tmp[i] < 17*2^122 */
1281     felem_reduce(ftmp, tmp);
1282
1283     /* J = ftmp2 = h * I */
1284     felem_mul(tmp, ftmp4, ftmp);
1285     felem_reduce(ftmp2, tmp);
1286
1287     /* V = ftmp4 = U1 * I */
1288     felem_mul(tmp, ftmp3, ftmp);
1289     felem_reduce(ftmp4, tmp);
1290
1291     /* x_out = r**2 - J - 2V */
1292     felem_square(tmp, ftmp5);
1293     /* tmp[i] < 17*2^122 */
1294     felem_diff_128_64(tmp, ftmp2);
1295     /* tmp[i] < 17*2^122 + 2^63 */
1296     felem_assign(ftmp3, ftmp4);
1297     felem_scalar64(ftmp4, 2);
1298     /* ftmp4[i] < 2^61 */
1299     felem_diff_128_64(tmp, ftmp4);
1300     /* tmp[i] < 17*2^122 + 2^64 */
1301     felem_reduce(x_out, tmp);
1302
1303     /* y_out = r(V-x_out) - 2 * s1 * J */
1304     felem_diff64(ftmp3, x_out);
1305     /*
1306      * ftmp3[i] < 2^60 + 2^60 = 2^61
1307      */
1308     felem_mul(tmp, ftmp5, ftmp3);
1309     /* tmp[i] < 17*2^122 */
1310     felem_mul(tmp2, ftmp6, ftmp2);
1311     /* tmp2[i] < 17*2^120 */
1312     felem_scalar128(tmp2, 2);
1313     /* tmp2[i] < 17*2^121 */
1314     felem_diff128(tmp, tmp2);
1315         /*-
1316          * tmp[i] < 2^127 - 2^69 + 17*2^122
1317          *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1318          *        < 2^127
1319          */
1320     felem_reduce(y_out, tmp);
1321
1322     copy_conditional(x_out, x2, z1_is_zero);
1323     copy_conditional(x_out, x1, z2_is_zero);
1324     copy_conditional(y_out, y2, z1_is_zero);
1325     copy_conditional(y_out, y1, z2_is_zero);
1326     copy_conditional(z_out, z2, z1_is_zero);
1327     copy_conditional(z_out, z1, z2_is_zero);
1328     felem_assign(x3, x_out);
1329     felem_assign(y3, y_out);
1330     felem_assign(z3, z_out);
1331 }
1332
1333 /*-
1334  * Base point pre computation
1335  * --------------------------
1336  *
1337  * Two different sorts of precomputed tables are used in the following code.
1338  * Each contain various points on the curve, where each point is three field
1339  * elements (x, y, z).
1340  *
1341  * For the base point table, z is usually 1 (0 for the point at infinity).
1342  * This table has 16 elements:
1343  * index | bits    | point
1344  * ------+---------+------------------------------
1345  *     0 | 0 0 0 0 | 0G
1346  *     1 | 0 0 0 1 | 1G
1347  *     2 | 0 0 1 0 | 2^130G
1348  *     3 | 0 0 1 1 | (2^130 + 1)G
1349  *     4 | 0 1 0 0 | 2^260G
1350  *     5 | 0 1 0 1 | (2^260 + 1)G
1351  *     6 | 0 1 1 0 | (2^260 + 2^130)G
1352  *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1353  *     8 | 1 0 0 0 | 2^390G
1354  *     9 | 1 0 0 1 | (2^390 + 1)G
1355  *    10 | 1 0 1 0 | (2^390 + 2^130)G
1356  *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1357  *    12 | 1 1 0 0 | (2^390 + 2^260)G
1358  *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1359  *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1360  *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1361  *
1362  * The reason for this is so that we can clock bits into four different
1363  * locations when doing simple scalar multiplies against the base point.
1364  *
1365  * Tables for other points have table[i] = iG for i in 0 .. 16. */
1366
1367 /* gmul is the table of precomputed base points */
1368 static const felem gmul[16][3] = {
1369 {{0, 0, 0, 0, 0, 0, 0, 0, 0},
1370  {0, 0, 0, 0, 0, 0, 0, 0, 0},
1371  {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1372 {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1373   0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1374   0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1375  {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1376   0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1377   0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1378  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1379 {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1380   0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1381   0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1382  {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1383   0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1384   0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1385  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1386 {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1387   0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1388   0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1389  {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1390   0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1391   0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1392  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1393 {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1394   0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1395   0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1396  {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1397   0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1398   0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1399  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1400 {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1401   0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1402   0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1403  {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1404   0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1405   0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1406  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1407 {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1408   0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1409   0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1410  {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1411   0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1412   0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1413  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1414 {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1415   0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1416   0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1417  {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1418   0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1419   0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1420  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1421 {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1422   0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1423   0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1424  {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1425   0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1426   0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1427  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1428 {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1429   0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1430   0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1431  {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1432   0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1433   0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1434  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1435 {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1436   0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1437   0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1438  {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1439   0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1440   0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1441  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1442 {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1443   0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1444   0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1445  {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1446   0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1447   0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1448  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1449 {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1450   0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1451   0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1452  {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1453   0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1454   0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1455  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1456 {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1457   0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1458   0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1459  {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1460   0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1461   0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1462  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1463 {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1464   0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1465   0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1466  {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1467   0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1468   0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1469  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1470 {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1471   0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1472   0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1473  {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1474   0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1475   0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1476  {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1477 };
1478
1479 /*
1480  * select_point selects the |idx|th point from a precomputation table and
1481  * copies it to out.
1482  */
1483  /* pre_comp below is of the size provided in |size| */
1484 static void select_point(const limb idx, unsigned int size,
1485                          const felem pre_comp[][3], felem out[3])
1486 {
1487     unsigned i, j;
1488     limb *outlimbs = &out[0][0];
1489
1490     memset(out, 0, sizeof(*out) * 3);
1491
1492     for (i = 0; i < size; i++) {
1493         const limb *inlimbs = &pre_comp[i][0][0];
1494         limb mask = i ^ idx;
1495         mask |= mask >> 4;
1496         mask |= mask >> 2;
1497         mask |= mask >> 1;
1498         mask &= 1;
1499         mask--;
1500         for (j = 0; j < NLIMBS * 3; j++)
1501             outlimbs[j] |= inlimbs[j] & mask;
1502     }
1503 }
1504
1505 /* get_bit returns the |i|th bit in |in| */
1506 static char get_bit(const felem_bytearray in, int i)
1507 {
1508     if (i < 0)
1509         return 0;
1510     return (in[i >> 3] >> (i & 7)) & 1;
1511 }
1512
1513 /*
1514  * Interleaved point multiplication using precomputed point multiples: The
1515  * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1516  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1517  * generator, using certain (large) precomputed multiples in g_pre_comp.
1518  * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1519  */
1520 static void batch_mul(felem x_out, felem y_out, felem z_out,
1521                       const felem_bytearray scalars[],
1522                       const unsigned num_points, const u8 *g_scalar,
1523                       const int mixed, const felem pre_comp[][17][3],
1524                       const felem g_pre_comp[16][3])
1525 {
1526     int i, skip;
1527     unsigned num, gen_mul = (g_scalar != NULL);
1528     felem nq[3], tmp[4];
1529     limb bits;
1530     u8 sign, digit;
1531
1532     /* set nq to the point at infinity */
1533     memset(nq, 0, sizeof(nq));
1534
1535     /*
1536      * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1537      * of the generator (last quarter of rounds) and additions of other
1538      * points multiples (every 5th round).
1539      */
1540     skip = 1;                   /* save two point operations in the first
1541                                  * round */
1542     for (i = (num_points ? 520 : 130); i >= 0; --i) {
1543         /* double */
1544         if (!skip)
1545             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1546
1547         /* add multiples of the generator */
1548         if (gen_mul && (i <= 130)) {
1549             bits = get_bit(g_scalar, i + 390) << 3;
1550             if (i < 130) {
1551                 bits |= get_bit(g_scalar, i + 260) << 2;
1552                 bits |= get_bit(g_scalar, i + 130) << 1;
1553                 bits |= get_bit(g_scalar, i);
1554             }
1555             /* select the point to add, in constant time */
1556             select_point(bits, 16, g_pre_comp, tmp);
1557             if (!skip) {
1558                 /* The 1 argument below is for "mixed" */
1559                 point_add(nq[0], nq[1], nq[2],
1560                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1561             } else {
1562                 memcpy(nq, tmp, 3 * sizeof(felem));
1563                 skip = 0;
1564             }
1565         }
1566
1567         /* do other additions every 5 doublings */
1568         if (num_points && (i % 5 == 0)) {
1569             /* loop over all scalars */
1570             for (num = 0; num < num_points; ++num) {
1571                 bits = get_bit(scalars[num], i + 4) << 5;
1572                 bits |= get_bit(scalars[num], i + 3) << 4;
1573                 bits |= get_bit(scalars[num], i + 2) << 3;
1574                 bits |= get_bit(scalars[num], i + 1) << 2;
1575                 bits |= get_bit(scalars[num], i) << 1;
1576                 bits |= get_bit(scalars[num], i - 1);
1577                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1578
1579                 /*
1580                  * select the point to add or subtract, in constant time
1581                  */
1582                 select_point(digit, 17, pre_comp[num], tmp);
1583                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1584                                             * point */
1585                 copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1586
1587                 if (!skip) {
1588                     point_add(nq[0], nq[1], nq[2],
1589                               nq[0], nq[1], nq[2],
1590                               mixed, tmp[0], tmp[1], tmp[2]);
1591                 } else {
1592                     memcpy(nq, tmp, 3 * sizeof(felem));
1593                     skip = 0;
1594                 }
1595             }
1596         }
1597     }
1598     felem_assign(x_out, nq[0]);
1599     felem_assign(y_out, nq[1]);
1600     felem_assign(z_out, nq[2]);
1601 }
1602
1603 /* Precomputation for the group generator. */
1604 struct nistp521_pre_comp_st {
1605     felem g_pre_comp[16][3];
1606     CRYPTO_REF_COUNT references;
1607     CRYPTO_RWLOCK *lock;
1608 };
1609
1610 const EC_METHOD *EC_GFp_nistp521_method(void)
1611 {
1612     static const EC_METHOD ret = {
1613         EC_FLAGS_DEFAULT_OCT,
1614         NID_X9_62_prime_field,
1615         ec_GFp_nistp521_group_init,
1616         ec_GFp_simple_group_finish,
1617         ec_GFp_simple_group_clear_finish,
1618         ec_GFp_nist_group_copy,
1619         ec_GFp_nistp521_group_set_curve,
1620         ec_GFp_simple_group_get_curve,
1621         ec_GFp_simple_group_get_degree,
1622         ec_group_simple_order_bits,
1623         ec_GFp_simple_group_check_discriminant,
1624         ec_GFp_simple_point_init,
1625         ec_GFp_simple_point_finish,
1626         ec_GFp_simple_point_clear_finish,
1627         ec_GFp_simple_point_copy,
1628         ec_GFp_simple_point_set_to_infinity,
1629         ec_GFp_simple_set_Jprojective_coordinates_GFp,
1630         ec_GFp_simple_get_Jprojective_coordinates_GFp,
1631         ec_GFp_simple_point_set_affine_coordinates,
1632         ec_GFp_nistp521_point_get_affine_coordinates,
1633         0 /* point_set_compressed_coordinates */ ,
1634         0 /* point2oct */ ,
1635         0 /* oct2point */ ,
1636         ec_GFp_simple_add,
1637         ec_GFp_simple_dbl,
1638         ec_GFp_simple_invert,
1639         ec_GFp_simple_is_at_infinity,
1640         ec_GFp_simple_is_on_curve,
1641         ec_GFp_simple_cmp,
1642         ec_GFp_simple_make_affine,
1643         ec_GFp_simple_points_make_affine,
1644         ec_GFp_nistp521_points_mul,
1645         ec_GFp_nistp521_precompute_mult,
1646         ec_GFp_nistp521_have_precompute_mult,
1647         ec_GFp_nist_field_mul,
1648         ec_GFp_nist_field_sqr,
1649         0 /* field_div */ ,
1650         0 /* field_encode */ ,
1651         0 /* field_decode */ ,
1652         0,                      /* field_set_to_one */
1653         ec_key_simple_priv2oct,
1654         ec_key_simple_oct2priv,
1655         0, /* set private */
1656         ec_key_simple_generate_key,
1657         ec_key_simple_check_key,
1658         ec_key_simple_generate_public_key,
1659         0, /* keycopy */
1660         0, /* keyfinish */
1661         ecdh_simple_compute_key
1662     };
1663
1664     return &ret;
1665 }
1666
1667 /******************************************************************************/
1668 /*
1669  * FUNCTIONS TO MANAGE PRECOMPUTATION
1670  */
1671
1672 static NISTP521_PRE_COMP *nistp521_pre_comp_new()
1673 {
1674     NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1675
1676     if (ret == NULL) {
1677         ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1678         return ret;
1679     }
1680
1681     ret->references = 1;
1682
1683     ret->lock = CRYPTO_THREAD_lock_new();
1684     if (ret->lock == NULL) {
1685         ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1686         OPENSSL_free(ret);
1687         return NULL;
1688     }
1689     return ret;
1690 }
1691
1692 NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1693 {
1694     int i;
1695     if (p != NULL)
1696         CRYPTO_UP_REF(&p->references, &i, p->lock);
1697     return p;
1698 }
1699
1700 void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1701 {
1702     int i;
1703
1704     if (p == NULL)
1705         return;
1706
1707     CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1708     REF_PRINT_COUNT("EC_nistp521", x);
1709     if (i > 0)
1710         return;
1711     REF_ASSERT_ISNT(i < 0);
1712
1713     CRYPTO_THREAD_lock_free(p->lock);
1714     OPENSSL_free(p);
1715 }
1716
1717 /******************************************************************************/
1718 /*
1719  * OPENSSL EC_METHOD FUNCTIONS
1720  */
1721
1722 int ec_GFp_nistp521_group_init(EC_GROUP *group)
1723 {
1724     int ret;
1725     ret = ec_GFp_simple_group_init(group);
1726     group->a_is_minus3 = 1;
1727     return ret;
1728 }
1729
1730 int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1731                                     const BIGNUM *a, const BIGNUM *b,
1732                                     BN_CTX *ctx)
1733 {
1734     int ret = 0;
1735     BN_CTX *new_ctx = NULL;
1736     BIGNUM *curve_p, *curve_a, *curve_b;
1737
1738     if (ctx == NULL)
1739         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1740             return 0;
1741     BN_CTX_start(ctx);
1742     curve_p = BN_CTX_get(ctx);
1743     curve_a = BN_CTX_get(ctx);
1744     curve_b = BN_CTX_get(ctx);
1745     if (curve_b == NULL)
1746         goto err;
1747     BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1748     BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1749     BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1750     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1751         ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1752               EC_R_WRONG_CURVE_PARAMETERS);
1753         goto err;
1754     }
1755     group->field_mod_func = BN_nist_mod_521;
1756     ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1757  err:
1758     BN_CTX_end(ctx);
1759     BN_CTX_free(new_ctx);
1760     return ret;
1761 }
1762
1763 /*
1764  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1765  * (X/Z^2, Y/Z^3)
1766  */
1767 int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1768                                                  const EC_POINT *point,
1769                                                  BIGNUM *x, BIGNUM *y,
1770                                                  BN_CTX *ctx)
1771 {
1772     felem z1, z2, x_in, y_in, x_out, y_out;
1773     largefelem tmp;
1774
1775     if (EC_POINT_is_at_infinity(group, point)) {
1776         ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1777               EC_R_POINT_AT_INFINITY);
1778         return 0;
1779     }
1780     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1781         (!BN_to_felem(z1, point->Z)))
1782         return 0;
1783     felem_inv(z2, z1);
1784     felem_square(tmp, z2);
1785     felem_reduce(z1, tmp);
1786     felem_mul(tmp, x_in, z1);
1787     felem_reduce(x_in, tmp);
1788     felem_contract(x_out, x_in);
1789     if (x != NULL) {
1790         if (!felem_to_BN(x, x_out)) {
1791             ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1792                   ERR_R_BN_LIB);
1793             return 0;
1794         }
1795     }
1796     felem_mul(tmp, z1, z2);
1797     felem_reduce(z1, tmp);
1798     felem_mul(tmp, y_in, z1);
1799     felem_reduce(y_in, tmp);
1800     felem_contract(y_out, y_in);
1801     if (y != NULL) {
1802         if (!felem_to_BN(y, y_out)) {
1803             ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1804                   ERR_R_BN_LIB);
1805             return 0;
1806         }
1807     }
1808     return 1;
1809 }
1810
1811 /* points below is of size |num|, and tmp_felems is of size |num+1/ */
1812 static void make_points_affine(size_t num, felem points[][3],
1813                                felem tmp_felems[])
1814 {
1815     /*
1816      * Runs in constant time, unless an input is the point at infinity (which
1817      * normally shouldn't happen).
1818      */
1819     ec_GFp_nistp_points_make_affine_internal(num,
1820                                              points,
1821                                              sizeof(felem),
1822                                              tmp_felems,
1823                                              (void (*)(void *))felem_one,
1824                                              felem_is_zero_int,
1825                                              (void (*)(void *, const void *))
1826                                              felem_assign,
1827                                              (void (*)(void *, const void *))
1828                                              felem_square_reduce, (void (*)
1829                                                                    (void *,
1830                                                                     const void
1831                                                                     *,
1832                                                                     const void
1833                                                                     *))
1834                                              felem_mul_reduce,
1835                                              (void (*)(void *, const void *))
1836                                              felem_inv,
1837                                              (void (*)(void *, const void *))
1838                                              felem_contract);
1839 }
1840
1841 /*
1842  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1843  * values Result is stored in r (r can equal one of the inputs).
1844  */
1845 int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1846                                const BIGNUM *scalar, size_t num,
1847                                const EC_POINT *points[],
1848                                const BIGNUM *scalars[], BN_CTX *ctx)
1849 {
1850     int ret = 0;
1851     int j;
1852     int mixed = 0;
1853     BN_CTX *new_ctx = NULL;
1854     BIGNUM *x, *y, *z, *tmp_scalar;
1855     felem_bytearray g_secret;
1856     felem_bytearray *secrets = NULL;
1857     felem (*pre_comp)[17][3] = NULL;
1858     felem *tmp_felems = NULL;
1859     felem_bytearray tmp;
1860     unsigned i, num_bytes;
1861     int have_pre_comp = 0;
1862     size_t num_points = num;
1863     felem x_in, y_in, z_in, x_out, y_out, z_out;
1864     NISTP521_PRE_COMP *pre = NULL;
1865     felem(*g_pre_comp)[3] = NULL;
1866     EC_POINT *generator = NULL;
1867     const EC_POINT *p = NULL;
1868     const BIGNUM *p_scalar = NULL;
1869
1870     if (ctx == NULL)
1871         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1872             return 0;
1873     BN_CTX_start(ctx);
1874     x = BN_CTX_get(ctx);
1875     y = BN_CTX_get(ctx);
1876     z = BN_CTX_get(ctx);
1877     tmp_scalar = BN_CTX_get(ctx);
1878     if (tmp_scalar == NULL)
1879         goto err;
1880
1881     if (scalar != NULL) {
1882         pre = group->pre_comp.nistp521;
1883         if (pre)
1884             /* we have precomputation, try to use it */
1885             g_pre_comp = &pre->g_pre_comp[0];
1886         else
1887             /* try to use the standard precomputation */
1888             g_pre_comp = (felem(*)[3]) gmul;
1889         generator = EC_POINT_new(group);
1890         if (generator == NULL)
1891             goto err;
1892         /* get the generator from precomputation */
1893         if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1894             !felem_to_BN(y, g_pre_comp[1][1]) ||
1895             !felem_to_BN(z, g_pre_comp[1][2])) {
1896             ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1897             goto err;
1898         }
1899         if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1900                                                       generator, x, y, z,
1901                                                       ctx))
1902             goto err;
1903         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1904             /* precomputation matches generator */
1905             have_pre_comp = 1;
1906         else
1907             /*
1908              * we don't have valid precomputation: treat the generator as a
1909              * random point
1910              */
1911             num_points++;
1912     }
1913
1914     if (num_points > 0) {
1915         if (num_points >= 2) {
1916             /*
1917              * unless we precompute multiples for just one point, converting
1918              * those into affine form is time well spent
1919              */
1920             mixed = 1;
1921         }
1922         secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1923         pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1924         if (mixed)
1925             tmp_felems =
1926                 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1927         if ((secrets == NULL) || (pre_comp == NULL)
1928             || (mixed && (tmp_felems == NULL))) {
1929             ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1930             goto err;
1931         }
1932
1933         /*
1934          * we treat NULL scalars as 0, and NULL points as points at infinity,
1935          * i.e., they contribute nothing to the linear combination
1936          */
1937         for (i = 0; i < num_points; ++i) {
1938             if (i == num)
1939                 /*
1940                  * we didn't have a valid precomputation, so we pick the
1941                  * generator
1942                  */
1943             {
1944                 p = EC_GROUP_get0_generator(group);
1945                 p_scalar = scalar;
1946             } else
1947                 /* the i^th point */
1948             {
1949                 p = points[i];
1950                 p_scalar = scalars[i];
1951             }
1952             if ((p_scalar != NULL) && (p != NULL)) {
1953                 /* reduce scalar to 0 <= scalar < 2^521 */
1954                 if ((BN_num_bits(p_scalar) > 521)
1955                     || (BN_is_negative(p_scalar))) {
1956                     /*
1957                      * this is an unusual input, and we don't guarantee
1958                      * constant-timeness
1959                      */
1960                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1961                         ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1962                         goto err;
1963                     }
1964                     num_bytes = BN_bn2bin(tmp_scalar, tmp);
1965                 } else
1966                     num_bytes = BN_bn2bin(p_scalar, tmp);
1967                 flip_endian(secrets[i], tmp, num_bytes);
1968                 /* precompute multiples */
1969                 if ((!BN_to_felem(x_out, p->X)) ||
1970                     (!BN_to_felem(y_out, p->Y)) ||
1971                     (!BN_to_felem(z_out, p->Z)))
1972                     goto err;
1973                 memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1974                 memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1975                 memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1976                 for (j = 2; j <= 16; ++j) {
1977                     if (j & 1) {
1978                         point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1979                                   pre_comp[i][j][2], pre_comp[i][1][0],
1980                                   pre_comp[i][1][1], pre_comp[i][1][2], 0,
1981                                   pre_comp[i][j - 1][0],
1982                                   pre_comp[i][j - 1][1],
1983                                   pre_comp[i][j - 1][2]);
1984                     } else {
1985                         point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1986                                      pre_comp[i][j][2], pre_comp[i][j / 2][0],
1987                                      pre_comp[i][j / 2][1],
1988                                      pre_comp[i][j / 2][2]);
1989                     }
1990                 }
1991             }
1992         }
1993         if (mixed)
1994             make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1995     }
1996
1997     /* the scalar for the generator */
1998     if ((scalar != NULL) && (have_pre_comp)) {
1999         memset(g_secret, 0, sizeof(g_secret));
2000         /* reduce scalar to 0 <= scalar < 2^521 */
2001         if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2002             /*
2003              * this is an unusual input, and we don't guarantee
2004              * constant-timeness
2005              */
2006             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2007                 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2008                 goto err;
2009             }
2010             num_bytes = BN_bn2bin(tmp_scalar, tmp);
2011         } else
2012             num_bytes = BN_bn2bin(scalar, tmp);
2013         flip_endian(g_secret, tmp, num_bytes);
2014         /* do the multiplication with generator precomputation */
2015         batch_mul(x_out, y_out, z_out,
2016                   (const felem_bytearray(*))secrets, num_points,
2017                   g_secret,
2018                   mixed, (const felem(*)[17][3])pre_comp,
2019                   (const felem(*)[3])g_pre_comp);
2020     } else
2021         /* do the multiplication without generator precomputation */
2022         batch_mul(x_out, y_out, z_out,
2023                   (const felem_bytearray(*))secrets, num_points,
2024                   NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2025     /* reduce the output to its unique minimal representation */
2026     felem_contract(x_in, x_out);
2027     felem_contract(y_in, y_out);
2028     felem_contract(z_in, z_out);
2029     if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2030         (!felem_to_BN(z, z_in))) {
2031         ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2032         goto err;
2033     }
2034     ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2035
2036  err:
2037     BN_CTX_end(ctx);
2038     EC_POINT_free(generator);
2039     BN_CTX_free(new_ctx);
2040     OPENSSL_free(secrets);
2041     OPENSSL_free(pre_comp);
2042     OPENSSL_free(tmp_felems);
2043     return ret;
2044 }
2045
2046 int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2047 {
2048     int ret = 0;
2049     NISTP521_PRE_COMP *pre = NULL;
2050     int i, j;
2051     BN_CTX *new_ctx = NULL;
2052     BIGNUM *x, *y;
2053     EC_POINT *generator = NULL;
2054     felem tmp_felems[16];
2055
2056     /* throw away old precomputation */
2057     EC_pre_comp_free(group);
2058     if (ctx == NULL)
2059         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2060             return 0;
2061     BN_CTX_start(ctx);
2062     x = BN_CTX_get(ctx);
2063     y = BN_CTX_get(ctx);
2064     if (y == NULL)
2065         goto err;
2066     /* get the generator */
2067     if (group->generator == NULL)
2068         goto err;
2069     generator = EC_POINT_new(group);
2070     if (generator == NULL)
2071         goto err;
2072     BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2073     BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2074     if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2075         goto err;
2076     if ((pre = nistp521_pre_comp_new()) == NULL)
2077         goto err;
2078     /*
2079      * if the generator is the standard one, use built-in precomputation
2080      */
2081     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2082         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2083         goto done;
2084     }
2085     if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2086         (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2087         (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2088         goto err;
2089     /* compute 2^130*G, 2^260*G, 2^390*G */
2090     for (i = 1; i <= 4; i <<= 1) {
2091         point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2092                      pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2093                      pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2094         for (j = 0; j < 129; ++j) {
2095             point_double(pre->g_pre_comp[2 * i][0],
2096                          pre->g_pre_comp[2 * i][1],
2097                          pre->g_pre_comp[2 * i][2],
2098                          pre->g_pre_comp[2 * i][0],
2099                          pre->g_pre_comp[2 * i][1],
2100                          pre->g_pre_comp[2 * i][2]);
2101         }
2102     }
2103     /* g_pre_comp[0] is the point at infinity */
2104     memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2105     /* the remaining multiples */
2106     /* 2^130*G + 2^260*G */
2107     point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2108               pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2109               pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2110               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2111               pre->g_pre_comp[2][2]);
2112     /* 2^130*G + 2^390*G */
2113     point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2114               pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2115               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2116               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2117               pre->g_pre_comp[2][2]);
2118     /* 2^260*G + 2^390*G */
2119     point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2120               pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2121               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2122               0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2123               pre->g_pre_comp[4][2]);
2124     /* 2^130*G + 2^260*G + 2^390*G */
2125     point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2126               pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2127               pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2128               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2129               pre->g_pre_comp[2][2]);
2130     for (i = 1; i < 8; ++i) {
2131         /* odd multiples: add G */
2132         point_add(pre->g_pre_comp[2 * i + 1][0],
2133                   pre->g_pre_comp[2 * i + 1][1],
2134                   pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2135                   pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2136                   pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2137                   pre->g_pre_comp[1][2]);
2138     }
2139     make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2140
2141  done:
2142     SETPRECOMP(group, nistp521, pre);
2143     ret = 1;
2144     pre = NULL;
2145  err:
2146     BN_CTX_end(ctx);
2147     EC_POINT_free(generator);
2148     BN_CTX_free(new_ctx);
2149     EC_nistp521_pre_comp_free(pre);
2150     return ret;
2151 }
2152
2153 int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2154 {
2155     return HAVEPRECOMP(group, nistp521);
2156 }
2157
2158 #endif