crypto/bn: add more fixed-top routines.
[openssl.git] / crypto / bn / bn_mont.c
1 /*
2  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9
10 /*
11  * Details about Montgomery multiplication algorithms can be found at
12  * http://security.ece.orst.edu/publications.html, e.g.
13  * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
14  * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
15  */
16
17 #include "internal/cryptlib.h"
18 #include "bn_lcl.h"
19
20 #define MONT_WORD               /* use the faster word-based algorithm */
21
22 #ifdef MONT_WORD
23 static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
24 #endif
25
26 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
27                           BN_MONT_CTX *mont, BN_CTX *ctx)
28 {
29     int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);
30
31     bn_correct_top(r);
32     bn_check_top(r);
33
34     return ret;
35 }
36
37 int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
38                           BN_MONT_CTX *mont, BN_CTX *ctx)
39 {
40     BIGNUM *tmp;
41     int ret = 0;
42     int num = mont->N.top;
43
44 #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
45     if (num > 1 && a->top == num && b->top == num) {
46         if (bn_wexpand(r, num) == NULL)
47             return 0;
48         if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
49             r->neg = a->neg ^ b->neg;
50             r->top = num;
51             r->flags |= BN_FLG_FIXED_TOP;
52             return 1;
53         }
54     }
55 #endif
56
57     if ((a->top + b->top) > 2 * num)
58         return 0;
59
60     BN_CTX_start(ctx);
61     tmp = BN_CTX_get(ctx);
62     if (tmp == NULL)
63         goto err;
64
65     bn_check_top(tmp);
66     if (a == b) {
67         if (!bn_sqr_fixed_top(tmp, a, ctx))
68             goto err;
69     } else {
70         if (!bn_mul_fixed_top(tmp, a, b, ctx))
71             goto err;
72     }
73     /* reduce from aRR to aR */
74 #ifdef MONT_WORD
75     if (!bn_from_montgomery_word(r, tmp, mont))
76         goto err;
77 #else
78     if (!BN_from_montgomery(r, tmp, mont, ctx))
79         goto err;
80 #endif
81     ret = 1;
82  err:
83     BN_CTX_end(ctx);
84     return ret;
85 }
86
87 #ifdef MONT_WORD
88 static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
89 {
90     BIGNUM *n;
91     BN_ULONG *ap, *np, *rp, n0, v, carry;
92     int nl, max, i;
93     unsigned int rtop;
94
95     n = &(mont->N);
96     nl = n->top;
97     if (nl == 0) {
98         ret->top = 0;
99         return 1;
100     }
101
102     max = (2 * nl);             /* carry is stored separately */
103     if (bn_wexpand(r, max) == NULL)
104         return 0;
105
106     r->neg ^= n->neg;
107     np = n->d;
108     rp = r->d;
109
110     /* clear the top words of T */
111     for (rtop = r->top, i = 0; i < max; i++) {
112         v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1));
113         rp[i] &= v;
114     }
115
116     r->top = max;
117     r->flags |= BN_FLG_FIXED_TOP;
118     n0 = mont->n0[0];
119
120     /*
121      * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
122      * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
123      * includes |carry| which is stored separately.
124      */
125     for (carry = 0, i = 0; i < nl; i++, rp++) {
126         v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2);
127         v = (v + carry + rp[nl]) & BN_MASK2;
128         carry |= (v != rp[nl]);
129         carry &= (v <= rp[nl]);
130         rp[nl] = v;
131     }
132
133     if (bn_wexpand(ret, nl) == NULL)
134         return 0;
135     ret->top = nl;
136     ret->flags |= BN_FLG_FIXED_TOP;
137     ret->neg = r->neg;
138
139     rp = ret->d;
140
141     /*
142      * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap|
143      * includes |carry| which is stored separately.
144      */
145     ap = &(r->d[nl]);
146
147     carry -= bn_sub_words(rp, ap, np, nl);
148     /*
149      * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note
150      * |carry| cannot be 1. That would imply the subtraction did not fit in
151      * |nl| words, and we know at most one subtraction is needed.
152      */
153     for (i = 0; i < nl; i++) {
154         rp[i] = (carry & ap[i]) | (~carry & rp[i]);
155         ap[i] = 0;
156     }
157
158     return 1;
159 }
160 #endif                          /* MONT_WORD */
161
162 int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
163                        BN_CTX *ctx)
164 {
165     int retn;
166
167     retn = bn_from_mont_fixed_top(ret, a, mont, ctx);
168     bn_correct_top(ret);
169     bn_check_top(ret);
170
171     return retn;
172 }
173
174 int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
175                            BN_CTX *ctx)
176 {
177     int retn = 0;
178 #ifdef MONT_WORD
179     BIGNUM *t;
180
181     BN_CTX_start(ctx);
182     if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) {
183         retn = bn_from_montgomery_word(ret, t, mont);
184     }
185     BN_CTX_end(ctx);
186 #else                           /* !MONT_WORD */
187     BIGNUM *t1, *t2;
188
189     BN_CTX_start(ctx);
190     t1 = BN_CTX_get(ctx);
191     t2 = BN_CTX_get(ctx);
192     if (t2 == NULL)
193         goto err;
194
195     if (!BN_copy(t1, a))
196         goto err;
197     BN_mask_bits(t1, mont->ri);
198
199     if (!BN_mul(t2, t1, &mont->Ni, ctx))
200         goto err;
201     BN_mask_bits(t2, mont->ri);
202
203     if (!BN_mul(t1, t2, &mont->N, ctx))
204         goto err;
205     if (!BN_add(t2, a, t1))
206         goto err;
207     if (!BN_rshift(ret, t2, mont->ri))
208         goto err;
209
210     if (BN_ucmp(ret, &(mont->N)) >= 0) {
211         if (!BN_usub(ret, ret, &(mont->N)))
212             goto err;
213     }
214     retn = 1;
215     bn_check_top(ret);
216  err:
217     BN_CTX_end(ctx);
218 #endif                          /* MONT_WORD */
219     return retn;
220 }
221
222 int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
223                          BN_CTX *ctx)
224 {
225     return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
226 }
227
228 BN_MONT_CTX *BN_MONT_CTX_new(void)
229 {
230     BN_MONT_CTX *ret;
231
232     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
233         BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE);
234         return NULL;
235     }
236
237     BN_MONT_CTX_init(ret);
238     ret->flags = BN_FLG_MALLOCED;
239     return ret;
240 }
241
242 void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
243 {
244     ctx->ri = 0;
245     bn_init(&ctx->RR);
246     bn_init(&ctx->N);
247     bn_init(&ctx->Ni);
248     ctx->n0[0] = ctx->n0[1] = 0;
249     ctx->flags = 0;
250 }
251
252 void BN_MONT_CTX_free(BN_MONT_CTX *mont)
253 {
254     if (mont == NULL)
255         return;
256     BN_clear_free(&mont->RR);
257     BN_clear_free(&mont->N);
258     BN_clear_free(&mont->Ni);
259     if (mont->flags & BN_FLG_MALLOCED)
260         OPENSSL_free(mont);
261 }
262
263 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
264 {
265     int i, ret = 0;
266     BIGNUM *Ri, *R;
267
268     if (BN_is_zero(mod))
269         return 0;
270
271     BN_CTX_start(ctx);
272     if ((Ri = BN_CTX_get(ctx)) == NULL)
273         goto err;
274     R = &(mont->RR);            /* grab RR as a temp */
275     if (!BN_copy(&(mont->N), mod))
276         goto err;               /* Set N */
277     if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
278         BN_set_flags(&(mont->N), BN_FLG_CONSTTIME);
279     mont->N.neg = 0;
280
281 #ifdef MONT_WORD
282     {
283         BIGNUM tmod;
284         BN_ULONG buf[2];
285
286         bn_init(&tmod);
287         tmod.d = buf;
288         tmod.dmax = 2;
289         tmod.neg = 0;
290
291         if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
292             BN_set_flags(&tmod, BN_FLG_CONSTTIME);
293
294         mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2;
295
296 # if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
297         /*
298          * Only certain BN_BITS2<=32 platforms actually make use of n0[1],
299          * and we could use the #else case (with a shorter R value) for the
300          * others.  However, currently only the assembler files do know which
301          * is which.
302          */
303
304         BN_zero(R);
305         if (!(BN_set_bit(R, 2 * BN_BITS2)))
306             goto err;
307
308         tmod.top = 0;
309         if ((buf[0] = mod->d[0]))
310             tmod.top = 1;
311         if ((buf[1] = mod->top > 1 ? mod->d[1] : 0))
312             tmod.top = 2;
313
314         if (BN_is_one(&tmod))
315             BN_zero(Ri);
316         else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
317             goto err;
318         if (!BN_lshift(Ri, Ri, 2 * BN_BITS2))
319             goto err;           /* R*Ri */
320         if (!BN_is_zero(Ri)) {
321             if (!BN_sub_word(Ri, 1))
322                 goto err;
323         } else {                /* if N mod word size == 1 */
324
325             if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL)
326                 goto err;
327             /* Ri-- (mod double word size) */
328             Ri->neg = 0;
329             Ri->d[0] = BN_MASK2;
330             Ri->d[1] = BN_MASK2;
331             Ri->top = 2;
332         }
333         if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
334             goto err;
335         /*
336          * Ni = (R*Ri-1)/N, keep only couple of least significant words:
337          */
338         mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
339         mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
340 # else
341         BN_zero(R);
342         if (!(BN_set_bit(R, BN_BITS2)))
343             goto err;           /* R */
344
345         buf[0] = mod->d[0];     /* tmod = N mod word size */
346         buf[1] = 0;
347         tmod.top = buf[0] != 0 ? 1 : 0;
348         /* Ri = R^-1 mod N */
349         if (BN_is_one(&tmod))
350             BN_zero(Ri);
351         else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
352             goto err;
353         if (!BN_lshift(Ri, Ri, BN_BITS2))
354             goto err;           /* R*Ri */
355         if (!BN_is_zero(Ri)) {
356             if (!BN_sub_word(Ri, 1))
357                 goto err;
358         } else {                /* if N mod word size == 1 */
359
360             if (!BN_set_word(Ri, BN_MASK2))
361                 goto err;       /* Ri-- (mod word size) */
362         }
363         if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
364             goto err;
365         /*
366          * Ni = (R*Ri-1)/N, keep only least significant word:
367          */
368         mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
369         mont->n0[1] = 0;
370 # endif
371     }
372 #else                           /* !MONT_WORD */
373     {                           /* bignum version */
374         mont->ri = BN_num_bits(&mont->N);
375         BN_zero(R);
376         if (!BN_set_bit(R, mont->ri))
377             goto err;           /* R = 2^ri */
378         /* Ri = R^-1 mod N */
379         if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL)
380             goto err;
381         if (!BN_lshift(Ri, Ri, mont->ri))
382             goto err;           /* R*Ri */
383         if (!BN_sub_word(Ri, 1))
384             goto err;
385         /*
386          * Ni = (R*Ri-1) / N
387          */
388         if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx))
389             goto err;
390     }
391 #endif
392
393     /* setup RR for conversions */
394     BN_zero(&(mont->RR));
395     if (!BN_set_bit(&(mont->RR), mont->ri * 2))
396         goto err;
397     if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx))
398         goto err;
399
400     for (i = mont->RR.top, ret = mont->N.top; i < ret; i++)
401         mont->RR.d[i] = 0;
402     mont->RR.top = ret;
403     mont->RR.flags |= BN_FLG_FIXED_TOP;
404
405     ret = 1;
406  err:
407     BN_CTX_end(ctx);
408     return ret;
409 }
410
411 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
412 {
413     if (to == from)
414         return to;
415
416     if (!BN_copy(&(to->RR), &(from->RR)))
417         return NULL;
418     if (!BN_copy(&(to->N), &(from->N)))
419         return NULL;
420     if (!BN_copy(&(to->Ni), &(from->Ni)))
421         return NULL;
422     to->ri = from->ri;
423     to->n0[0] = from->n0[0];
424     to->n0[1] = from->n0[1];
425     return to;
426 }
427
428 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
429                                     const BIGNUM *mod, BN_CTX *ctx)
430 {
431     BN_MONT_CTX *ret;
432
433     CRYPTO_THREAD_read_lock(lock);
434     ret = *pmont;
435     CRYPTO_THREAD_unlock(lock);
436     if (ret)
437         return ret;
438
439     /*
440      * We don't want to serialise globally while doing our lazy-init math in
441      * BN_MONT_CTX_set. That punishes threads that are doing independent
442      * things. Instead, punish the case where more than one thread tries to
443      * lazy-init the same 'pmont', by having each do the lazy-init math work
444      * independently and only use the one from the thread that wins the race
445      * (the losers throw away the work they've done).
446      */
447     ret = BN_MONT_CTX_new();
448     if (ret == NULL)
449         return NULL;
450     if (!BN_MONT_CTX_set(ret, mod, ctx)) {
451         BN_MONT_CTX_free(ret);
452         return NULL;
453     }
454
455     /* The locked compare-and-set, after the local work is done. */
456     CRYPTO_THREAD_write_lock(lock);
457     if (*pmont) {
458         BN_MONT_CTX_free(ret);
459         ret = *pmont;
460     } else
461         *pmont = ret;
462     CRYPTO_THREAD_unlock(lock);
463     return ret;
464 }