4c76827db878a26f7b205deeb44af8324fc551b0
[openssl.git] / crypto / ec / ecp_nistp224.c
1 /* crypto/ec/ecp_nistp224.c */
2 /*
3  * Written by Emilia Kasper (Google) for the OpenSSL project.
4  */
5 /* Copyright 2011 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  *
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *     http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS,
16  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  */
20
21 /*
22  * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
23  *
24  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
25  * and Adam Langley's public domain 64-bit C implementation of curve25519
26  */
27
28 #include <openssl/opensslconf.h>
29 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
30
31 #include <stdint.h>
32 #include <string.h>
33 #include <openssl/err.h>
34 #include "ec_lcl.h"
35
36 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
37   /* even with gcc, the typedef won't work for 32-bit platforms */
38   typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
39 #else
40   #error "Need GCC 3.1 or later to define type uint128_t"
41 #endif
42
43 typedef uint8_t u8;
44 typedef uint64_t u64;
45 typedef int64_t s64;
46
47
48 /******************************************************************************/
49 /*-
50  * INTERNAL REPRESENTATION OF FIELD ELEMENTS
51  *
52  * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
53  * using 64-bit coefficients called 'limbs',
54  * and sometimes (for multiplication results) as
55  * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
56  * using 128-bit coefficients called 'widelimbs'.
57  * A 4-limb representation is an 'felem';
58  * a 7-widelimb representation is a 'widefelem'.
59  * Even within felems, bits of adjacent limbs overlap, and we don't always
60  * reduce the representations: we ensure that inputs to each felem
61  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
62  * and fit into a 128-bit word without overflow. The coefficients are then
63  * again partially reduced to obtain an felem satisfying a_i < 2^57.
64  * We only reduce to the unique minimal representation at the end of the
65  * computation.
66  */
67
68 typedef uint64_t limb;
69 typedef uint128_t widelimb;
70
71 typedef limb felem[4];
72 typedef widelimb widefelem[7];
73
74 /* Field element represented as a byte arrary.
75  * 28*8 = 224 bits is also the group order size for the elliptic curve,
76  * and we also use this type for scalars for point multiplication.
77   */
78 typedef u8 felem_bytearray[28];
79
80 static const felem_bytearray nistp224_curve_params[5] = {
81         {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */
82          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
83          0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
84         {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */
85          0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
86          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
87         {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41,    /* b */
88          0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
89          0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
90         {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13,    /* x */
91          0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
92          0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
93         {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22,    /* y */
94          0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
95          0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
96 };
97
98 /*-
99  * Precomputed multiples of the standard generator
100  * Points are given in coordinates (X, Y, Z) where Z normally is 1
101  * (0 for the point at infinity).
102  * For each field element, slice a_0 is word 0, etc.
103  *
104  * The table has 2 * 16 elements, starting with the following:
105  * index | bits    | point
106  * ------+---------+------------------------------
107  *     0 | 0 0 0 0 | 0G
108  *     1 | 0 0 0 1 | 1G
109  *     2 | 0 0 1 0 | 2^56G
110  *     3 | 0 0 1 1 | (2^56 + 1)G
111  *     4 | 0 1 0 0 | 2^112G
112  *     5 | 0 1 0 1 | (2^112 + 1)G
113  *     6 | 0 1 1 0 | (2^112 + 2^56)G
114  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
115  *     8 | 1 0 0 0 | 2^168G
116  *     9 | 1 0 0 1 | (2^168 + 1)G
117  *    10 | 1 0 1 0 | (2^168 + 2^56)G
118  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
119  *    12 | 1 1 0 0 | (2^168 + 2^112)G
120  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
121  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
122  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
123  * followed by a copy of this with each element multiplied by 2^28.
124  *
125  * The reason for this is so that we can clock bits into four different
126  * locations when doing simple scalar multiplies against the base point,
127  * and then another four locations using the second 16 elements.
128  */
129 static const felem gmul[2][16][3] =
130 {{{{0, 0, 0, 0},
131    {0, 0, 0, 0},
132    {0, 0, 0, 0}},
133   {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
134    {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
135    {1, 0, 0, 0}},
136   {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
137    {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
138    {1, 0, 0, 0}},
139   {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
140    {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
141    {1, 0, 0, 0}},
142   {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
143    {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
144    {1, 0, 0, 0}},
145   {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
146    {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
147    {1, 0, 0, 0}},
148   {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
149    {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
150    {1, 0, 0, 0}},
151   {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
152    {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
153    {1, 0, 0, 0}},
154   {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
155    {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
156    {1, 0, 0, 0}},
157   {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
158    {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
159    {1, 0, 0, 0}},
160   {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
161    {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
162    {1, 0, 0, 0}},
163   {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
164    {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
165    {1, 0, 0, 0}},
166   {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
167    {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
168    {1, 0, 0, 0}},
169   {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
170    {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
171    {1, 0, 0, 0}},
172   {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
173    {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
174    {1, 0, 0, 0}},
175   {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
176    {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
177    {1, 0, 0, 0}}},
178  {{{0, 0, 0, 0},
179    {0, 0, 0, 0},
180    {0, 0, 0, 0}},
181   {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
182    {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
183    {1, 0, 0, 0}},
184   {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
185    {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
186    {1, 0, 0, 0}},
187   {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
188    {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
189    {1, 0, 0, 0}},
190   {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
191    {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
192    {1, 0, 0, 0}},
193   {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
194    {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
195    {1, 0, 0, 0}},
196   {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
197    {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
198    {1, 0, 0, 0}},
199   {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
200    {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
201    {1, 0, 0, 0}},
202   {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
203    {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
204    {1, 0, 0, 0}},
205   {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
206    {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
207    {1, 0, 0, 0}},
208   {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
209    {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
210    {1, 0, 0, 0}},
211   {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
212    {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
213    {1, 0, 0, 0}},
214   {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
215    {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
216    {1, 0, 0, 0}},
217   {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
218    {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
219    {1, 0, 0, 0}},
220   {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
221    {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
222    {1, 0, 0, 0}},
223   {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
224    {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
225    {1, 0, 0, 0}}}};
226
227 /* Precomputation for the group generator. */
228 typedef struct {
229         felem g_pre_comp[2][16][3];
230         int references;
231 } NISTP224_PRE_COMP;
232
233 const EC_METHOD *EC_GFp_nistp224_method(void)
234         {
235         static const EC_METHOD ret = {
236                 EC_FLAGS_DEFAULT_OCT,
237                 NID_X9_62_prime_field,
238                 ec_GFp_nistp224_group_init,
239                 ec_GFp_simple_group_finish,
240                 ec_GFp_simple_group_clear_finish,
241                 ec_GFp_nist_group_copy,
242                 ec_GFp_nistp224_group_set_curve,
243                 ec_GFp_simple_group_get_curve,
244                 ec_GFp_simple_group_get_degree,
245                 ec_GFp_simple_group_check_discriminant,
246                 ec_GFp_simple_point_init,
247                 ec_GFp_simple_point_finish,
248                 ec_GFp_simple_point_clear_finish,
249                 ec_GFp_simple_point_copy,
250                 ec_GFp_simple_point_set_to_infinity,
251                 ec_GFp_simple_set_Jprojective_coordinates_GFp,
252                 ec_GFp_simple_get_Jprojective_coordinates_GFp,
253                 ec_GFp_simple_point_set_affine_coordinates,
254                 ec_GFp_nistp224_point_get_affine_coordinates,
255                 0 /* point_set_compressed_coordinates */,
256                 0 /* point2oct */,
257                 0 /* oct2point */,
258                 ec_GFp_simple_add,
259                 ec_GFp_simple_dbl,
260                 ec_GFp_simple_invert,
261                 ec_GFp_simple_is_at_infinity,
262                 ec_GFp_simple_is_on_curve,
263                 ec_GFp_simple_cmp,
264                 ec_GFp_simple_make_affine,
265                 ec_GFp_simple_points_make_affine,
266                 ec_GFp_nistp224_points_mul,
267                 ec_GFp_nistp224_precompute_mult,
268                 ec_GFp_nistp224_have_precompute_mult,
269                 ec_GFp_nist_field_mul,
270                 ec_GFp_nist_field_sqr,
271                 0 /* field_div */,
272                 0 /* field_encode */,
273                 0 /* field_decode */,
274                 0 /* field_set_to_one */ };
275
276         return &ret;
277         }
278
279 /* Helper functions to convert field elements to/from internal representation */
280 static void bin28_to_felem(felem out, const u8 in[28])
281         {
282         out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
283         out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
284         out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
285         out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
286         }
287
288 static void felem_to_bin28(u8 out[28], const felem in)
289         {
290         unsigned i;
291         for (i = 0; i < 7; ++i)
292                 {
293                 out[i]    = in[0]>>(8*i);
294                 out[i+7]  = in[1]>>(8*i);
295                 out[i+14] = in[2]>>(8*i);
296                 out[i+21] = in[3]>>(8*i);
297                 }
298         }
299
300 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
301 static void flip_endian(u8 *out, const u8 *in, unsigned len)
302         {
303         unsigned i;
304         for (i = 0; i < len; ++i)
305                 out[i] = in[len-1-i];
306         }
307
308 /* From OpenSSL BIGNUM to internal representation */
309 static int BN_to_felem(felem out, const BIGNUM *bn)
310         {
311         felem_bytearray b_in;
312         felem_bytearray b_out;
313         unsigned num_bytes;
314
315         /* BN_bn2bin eats leading zeroes */
316         memset(b_out, 0, sizeof b_out);
317         num_bytes = BN_num_bytes(bn);
318         if (num_bytes > sizeof b_out)
319                 {
320                 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
321                 return 0;
322                 }
323         if (BN_is_negative(bn))
324                 {
325                 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
326                 return 0;
327                 }
328         num_bytes = BN_bn2bin(bn, b_in);
329         flip_endian(b_out, b_in, num_bytes);
330         bin28_to_felem(out, b_out);
331         return 1;
332         }
333
334 /* From internal representation to OpenSSL BIGNUM */
335 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
336         {
337         felem_bytearray b_in, b_out;
338         felem_to_bin28(b_in, in);
339         flip_endian(b_out, b_in, sizeof b_out);
340         return BN_bin2bn(b_out, sizeof b_out, out);
341         }
342
343 /******************************************************************************/
344 /*                              FIELD OPERATIONS
345  *
346  * Field operations, using the internal representation of field elements.
347  * NB! These operations are specific to our point multiplication and cannot be
348  * expected to be correct in general - e.g., multiplication with a large scalar
349  * will cause an overflow.
350  *
351  */
352
353 static void felem_one(felem out)
354         {
355         out[0] = 1;
356         out[1] = 0;
357         out[2] = 0;
358         out[3] = 0;
359         }
360
361 static void felem_assign(felem out, const felem in)
362         {
363         out[0] = in[0];
364         out[1] = in[1];
365         out[2] = in[2];
366         out[3] = in[3];
367         }
368
369 /* Sum two field elements: out += in */
370 static void felem_sum(felem out, const felem in)
371         {
372         out[0] += in[0];
373         out[1] += in[1];
374         out[2] += in[2];
375         out[3] += in[3];
376         }
377
378 /* Get negative value: out = -in */
379 /* Assumes in[i] < 2^57 */
380 static void felem_neg(felem out, const felem in)
381         {
382         static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
383         static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
384         static const limb two58m42m2 = (((limb) 1) << 58) -
385             (((limb) 1) << 42) - (((limb) 1) << 2);
386
387         /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
388         out[0] = two58p2 - in[0];
389         out[1] = two58m42m2 - in[1];
390         out[2] = two58m2 - in[2];
391         out[3] = two58m2 - in[3];
392         }
393
394 /* Subtract field elements: out -= in */
395 /* Assumes in[i] < 2^57 */
396 static void felem_diff(felem out, const felem in)
397         {
398         static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
399         static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
400         static const limb two58m42m2 = (((limb) 1) << 58) -
401             (((limb) 1) << 42) - (((limb) 1) << 2);
402
403         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
404         out[0] += two58p2;
405         out[1] += two58m42m2;
406         out[2] += two58m2;
407         out[3] += two58m2;
408
409         out[0] -= in[0];
410         out[1] -= in[1];
411         out[2] -= in[2];
412         out[3] -= in[3];
413         }
414
415 /* Subtract in unreduced 128-bit mode: out -= in */
416 /* Assumes in[i] < 2^119 */
417 static void widefelem_diff(widefelem out, const widefelem in)
418         {
419         static const widelimb two120 = ((widelimb) 1) << 120;
420         static const widelimb two120m64 = (((widelimb) 1) << 120) -
421                 (((widelimb) 1) << 64);
422         static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
423                 (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
424
425         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
426         out[0] += two120;
427         out[1] += two120m64;
428         out[2] += two120m64;
429         out[3] += two120;
430         out[4] += two120m104m64;
431         out[5] += two120m64;
432         out[6] += two120m64;
433
434         out[0] -= in[0];
435         out[1] -= in[1];
436         out[2] -= in[2];
437         out[3] -= in[3];
438         out[4] -= in[4];
439         out[5] -= in[5];
440         out[6] -= in[6];
441         }
442
443 /* Subtract in mixed mode: out128 -= in64 */
444 /* in[i] < 2^63 */
445 static void felem_diff_128_64(widefelem out, const felem in)
446         {
447         static const widelimb two64p8 = (((widelimb) 1) << 64) +
448                 (((widelimb) 1) << 8);
449         static const widelimb two64m8 = (((widelimb) 1) << 64) -
450                 (((widelimb) 1) << 8);
451         static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
452                 (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
453
454         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
455         out[0] += two64p8;
456         out[1] += two64m48m8;
457         out[2] += two64m8;
458         out[3] += two64m8;
459
460         out[0] -= in[0];
461         out[1] -= in[1];
462         out[2] -= in[2];
463         out[3] -= in[3];
464         }
465
466 /* Multiply a field element by a scalar: out = out * scalar
467  * The scalars we actually use are small, so results fit without overflow */
468 static void felem_scalar(felem out, const limb scalar)
469         {
470         out[0] *= scalar;
471         out[1] *= scalar;
472         out[2] *= scalar;
473         out[3] *= scalar;
474         }
475
476 /* Multiply an unreduced field element by a scalar: out = out * scalar
477  * The scalars we actually use are small, so results fit without overflow */
478 static void widefelem_scalar(widefelem out, const widelimb scalar)
479         {
480         out[0] *= scalar;
481         out[1] *= scalar;
482         out[2] *= scalar;
483         out[3] *= scalar;
484         out[4] *= scalar;
485         out[5] *= scalar;
486         out[6] *= scalar;
487         }
488
489 /* Square a field element: out = in^2 */
490 static void felem_square(widefelem out, const felem in)
491         {
492         limb tmp0, tmp1, tmp2;
493         tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
494         out[0] = ((widelimb) in[0]) * in[0];
495         out[1] = ((widelimb) in[0]) * tmp1;
496         out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
497         out[3] = ((widelimb) in[3]) * tmp0 +
498                 ((widelimb) in[1]) * tmp2;
499         out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
500         out[5] = ((widelimb) in[3]) * tmp2;
501         out[6] = ((widelimb) in[3]) * in[3];
502         }
503
504 /* Multiply two field elements: out = in1 * in2 */
505 static void felem_mul(widefelem out, const felem in1, const felem in2)
506         {
507         out[0] = ((widelimb) in1[0]) * in2[0];
508         out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
509         out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
510                 ((widelimb) in1[2]) * in2[0];
511         out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
512                 ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
513         out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
514                 ((widelimb) in1[3]) * in2[1];
515         out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
516         out[6] = ((widelimb) in1[3]) * in2[3];
517         }
518
519 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
520  * Requires in[i] < 2^126,
521  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
522 static void felem_reduce(felem out, const widefelem in)
523         {
524         static const widelimb two127p15 = (((widelimb) 1) << 127) +
525                 (((widelimb) 1) << 15);
526         static const widelimb two127m71 = (((widelimb) 1) << 127) -
527                 (((widelimb) 1) << 71);
528         static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
529                 (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
530         widelimb output[5];
531
532         /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
533         output[0] = in[0] + two127p15;
534         output[1] = in[1] + two127m71m55;
535         output[2] = in[2] + two127m71;
536         output[3] = in[3];
537         output[4] = in[4];
538
539         /* Eliminate in[4], in[5], in[6] */
540         output[4] += in[6] >> 16;
541         output[3] += (in[6] & 0xffff) << 40;
542         output[2] -= in[6];
543
544         output[3] += in[5] >> 16;
545         output[2] += (in[5] & 0xffff) << 40;
546         output[1] -= in[5];
547
548         output[2] += output[4] >> 16;
549         output[1] += (output[4] & 0xffff) << 40;
550         output[0] -= output[4];
551
552         /* Carry 2 -> 3 -> 4 */
553         output[3] += output[2] >> 56;
554         output[2] &= 0x00ffffffffffffff;
555
556         output[4] = output[3] >> 56;
557         output[3] &= 0x00ffffffffffffff;
558
559         /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
560
561         /* Eliminate output[4] */
562         output[2] += output[4] >> 16;
563         /* output[2] < 2^56 + 2^56 = 2^57 */
564         output[1] += (output[4] & 0xffff) << 40;
565         output[0] -= output[4];
566
567         /* Carry 0 -> 1 -> 2 -> 3 */
568         output[1] += output[0] >> 56;
569         out[0] = output[0] & 0x00ffffffffffffff;
570
571         output[2] += output[1] >> 56;
572         /* output[2] < 2^57 + 2^72 */
573         out[1] = output[1] & 0x00ffffffffffffff;
574         output[3] += output[2] >> 56;
575         /* output[3] <= 2^56 + 2^16 */
576         out[2] = output[2] & 0x00ffffffffffffff;
577
578         /*-
579          * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
580          * out[3] <= 2^56 + 2^16 (due to final carry),
581          * so out < 2*p 
582          */
583         out[3] = output[3];
584         }
585
586 static void felem_square_reduce(felem out, const felem in)
587         {
588         widefelem tmp;
589         felem_square(tmp, in);
590         felem_reduce(out, tmp);
591         }
592
593 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
594         {
595         widefelem tmp;
596         felem_mul(tmp, in1, in2);
597         felem_reduce(out, tmp);
598         }
599
600 /* Reduce to unique minimal representation.
601  * Requires 0 <= in < 2*p (always call felem_reduce first) */
602 static void felem_contract(felem out, const felem in)
603         {
604         static const int64_t two56 = ((limb) 1) << 56;
605         /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
606         /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
607         int64_t tmp[4], a;
608         tmp[0] = in[0];
609         tmp[1] = in[1];
610         tmp[2] = in[2];
611         tmp[3] = in[3];
612         /* Case 1: a = 1 iff in >= 2^224 */
613         a = (in[3] >> 56);
614         tmp[0] -= a;
615         tmp[1] += a << 40;
616         tmp[3] &= 0x00ffffffffffffff;
617         /* Case 2: a = 0 iff p <= in < 2^224, i.e.,
618          * the high 128 bits are all 1 and the lower part is non-zero */
619         a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
620                 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
621         a &= 0x00ffffffffffffff;
622         /* turn a into an all-one mask (if a = 0) or an all-zero mask */
623         a = (a - 1) >> 63;
624         /* subtract 2^224 - 2^96 + 1 if a is all-one*/
625         tmp[3] &= a ^ 0xffffffffffffffff;
626         tmp[2] &= a ^ 0xffffffffffffffff;
627         tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
628         tmp[0] -= 1 & a;
629
630         /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
631          * be non-zero, so we only need one step */
632         a = tmp[0] >> 63;
633         tmp[0] += two56 & a;
634         tmp[1] -= 1 & a;
635
636         /* carry 1 -> 2 -> 3 */
637         tmp[2] += tmp[1] >> 56;
638         tmp[1] &= 0x00ffffffffffffff;
639
640         tmp[3] += tmp[2] >> 56;
641         tmp[2] &= 0x00ffffffffffffff;
642
643         /* Now 0 <= out < p */
644         out[0] = tmp[0];
645         out[1] = tmp[1];
646         out[2] = tmp[2];
647         out[3] = tmp[3];
648         }
649
650 /* Zero-check: returns 1 if input is 0, and 0 otherwise.
651  * We know that field elements are reduced to in < 2^225,
652  * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
653  * and 2^225 - 2^97 + 2 */
654 static limb felem_is_zero(const felem in)
655         {
656         limb zero, two224m96p1, two225m97p2;
657
658         zero = in[0] | in[1] | in[2] | in[3];
659         zero = (((int64_t)(zero) - 1) >> 63) & 1;
660         two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
661                 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
662         two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
663         two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
664                 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
665         two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
666         return (zero | two224m96p1 | two225m97p2);
667         }
668
669 static limb felem_is_zero_int(const felem in)
670         {
671         return (int) (felem_is_zero(in) & ((limb)1));
672         }
673
674 /* Invert a field element */
675 /* Computation chain copied from djb's code */
676 static void felem_inv(felem out, const felem in)
677         {
678         felem ftmp, ftmp2, ftmp3, ftmp4;
679         widefelem tmp;
680         unsigned i;
681
682         felem_square(tmp, in); felem_reduce(ftmp, tmp);         /* 2 */
683         felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);      /* 2^2 - 1 */
684         felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);       /* 2^3 - 2 */
685         felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);      /* 2^3 - 1 */
686         felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);      /* 2^4 - 2 */
687         felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);     /* 2^5 - 4 */
688         felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);     /* 2^6 - 8 */
689         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);   /* 2^6 - 1 */
690         felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);      /* 2^7 - 2 */
691         for (i = 0; i < 5; ++i)                                 /* 2^12 - 2^6 */
692                 {
693                 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
694                 }
695         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);  /* 2^12 - 1 */
696         felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);     /* 2^13 - 2 */
697         for (i = 0; i < 11; ++i)                                /* 2^24 - 2^12 */
698                 {
699                 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
700                 }
701         felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
702         felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);     /* 2^25 - 2 */
703         for (i = 0; i < 23; ++i)                                /* 2^48 - 2^24 */
704                 {
705                 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
706                 }
707         felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
708         felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);     /* 2^49 - 2 */
709         for (i = 0; i < 47; ++i)                                /* 2^96 - 2^48 */
710                 {
711                 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
712                 }
713         felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
714         felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);     /* 2^97 - 2 */
715         for (i = 0; i < 23; ++i)                                /* 2^120 - 2^24 */
716                 {
717                 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
718                 }
719         felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
720         for (i = 0; i < 6; ++i)                                 /* 2^126 - 2^6 */
721                 {
722                 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
723                 }
724         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);   /* 2^126 - 1 */
725         felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);       /* 2^127 - 2 */
726         felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);      /* 2^127 - 1 */
727         for (i = 0; i < 97; ++i)                                /* 2^224 - 2^97 */
728                 {
729                 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
730                 }
731         felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp);    /* 2^224 - 2^96 - 1 */
732         }
733
734 /* Copy in constant time:
735  * if icopy == 1, copy in to out,
736  * if icopy == 0, copy out to itself. */
737 static void
738 copy_conditional(felem out, const felem in, limb icopy)
739         {
740         unsigned i;
741         /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
742         const limb copy = -icopy;
743         for (i = 0; i < 4; ++i)
744                 {
745                 const limb tmp = copy & (in[i] ^ out[i]);
746                 out[i] ^= tmp;
747                 }
748         }
749
750 /******************************************************************************/
751 /*                       ELLIPTIC CURVE POINT OPERATIONS
752  *
753  * Points are represented in Jacobian projective coordinates:
754  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
755  * or to the point at infinity if Z == 0.
756  *
757  */
758
759 /*-
760  * Double an elliptic curve point:
761  * (X', Y', Z') = 2 * (X, Y, Z), where
762  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
763  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
764  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
765  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
766  * while x_out == y_in is not (maybe this works, but it's not tested). 
767  */
768 static void
769 point_double(felem x_out, felem y_out, felem z_out,
770              const felem x_in, const felem y_in, const felem z_in)
771         {
772         widefelem tmp, tmp2;
773         felem delta, gamma, beta, alpha, ftmp, ftmp2;
774
775         felem_assign(ftmp, x_in);
776         felem_assign(ftmp2, x_in);
777
778         /* delta = z^2 */
779         felem_square(tmp, z_in);
780         felem_reduce(delta, tmp);
781
782         /* gamma = y^2 */
783         felem_square(tmp, y_in);
784         felem_reduce(gamma, tmp);
785
786         /* beta = x*gamma */
787         felem_mul(tmp, x_in, gamma);
788         felem_reduce(beta, tmp);
789
790         /* alpha = 3*(x-delta)*(x+delta) */
791         felem_diff(ftmp, delta);
792         /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
793         felem_sum(ftmp2, delta);
794         /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
795         felem_scalar(ftmp2, 3);
796         /* ftmp2[i] < 3 * 2^58 < 2^60 */
797         felem_mul(tmp, ftmp, ftmp2);
798         /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
799         felem_reduce(alpha, tmp);
800
801         /* x' = alpha^2 - 8*beta */
802         felem_square(tmp, alpha);
803         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
804         felem_assign(ftmp, beta);
805         felem_scalar(ftmp, 8);
806         /* ftmp[i] < 8 * 2^57 = 2^60 */
807         felem_diff_128_64(tmp, ftmp);
808         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
809         felem_reduce(x_out, tmp);
810
811         /* z' = (y + z)^2 - gamma - delta */
812         felem_sum(delta, gamma);
813         /* delta[i] < 2^57 + 2^57 = 2^58 */
814         felem_assign(ftmp, y_in);
815         felem_sum(ftmp, z_in);
816         /* ftmp[i] < 2^57 + 2^57 = 2^58 */
817         felem_square(tmp, ftmp);
818         /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
819         felem_diff_128_64(tmp, delta);
820         /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
821         felem_reduce(z_out, tmp);
822
823         /* y' = alpha*(4*beta - x') - 8*gamma^2 */
824         felem_scalar(beta, 4);
825         /* beta[i] < 4 * 2^57 = 2^59 */
826         felem_diff(beta, x_out);
827         /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
828         felem_mul(tmp, alpha, beta);
829         /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
830         felem_square(tmp2, gamma);
831         /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
832         widefelem_scalar(tmp2, 8);
833         /* tmp2[i] < 8 * 2^116 = 2^119 */
834         widefelem_diff(tmp, tmp2);
835         /* tmp[i] < 2^119 + 2^120 < 2^121 */
836         felem_reduce(y_out, tmp);
837         }
838
839 /*-
840  * Add two elliptic curve points:
841  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
842  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
843  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
844  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
845  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
846  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
847  *
848  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
849  */
850
851 /* This function is not entirely constant-time:
852  * it includes a branch for checking whether the two input points are equal,
853  * (while not equal to the point at infinity).
854  * This case never happens during single point multiplication,
855  * so there is no timing leak for ECDH or ECDSA signing. */
856 static void point_add(felem x3, felem y3, felem z3,
857         const felem x1, const felem y1, const felem z1,
858         const int mixed, const felem x2, const felem y2, const felem z2)
859         {
860         felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
861         widefelem tmp, tmp2;
862         limb z1_is_zero, z2_is_zero, x_equal, y_equal;
863
864         if (!mixed)
865                 {
866                 /* ftmp2 = z2^2 */
867                 felem_square(tmp, z2);
868                 felem_reduce(ftmp2, tmp);
869
870                 /* ftmp4 = z2^3 */
871                 felem_mul(tmp, ftmp2, z2);
872                 felem_reduce(ftmp4, tmp);
873
874                 /* ftmp4 = z2^3*y1 */
875                 felem_mul(tmp2, ftmp4, y1);
876                 felem_reduce(ftmp4, tmp2);
877
878                 /* ftmp2 = z2^2*x1 */
879                 felem_mul(tmp2, ftmp2, x1);
880                 felem_reduce(ftmp2, tmp2);
881                 }
882         else
883                 {
884                 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
885
886                 /* ftmp4 = z2^3*y1 */
887                 felem_assign(ftmp4, y1);
888
889                 /* ftmp2 = z2^2*x1 */
890                 felem_assign(ftmp2, x1);
891                 }
892
893         /* ftmp = z1^2 */
894         felem_square(tmp, z1);
895         felem_reduce(ftmp, tmp);
896
897         /* ftmp3 = z1^3 */
898         felem_mul(tmp, ftmp, z1);
899         felem_reduce(ftmp3, tmp);
900
901         /* tmp = z1^3*y2 */
902         felem_mul(tmp, ftmp3, y2);
903         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
904
905         /* ftmp3 = z1^3*y2 - z2^3*y1 */
906         felem_diff_128_64(tmp, ftmp4);
907         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
908         felem_reduce(ftmp3, tmp);
909
910         /* tmp = z1^2*x2 */
911         felem_mul(tmp, ftmp, x2);
912         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
913
914         /* ftmp = z1^2*x2 - z2^2*x1 */
915         felem_diff_128_64(tmp, ftmp2);
916         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
917         felem_reduce(ftmp, tmp);
918
919         /* the formulae are incorrect if the points are equal
920          * so we check for this and do doubling if this happens */
921         x_equal = felem_is_zero(ftmp);
922         y_equal = felem_is_zero(ftmp3);
923         z1_is_zero = felem_is_zero(z1);
924         z2_is_zero = felem_is_zero(z2);
925         /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
926         if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
927                 {
928                 point_double(x3, y3, z3, x1, y1, z1);
929                 return;
930                 }
931
932         /* ftmp5 = z1*z2 */
933         if (!mixed)
934                 {
935                 felem_mul(tmp, z1, z2);
936                 felem_reduce(ftmp5, tmp);
937                 }
938         else
939                 {
940                 /* special case z2 = 0 is handled later */
941                 felem_assign(ftmp5, z1);
942                 }
943
944         /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
945         felem_mul(tmp, ftmp, ftmp5);
946         felem_reduce(z_out, tmp);
947
948         /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
949         felem_assign(ftmp5, ftmp);
950         felem_square(tmp, ftmp);
951         felem_reduce(ftmp, tmp);
952
953         /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
954         felem_mul(tmp, ftmp, ftmp5);
955         felem_reduce(ftmp5, tmp);
956
957         /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
958         felem_mul(tmp, ftmp2, ftmp);
959         felem_reduce(ftmp2, tmp);
960
961         /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
962         felem_mul(tmp, ftmp4, ftmp5);
963         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
964
965         /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
966         felem_square(tmp2, ftmp3);
967         /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
968
969         /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
970         felem_diff_128_64(tmp2, ftmp5);
971         /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
972
973         /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
974         felem_assign(ftmp5, ftmp2);
975         felem_scalar(ftmp5, 2);
976         /* ftmp5[i] < 2 * 2^57 = 2^58 */
977
978         /*-
979          * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
980          *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 
981          */
982         felem_diff_128_64(tmp2, ftmp5);
983         /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
984         felem_reduce(x_out, tmp2);
985
986         /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
987         felem_diff(ftmp2, x_out);
988         /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
989
990         /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
991         felem_mul(tmp2, ftmp3, ftmp2);
992         /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
993
994         /*-
995          * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
996          *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3 
997          */
998         widefelem_diff(tmp2, tmp);
999         /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1000         felem_reduce(y_out, tmp2);
1001
1002         /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1003          * the point at infinity, so we need to check for this separately */
1004
1005         /* if point 1 is at infinity, copy point 2 to output, and vice versa */
1006         copy_conditional(x_out, x2, z1_is_zero);
1007         copy_conditional(x_out, x1, z2_is_zero);
1008         copy_conditional(y_out, y2, z1_is_zero);
1009         copy_conditional(y_out, y1, z2_is_zero);
1010         copy_conditional(z_out, z2, z1_is_zero);
1011         copy_conditional(z_out, z1, z2_is_zero);
1012         felem_assign(x3, x_out);
1013         felem_assign(y3, y_out);
1014         felem_assign(z3, z_out);
1015         }
1016
1017 /* select_point selects the |idx|th point from a precomputation table and
1018  * copies it to out. */
1019 static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3])
1020         {
1021         unsigned i, j;
1022         limb *outlimbs = &out[0][0];
1023         memset(outlimbs, 0, 3 * sizeof(felem));
1024
1025         for (i = 0; i < size; i++)
1026                 {
1027                 const limb *inlimbs = &pre_comp[i][0][0];
1028                 u64 mask = i ^ idx;
1029                 mask |= mask >> 4;
1030                 mask |= mask >> 2;
1031                 mask |= mask >> 1;
1032                 mask &= 1;
1033                 mask--;
1034                 for (j = 0; j < 4 * 3; j++)
1035                         outlimbs[j] |= inlimbs[j] & mask;
1036                 }
1037         }
1038
1039 /* get_bit returns the |i|th bit in |in| */
1040 static char get_bit(const felem_bytearray in, unsigned i)
1041         {
1042         if (i >= 224)
1043                 return 0;
1044         return (in[i >> 3] >> (i & 7)) & 1;
1045         }
1046
1047 /* Interleaved point multiplication using precomputed point multiples:
1048  * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
1049  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1050  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1051  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1052 static void batch_mul(felem x_out, felem y_out, felem z_out,
1053         const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1054         const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
1055         {
1056         int i, skip;
1057         unsigned num;
1058         unsigned gen_mul = (g_scalar != NULL);
1059         felem nq[3], tmp[4];
1060         u64 bits;
1061         u8 sign, digit;
1062
1063         /* set nq to the point at infinity */
1064         memset(nq, 0, 3 * sizeof(felem));
1065
1066         /* Loop over all scalars msb-to-lsb, interleaving additions
1067          * of multiples of the generator (two in each of the last 28 rounds)
1068          * and additions of other points multiples (every 5th round).
1069          */
1070         skip = 1; /* save two point operations in the first round */
1071         for (i = (num_points ? 220 : 27); i >= 0; --i)
1072                 {
1073                 /* double */
1074                 if (!skip)
1075                         point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1076
1077                 /* add multiples of the generator */
1078                 if (gen_mul && (i <= 27))
1079                         {
1080                         /* first, look 28 bits upwards */
1081                         bits = get_bit(g_scalar, i + 196) << 3;
1082                         bits |= get_bit(g_scalar, i + 140) << 2;
1083                         bits |= get_bit(g_scalar, i + 84) << 1;
1084                         bits |= get_bit(g_scalar, i + 28);
1085                         /* select the point to add, in constant time */
1086                         select_point(bits, 16, g_pre_comp[1], tmp);
1087
1088                         if (!skip)
1089                                 {
1090                                 point_add(nq[0], nq[1], nq[2],
1091                                         nq[0], nq[1], nq[2],
1092                                         1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1093                                 }
1094                         else
1095                                 {
1096                                 memcpy(nq, tmp, 3 * sizeof(felem));
1097                                 skip = 0;
1098                                 }
1099
1100                         /* second, look at the current position */
1101                         bits = get_bit(g_scalar, i + 168) << 3;
1102                         bits |= get_bit(g_scalar, i + 112) << 2;
1103                         bits |= get_bit(g_scalar, i + 56) << 1;
1104                         bits |= get_bit(g_scalar, i);
1105                         /* select the point to add, in constant time */
1106                         select_point(bits, 16, g_pre_comp[0], tmp);
1107                         point_add(nq[0], nq[1], nq[2],
1108                                 nq[0], nq[1], nq[2],
1109                                 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1110                         }
1111
1112                 /* do other additions every 5 doublings */
1113                 if (num_points && (i % 5 == 0))
1114                         {
1115                         /* loop over all scalars */
1116                         for (num = 0; num < num_points; ++num)
1117                                 {
1118                                 bits = get_bit(scalars[num], i + 4) << 5;
1119                                 bits |= get_bit(scalars[num], i + 3) << 4;
1120                                 bits |= get_bit(scalars[num], i + 2) << 3;
1121                                 bits |= get_bit(scalars[num], i + 1) << 2;
1122                                 bits |= get_bit(scalars[num], i) << 1;
1123                                 bits |= get_bit(scalars[num], i - 1);
1124                                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1125
1126                                 /* select the point to add or subtract */
1127                                 select_point(digit, 17, pre_comp[num], tmp);
1128                                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
1129                                 copy_conditional(tmp[1], tmp[3], sign);
1130
1131                                 if (!skip)
1132                                         {
1133                                         point_add(nq[0], nq[1], nq[2],
1134                                                 nq[0], nq[1], nq[2],
1135                                                 mixed, tmp[0], tmp[1], tmp[2]);
1136                                         }
1137                                 else
1138                                         {
1139                                         memcpy(nq, tmp, 3 * sizeof(felem));
1140                                         skip = 0;
1141                                         }
1142                                 }
1143                         }
1144                 }
1145         felem_assign(x_out, nq[0]);
1146         felem_assign(y_out, nq[1]);
1147         felem_assign(z_out, nq[2]);
1148         }
1149
1150 /******************************************************************************/
1151 /*                     FUNCTIONS TO MANAGE PRECOMPUTATION
1152  */
1153
1154 static NISTP224_PRE_COMP *nistp224_pre_comp_new()
1155         {
1156         NISTP224_PRE_COMP *ret = NULL;
1157         ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1158         if (!ret)
1159                 {
1160                 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1161                 return ret;
1162                 }
1163         memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1164         ret->references = 1;
1165         return ret;
1166         }
1167
1168 static void *nistp224_pre_comp_dup(void *src_)
1169         {
1170         NISTP224_PRE_COMP *src = src_;
1171
1172         /* no need to actually copy, these objects never change! */
1173         CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1174
1175         return src_;
1176         }
1177
1178 static void nistp224_pre_comp_free(void *pre_)
1179         {
1180         int i;
1181         NISTP224_PRE_COMP *pre = pre_;
1182
1183         if (!pre)
1184                 return;
1185
1186         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1187         if (i > 0)
1188                 return;
1189
1190         OPENSSL_free(pre);
1191         }
1192
1193 static void nistp224_pre_comp_clear_free(void *pre_)
1194         {
1195         int i;
1196         NISTP224_PRE_COMP *pre = pre_;
1197
1198         if (!pre)
1199                 return;
1200
1201         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1202         if (i > 0)
1203                 return;
1204
1205         OPENSSL_cleanse(pre, sizeof *pre);
1206         OPENSSL_free(pre);
1207         }
1208
1209 /******************************************************************************/
1210 /*                         OPENSSL EC_METHOD FUNCTIONS
1211  */
1212
1213 int ec_GFp_nistp224_group_init(EC_GROUP *group)
1214         {
1215         int ret;
1216         ret = ec_GFp_simple_group_init(group);
1217         group->a_is_minus3 = 1;
1218         return ret;
1219         }
1220
1221 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1222         const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1223         {
1224         int ret = 0;
1225         BN_CTX *new_ctx = NULL;
1226         BIGNUM *curve_p, *curve_a, *curve_b;
1227
1228         if (ctx == NULL)
1229                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1230         BN_CTX_start(ctx);
1231         if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1232                 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1233                 ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1234         BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1235         BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1236         BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1237         if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1238                 (BN_cmp(curve_b, b)))
1239                 {
1240                 ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1241                         EC_R_WRONG_CURVE_PARAMETERS);
1242                 goto err;
1243                 }
1244         group->field_mod_func = BN_nist_mod_224;
1245         ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1246 err:
1247         BN_CTX_end(ctx);
1248         if (new_ctx != NULL)
1249                 BN_CTX_free(new_ctx);
1250         return ret;
1251         }
1252
1253 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1254  * (X', Y') = (X/Z^2, Y/Z^3) */
1255 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1256         const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1257         {
1258         felem z1, z2, x_in, y_in, x_out, y_out;
1259         widefelem tmp;
1260
1261         if (EC_POINT_is_at_infinity(group, point))
1262                 {
1263                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1264                         EC_R_POINT_AT_INFINITY);
1265                 return 0;
1266                 }
1267         if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1268                 (!BN_to_felem(z1, &point->Z))) return 0;
1269         felem_inv(z2, z1);
1270         felem_square(tmp, z2); felem_reduce(z1, tmp);
1271         felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1272         felem_contract(x_out, x_in);
1273         if (x != NULL)
1274                 {
1275                 if (!felem_to_BN(x, x_out)) {
1276                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1277                         ERR_R_BN_LIB);
1278                 return 0;
1279                 }
1280                 }
1281         felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1282         felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1283         felem_contract(y_out, y_in);
1284         if (y != NULL)
1285                 {
1286                 if (!felem_to_BN(y, y_out)) {
1287                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1288                         ERR_R_BN_LIB);
1289                 return 0;
1290                 }
1291                 }
1292         return 1;
1293         }
1294
1295 static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
1296         {
1297         /* Runs in constant time, unless an input is the point at infinity
1298          * (which normally shouldn't happen). */
1299         ec_GFp_nistp_points_make_affine_internal(
1300                 num,
1301                 points,
1302                 sizeof(felem),
1303                 tmp_felems,
1304                 (void (*)(void *)) felem_one,
1305                 (int (*)(const void *)) felem_is_zero_int,
1306                 (void (*)(void *, const void *)) felem_assign,
1307                 (void (*)(void *, const void *)) felem_square_reduce,
1308                 (void (*)(void *, const void *, const void *)) felem_mul_reduce,
1309                 (void (*)(void *, const void *)) felem_inv,
1310                 (void (*)(void *, const void *)) felem_contract);
1311         }
1312
1313 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1314  * Result is stored in r (r can equal one of the inputs). */
1315 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1316         const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1317         const BIGNUM *scalars[], BN_CTX *ctx)
1318         {
1319         int ret = 0;
1320         int j;
1321         unsigned i;
1322         int mixed = 0;
1323         BN_CTX *new_ctx = NULL;
1324         BIGNUM *x, *y, *z, *tmp_scalar;
1325         felem_bytearray g_secret;
1326         felem_bytearray *secrets = NULL;
1327         felem (*pre_comp)[17][3] = NULL;
1328         felem *tmp_felems = NULL;
1329         felem_bytearray tmp;
1330         unsigned num_bytes;
1331         int have_pre_comp = 0;
1332         size_t num_points = num;
1333         felem x_in, y_in, z_in, x_out, y_out, z_out;
1334         NISTP224_PRE_COMP *pre = NULL;
1335         const felem (*g_pre_comp)[16][3] = NULL;
1336         EC_POINT *generator = NULL;
1337         const EC_POINT *p = NULL;
1338         const BIGNUM *p_scalar = NULL;
1339
1340         if (ctx == NULL)
1341                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1342         BN_CTX_start(ctx);
1343         if (((x = BN_CTX_get(ctx)) == NULL) ||
1344                 ((y = BN_CTX_get(ctx)) == NULL) ||
1345                 ((z = BN_CTX_get(ctx)) == NULL) ||
1346                 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1347                 goto err;
1348
1349         if (scalar != NULL)
1350                 {
1351                 pre = EC_EX_DATA_get_data(group->extra_data,
1352                         nistp224_pre_comp_dup, nistp224_pre_comp_free,
1353                         nistp224_pre_comp_clear_free);
1354                 if (pre)
1355                         /* we have precomputation, try to use it */
1356                         g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
1357                 else
1358                         /* try to use the standard precomputation */
1359                         g_pre_comp = &gmul[0];
1360                 generator = EC_POINT_new(group);
1361                 if (generator == NULL)
1362                         goto err;
1363                 /* get the generator from precomputation */
1364                 if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1365                         !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1366                         !felem_to_BN(z, g_pre_comp[0][1][2]))
1367                         {
1368                         ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1369                         goto err;
1370                         }
1371                 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1372                                 generator, x, y, z, ctx))
1373                         goto err;
1374                 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1375                         /* precomputation matches generator */
1376                         have_pre_comp = 1;
1377                 else
1378                         /* we don't have valid precomputation:
1379                          * treat the generator as a random point */
1380                         num_points = num_points + 1;
1381                 }
1382
1383         if (num_points > 0)
1384                 {
1385                 if (num_points >= 3)
1386                         {
1387                         /* unless we precompute multiples for just one or two points,
1388                          * converting those into affine form is time well spent  */
1389                         mixed = 1;
1390                         }
1391                 secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1392                 pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
1393                 if (mixed)
1394                         tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1395                 if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
1396                         {
1397                         ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1398                         goto err;
1399                         }
1400
1401                 /* we treat NULL scalars as 0, and NULL points as points at infinity,
1402                  * i.e., they contribute nothing to the linear combination */
1403                 memset(secrets, 0, num_points * sizeof(felem_bytearray));
1404                 memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1405                 for (i = 0; i < num_points; ++i)
1406                         {
1407                         if (i == num)
1408                                 /* the generator */
1409                                 {
1410                                 p = EC_GROUP_get0_generator(group);
1411                                 p_scalar = scalar;
1412                                 }
1413                         else
1414                                 /* the i^th point */
1415                                 {
1416                                 p = points[i];
1417                                 p_scalar = scalars[i];
1418                                 }
1419                         if ((p_scalar != NULL) && (p != NULL))
1420                                 {
1421                                 /* reduce scalar to 0 <= scalar < 2^224 */
1422                                 if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
1423                                         {
1424                                         /* this is an unusual input, and we don't guarantee
1425                                          * constant-timeness */
1426                                         if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1427                                                 {
1428                                                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1429                                                 goto err;
1430                                                 }
1431                                         num_bytes = BN_bn2bin(tmp_scalar, tmp);
1432                                         }
1433                                 else
1434                                         num_bytes = BN_bn2bin(p_scalar, tmp);
1435                                 flip_endian(secrets[i], tmp, num_bytes);
1436                                 /* precompute multiples */
1437                                 if ((!BN_to_felem(x_out, &p->X)) ||
1438                                         (!BN_to_felem(y_out, &p->Y)) ||
1439                                         (!BN_to_felem(z_out, &p->Z))) goto err;
1440                                 felem_assign(pre_comp[i][1][0], x_out);
1441                                 felem_assign(pre_comp[i][1][1], y_out);
1442                                 felem_assign(pre_comp[i][1][2], z_out);
1443                                 for (j = 2; j <= 16; ++j)
1444                                         {
1445                                         if (j & 1)
1446                                                 {
1447                                                 point_add(
1448                                                         pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1449                                                         pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1450                                                         0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1451                                                 }
1452                                         else
1453                                                 {
1454                                                 point_double(
1455                                                         pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1456                                                         pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1457                                                 }
1458                                         }
1459                                 }
1460                         }
1461                 if (mixed)
1462                         make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1463                 }
1464
1465         /* the scalar for the generator */
1466         if ((scalar != NULL) && (have_pre_comp))
1467                 {
1468                 memset(g_secret, 0, sizeof g_secret);
1469                 /* reduce scalar to 0 <= scalar < 2^224 */
1470                 if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
1471                         {
1472                         /* this is an unusual input, and we don't guarantee
1473                          * constant-timeness */
1474                         if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1475                                 {
1476                                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1477                                 goto err;
1478                                 }
1479                         num_bytes = BN_bn2bin(tmp_scalar, tmp);
1480                         }
1481                 else
1482                         num_bytes = BN_bn2bin(scalar, tmp);
1483                 flip_endian(g_secret, tmp, num_bytes);
1484                 /* do the multiplication with generator precomputation*/
1485                 batch_mul(x_out, y_out, z_out,
1486                         (const felem_bytearray (*)) secrets, num_points,
1487                         g_secret,
1488                         mixed, (const felem (*)[17][3]) pre_comp,
1489                         g_pre_comp);
1490                 }
1491         else
1492                 /* do the multiplication without generator precomputation */
1493                 batch_mul(x_out, y_out, z_out,
1494                         (const felem_bytearray (*)) secrets, num_points,
1495                         NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
1496         /* reduce the output to its unique minimal representation */
1497         felem_contract(x_in, x_out);
1498         felem_contract(y_in, y_out);
1499         felem_contract(z_in, z_out);
1500         if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1501                 (!felem_to_BN(z, z_in)))
1502                 {
1503                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1504                 goto err;
1505                 }
1506         ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1507
1508 err:
1509         BN_CTX_end(ctx);
1510         if (generator != NULL)
1511                 EC_POINT_free(generator);
1512         if (new_ctx != NULL)
1513                 BN_CTX_free(new_ctx);
1514         if (secrets != NULL)
1515                 OPENSSL_free(secrets);
1516         if (pre_comp != NULL)
1517                 OPENSSL_free(pre_comp);
1518         if (tmp_felems != NULL)
1519                 OPENSSL_free(tmp_felems);
1520         return ret;
1521         }
1522
1523 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1524         {
1525         int ret = 0;
1526         NISTP224_PRE_COMP *pre = NULL;
1527         int i, j;
1528         BN_CTX *new_ctx = NULL;
1529         BIGNUM *x, *y;
1530         EC_POINT *generator = NULL;
1531         felem tmp_felems[32];
1532
1533         /* throw away old precomputation */
1534         EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
1535                 nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
1536         if (ctx == NULL)
1537                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1538         BN_CTX_start(ctx);
1539         if (((x = BN_CTX_get(ctx)) == NULL) ||
1540                 ((y = BN_CTX_get(ctx)) == NULL))
1541                 goto err;
1542         /* get the generator */
1543         if (group->generator == NULL) goto err;
1544         generator = EC_POINT_new(group);
1545         if (generator == NULL)
1546                 goto err;
1547         BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
1548         BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
1549         if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
1550                 goto err;
1551         if ((pre = nistp224_pre_comp_new()) == NULL)
1552                 goto err;
1553         /* if the generator is the standard one, use built-in precomputation */
1554         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1555                 {
1556                 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1557                 ret = 1;
1558                 goto err;
1559                 }
1560         if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
1561                 (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
1562                 (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
1563                 goto err;
1564         /* compute 2^56*G, 2^112*G, 2^168*G for the first table,
1565          * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
1566          */
1567         for (i = 1; i <= 8; i <<= 1)
1568                 {
1569                 point_double(
1570                         pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1571                         pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1572                 for (j = 0; j < 27; ++j)
1573                         {
1574                         point_double(
1575                                 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1576                                 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1577                         }
1578                 if (i == 8)
1579                         break;
1580                 point_double(
1581                         pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1582                         pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1583                 for (j = 0; j < 27; ++j)
1584                         {
1585                         point_double(
1586                                 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1587                                 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
1588                         }
1589                 }
1590         for (i = 0; i < 2; i++)
1591                 {
1592                 /* g_pre_comp[i][0] is the point at infinity */
1593                 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1594                 /* the remaining multiples */
1595                 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1596                 point_add(
1597                         pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1598                         pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1599                         pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1600                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1601                         pre->g_pre_comp[i][2][2]);
1602                 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1603                 point_add(
1604                         pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1605                         pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1606                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1607                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1608                         pre->g_pre_comp[i][2][2]);
1609                 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1610                 point_add(
1611                         pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1612                         pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1613                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1614                         0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1615                         pre->g_pre_comp[i][4][2]);
1616                 /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
1617                 point_add(
1618                         pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1619                         pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1620                         pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1621                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1622                         pre->g_pre_comp[i][2][2]);
1623                 for (j = 1; j < 8; ++j)
1624                         {
1625                         /* odd multiples: add G resp. 2^28*G */
1626                         point_add(
1627                                 pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
1628                                 pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
1629                                 pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
1630                                 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1631                                 pre->g_pre_comp[i][1][2]);
1632                         }
1633                 }
1634         make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1635
1636         if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
1637                         nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
1638                 goto err;
1639         ret = 1;
1640         pre = NULL;
1641  err:
1642         BN_CTX_end(ctx);
1643         if (generator != NULL)
1644                 EC_POINT_free(generator);
1645         if (new_ctx != NULL)
1646                 BN_CTX_free(new_ctx);
1647         if (pre)
1648                 nistp224_pre_comp_free(pre);
1649         return ret;
1650         }
1651
1652 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1653         {
1654         if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
1655                         nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
1656                 != NULL)
1657                 return 1;
1658         else
1659                 return 0;
1660         }
1661
1662 #else
1663 static void *dummy=&dummy;
1664 #endif