Fix modes.h so that indent doesn't complain
[openssl.git] / crypto / bn / bn_asm.c
1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  * 
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  * 
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  * 
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from 
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  * 
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  * 
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68
69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70
71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72         {
73         BN_ULONG c1=0;
74
75         assert(num >= 0);
76         if (num <= 0) return(c1);
77
78 #ifndef OPENSSL_SMALL_FOOTPRINT
79         while (num&~3)
80                 {
81                 mul_add(rp[0],ap[0],w,c1);
82                 mul_add(rp[1],ap[1],w,c1);
83                 mul_add(rp[2],ap[2],w,c1);
84                 mul_add(rp[3],ap[3],w,c1);
85                 ap+=4; rp+=4; num-=4;
86                 }
87 #endif
88         while (num)
89                 {
90                 mul_add(rp[0],ap[0],w,c1);
91                 ap++; rp++; num--;
92                 }
93         
94         return(c1);
95         } 
96
97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98         {
99         BN_ULONG c1=0;
100
101         assert(num >= 0);
102         if (num <= 0) return(c1);
103
104 #ifndef OPENSSL_SMALL_FOOTPRINT
105         while (num&~3)
106                 {
107                 mul(rp[0],ap[0],w,c1);
108                 mul(rp[1],ap[1],w,c1);
109                 mul(rp[2],ap[2],w,c1);
110                 mul(rp[3],ap[3],w,c1);
111                 ap+=4; rp+=4; num-=4;
112                 }
113 #endif
114         while (num)
115                 {
116                 mul(rp[0],ap[0],w,c1);
117                 ap++; rp++; num--;
118                 }
119         return(c1);
120         } 
121
122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123         {
124         assert(n >= 0);
125         if (n <= 0) return;
126
127 #ifndef OPENSSL_SMALL_FOOTPRINT
128         while (n&~3)
129                 {
130                 sqr(r[0],r[1],a[0]);
131                 sqr(r[2],r[3],a[1]);
132                 sqr(r[4],r[5],a[2]);
133                 sqr(r[6],r[7],a[3]);
134                 a+=4; r+=8; n-=4;
135                 }
136 #endif
137         while (n)
138                 {
139                 sqr(r[0],r[1],a[0]);
140                 a++; r+=2; n--;
141                 }
142         }
143
144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145
146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147         {
148         BN_ULONG c=0;
149         BN_ULONG bl,bh;
150
151         assert(num >= 0);
152         if (num <= 0) return((BN_ULONG)0);
153
154         bl=LBITS(w);
155         bh=HBITS(w);
156
157 #ifndef OPENSSL_SMALL_FOOTPRINT
158         while (num&~3)
159                 {
160                 mul_add(rp[0],ap[0],bl,bh,c);
161                 mul_add(rp[1],ap[1],bl,bh,c);
162                 mul_add(rp[2],ap[2],bl,bh,c);
163                 mul_add(rp[3],ap[3],bl,bh,c);
164                 ap+=4; rp+=4; num-=4;
165                 }
166 #endif
167         while (num)
168                 {
169                 mul_add(rp[0],ap[0],bl,bh,c);
170                 ap++; rp++; num--;
171                 }
172         return(c);
173         } 
174
175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176         {
177         BN_ULONG carry=0;
178         BN_ULONG bl,bh;
179
180         assert(num >= 0);
181         if (num <= 0) return((BN_ULONG)0);
182
183         bl=LBITS(w);
184         bh=HBITS(w);
185
186 #ifndef OPENSSL_SMALL_FOOTPRINT
187         while (num&~3)
188                 {
189                 mul(rp[0],ap[0],bl,bh,carry);
190                 mul(rp[1],ap[1],bl,bh,carry);
191                 mul(rp[2],ap[2],bl,bh,carry);
192                 mul(rp[3],ap[3],bl,bh,carry);
193                 ap+=4; rp+=4; num-=4;
194                 }
195 #endif
196         while (num)
197                 {
198                 mul(rp[0],ap[0],bl,bh,carry);
199                 ap++; rp++; num--;
200                 }
201         return(carry);
202         } 
203
204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205         {
206         assert(n >= 0);
207         if (n <= 0) return;
208
209 #ifndef OPENSSL_SMALL_FOOTPRINT
210         while (n&~3)
211                 {
212                 sqr64(r[0],r[1],a[0]);
213                 sqr64(r[2],r[3],a[1]);
214                 sqr64(r[4],r[5],a[2]);
215                 sqr64(r[6],r[7],a[3]);
216                 a+=4; r+=8; n-=4;
217                 }
218 #endif
219         while (n)
220                 {
221                 sqr64(r[0],r[1],a[0]);
222                 a++; r+=2; n--;
223                 }
224         }
225
226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227
228 #if defined(BN_LLONG) && defined(BN_DIV2W)
229
230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231         {
232         return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233         }
234
235 #else
236
237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-( */
239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240         {
241         BN_ULONG dh,dl,q,ret=0,th,tl,t;
242         int i,count=2;
243
244         if (d == 0) return(BN_MASK2);
245
246         i=BN_num_bits_word(d);
247         assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248
249         i=BN_BITS2-i;
250         if (h >= d) h-=d;
251
252         if (i)
253                 {
254                 d<<=i;
255                 h=(h<<i)|(l>>(BN_BITS2-i));
256                 l<<=i;
257                 }
258         dh=(d&BN_MASK2h)>>BN_BITS4;
259         dl=(d&BN_MASK2l);
260         for (;;)
261                 {
262                 if ((h>>BN_BITS4) == dh)
263                         q=BN_MASK2l;
264                 else
265                         q=h/dh;
266
267                 th=q*dh;
268                 tl=dl*q;
269                 for (;;)
270                         {
271                         t=h-th;
272                         if ((t&BN_MASK2h) ||
273                                 ((tl) <= (
274                                         (t<<BN_BITS4)|
275                                         ((l&BN_MASK2h)>>BN_BITS4))))
276                                 break;
277                         q--;
278                         th-=dh;
279                         tl-=dl;
280                         }
281                 t=(tl>>BN_BITS4);
282                 tl=(tl<<BN_BITS4)&BN_MASK2h;
283                 th+=t;
284
285                 if (l < tl) th++;
286                 l-=tl;
287                 if (h < th)
288                         {
289                         h+=d;
290                         q--;
291                         }
292                 h-=th;
293
294                 if (--count == 0) break;
295
296                 ret=q<<BN_BITS4;
297                 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298                 l=(l&BN_MASK2l)<<BN_BITS4;
299                 }
300         ret|=q;
301         return(ret);
302         }
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304
305 #ifdef BN_LLONG
306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307         {
308         BN_ULLONG ll=0;
309
310         assert(n >= 0);
311         if (n <= 0) return((BN_ULONG)0);
312
313 #ifndef OPENSSL_SMALL_FOOTPRINT
314         while (n&~3)
315                 {
316                 ll+=(BN_ULLONG)a[0]+b[0];
317                 r[0]=(BN_ULONG)ll&BN_MASK2;
318                 ll>>=BN_BITS2;
319                 ll+=(BN_ULLONG)a[1]+b[1];
320                 r[1]=(BN_ULONG)ll&BN_MASK2;
321                 ll>>=BN_BITS2;
322                 ll+=(BN_ULLONG)a[2]+b[2];
323                 r[2]=(BN_ULONG)ll&BN_MASK2;
324                 ll>>=BN_BITS2;
325                 ll+=(BN_ULLONG)a[3]+b[3];
326                 r[3]=(BN_ULONG)ll&BN_MASK2;
327                 ll>>=BN_BITS2;
328                 a+=4; b+=4; r+=4; n-=4;
329                 }
330 #endif
331         while (n)
332                 {
333                 ll+=(BN_ULLONG)a[0]+b[0];
334                 r[0]=(BN_ULONG)ll&BN_MASK2;
335                 ll>>=BN_BITS2;
336                 a++; b++; r++; n--;
337                 }
338         return((BN_ULONG)ll);
339         }
340 #else /* !BN_LLONG */
341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342         {
343         BN_ULONG c,l,t;
344
345         assert(n >= 0);
346         if (n <= 0) return((BN_ULONG)0);
347
348         c=0;
349 #ifndef OPENSSL_SMALL_FOOTPRINT
350         while (n&~3)
351                 {
352                 t=a[0];
353                 t=(t+c)&BN_MASK2;
354                 c=(t < c);
355                 l=(t+b[0])&BN_MASK2;
356                 c+=(l < t);
357                 r[0]=l;
358                 t=a[1];
359                 t=(t+c)&BN_MASK2;
360                 c=(t < c);
361                 l=(t+b[1])&BN_MASK2;
362                 c+=(l < t);
363                 r[1]=l;
364                 t=a[2];
365                 t=(t+c)&BN_MASK2;
366                 c=(t < c);
367                 l=(t+b[2])&BN_MASK2;
368                 c+=(l < t);
369                 r[2]=l;
370                 t=a[3];
371                 t=(t+c)&BN_MASK2;
372                 c=(t < c);
373                 l=(t+b[3])&BN_MASK2;
374                 c+=(l < t);
375                 r[3]=l;
376                 a+=4; b+=4; r+=4; n-=4;
377                 }
378 #endif
379         while(n)
380                 {
381                 t=a[0];
382                 t=(t+c)&BN_MASK2;
383                 c=(t < c);
384                 l=(t+b[0])&BN_MASK2;
385                 c+=(l < t);
386                 r[0]=l;
387                 a++; b++; r++; n--;
388                 }
389         return((BN_ULONG)c);
390         }
391 #endif /* !BN_LLONG */
392
393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394         {
395         BN_ULONG t1,t2;
396         int c=0;
397
398         assert(n >= 0);
399         if (n <= 0) return((BN_ULONG)0);
400
401 #ifndef OPENSSL_SMALL_FOOTPRINT
402         while (n&~3)
403                 {
404                 t1=a[0]; t2=b[0];
405                 r[0]=(t1-t2-c)&BN_MASK2;
406                 if (t1 != t2) c=(t1 < t2);
407                 t1=a[1]; t2=b[1];
408                 r[1]=(t1-t2-c)&BN_MASK2;
409                 if (t1 != t2) c=(t1 < t2);
410                 t1=a[2]; t2=b[2];
411                 r[2]=(t1-t2-c)&BN_MASK2;
412                 if (t1 != t2) c=(t1 < t2);
413                 t1=a[3]; t2=b[3];
414                 r[3]=(t1-t2-c)&BN_MASK2;
415                 if (t1 != t2) c=(t1 < t2);
416                 a+=4; b+=4; r+=4; n-=4;
417                 }
418 #endif
419         while (n)
420                 {
421                 t1=a[0]; t2=b[0];
422                 r[0]=(t1-t2-c)&BN_MASK2;
423                 if (t1 != t2) c=(t1 < t2);
424                 a++; b++; r++; n--;
425                 }
426         return(c);
427         }
428
429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430
431 #undef bn_mul_comba8
432 #undef bn_mul_comba4
433 #undef bn_sqr_comba8
434 #undef bn_sqr_comba4
435
436 /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440
441 /*
442  * Keep in mind that carrying into high part of multiplication result
443  * can not overflow, because it cannot be all-ones.
444  */
445 #ifdef BN_LLONG
446 #define mul_add_c(a,b,c0,c1,c2) \
447         t=(BN_ULLONG)a*b; \
448         t1=(BN_ULONG)Lw(t); \
449         t2=(BN_ULONG)Hw(t); \
450         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
451         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
452
453 #define mul_add_c2(a,b,c0,c1,c2) \
454         t=(BN_ULLONG)a*b; \
455         tt=(t+t)&BN_MASK; \
456         if (tt < t) c2++; \
457         t1=(BN_ULONG)Lw(tt); \
458         t2=(BN_ULONG)Hw(tt); \
459         c0=(c0+t1)&BN_MASK2;  \
460         if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
461         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
462
463 #define sqr_add_c(a,i,c0,c1,c2) \
464         t=(BN_ULLONG)a[i]*a[i]; \
465         t1=(BN_ULONG)Lw(t); \
466         t2=(BN_ULONG)Hw(t); \
467         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
468         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
469
470 # define sqr_add_c2(a,i,j,c0,c1,c2) \
471         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
472
473 #elif defined(BN_UMULT_LOHI)
474
475 #define mul_add_c(a,b,c0,c1,c2) {       \
476         BN_ULONG ta=(a),tb=(b);         \
477         BN_UMULT_LOHI(t1,t2,ta,tb);     \
478         c0 += t1; t2 += (c0<t1)?1:0;    \
479         c1 += t2; c2 += (c1<t2)?1:0;    \
480         }
481
482 #define mul_add_c2(a,b,c0,c1,c2) {      \
483         BN_ULONG ta=(a),tb=(b),t0;      \
484         BN_UMULT_LOHI(t0,t1,ta,tb);     \
485         c0 += t0; t2 = t1+((c0<t0)?1:0);\
486         c1 += t2; c2 += (c1<t2)?1:0;    \
487         c0 += t0; t1 += (c0<t0)?1:0;    \
488         c1 += t1; c2 += (c1<t1)?1:0;    \
489         }
490
491 #define sqr_add_c(a,i,c0,c1,c2) {       \
492         BN_ULONG ta=(a)[i];             \
493         BN_UMULT_LOHI(t1,t2,ta,ta);     \
494         c0 += t1; t2 += (c0<t1)?1:0;    \
495         c1 += t2; c2 += (c1<t2)?1:0;    \
496         }
497
498 #  define sqr_add_c2(a,i,j,c0,c1,c2)    \
499         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
500
501 #elif defined(BN_UMULT_HIGH)
502
503 #define mul_add_c(a,b,c0,c1,c2) {       \
504         BN_ULONG ta=(a),tb=(b);         \
505         t1 = ta * tb;                   \
506         t2 = BN_UMULT_HIGH(ta,tb);      \
507         c0 += t1; t2 += (c0<t1)?1:0;    \
508         c1 += t2; c2 += (c1<t2)?1:0;    \
509         }
510
511 #define mul_add_c2(a,b,c0,c1,c2) {      \
512         BN_ULONG ta=(a),tb=(b),t0;      \
513         t1 = BN_UMULT_HIGH(ta,tb);      \
514         t0 = ta * tb;                   \
515         c0 += t0; t2 = t1+((c0<t0)?1:0);\
516         c1 += t2; c2 += (c1<t2)?1:0;    \
517         c0 += t0; t1 += (c0<t0)?1:0;    \
518         c1 += t1; c2 += (c1<t1)?1:0;    \
519         }
520
521 #define sqr_add_c(a,i,c0,c1,c2) {       \
522         BN_ULONG ta=(a)[i];             \
523         t1 = ta * ta;                   \
524         t2 = BN_UMULT_HIGH(ta,ta);      \
525         c0 += t1; t2 += (c0<t1)?1:0;    \
526         c1 += t2; c2 += (c1<t2)?1:0;    \
527         }
528
529 #define sqr_add_c2(a,i,j,c0,c1,c2)      \
530         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
531
532 #else /* !BN_LLONG */
533 #define mul_add_c(a,b,c0,c1,c2) \
534         t1=LBITS(a); t2=HBITS(a); \
535         bl=LBITS(b); bh=HBITS(b); \
536         mul64(t1,t2,bl,bh); \
537         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
538         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
539
540 #define mul_add_c2(a,b,c0,c1,c2) \
541         t1=LBITS(a); t2=HBITS(a); \
542         bl=LBITS(b); bh=HBITS(b); \
543         mul64(t1,t2,bl,bh); \
544         if (t2 & BN_TBIT) c2++; \
545         t2=(t2+t2)&BN_MASK2; \
546         if (t1 & BN_TBIT) t2++; \
547         t1=(t1+t1)&BN_MASK2; \
548         c0=(c0+t1)&BN_MASK2;  \
549         if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
550         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
551
552 #define sqr_add_c(a,i,c0,c1,c2) \
553         sqr64(t1,t2,(a)[i]); \
554         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
555         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
556
557 #  define sqr_add_c2(a,i,j,c0,c1,c2) \
558         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
559 #endif /* !BN_LLONG */
560
561 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
562         {
563 #ifdef BN_LLONG
564         BN_ULLONG t;
565 #else
566         BN_ULONG bl,bh;
567 #endif
568         BN_ULONG t1,t2;
569         BN_ULONG c1,c2,c3;
570
571         c1=0;
572         c2=0;
573         c3=0;
574         mul_add_c(a[0],b[0],c1,c2,c3);
575         r[0]=c1;
576         c1=0;
577         mul_add_c(a[0],b[1],c2,c3,c1);
578         mul_add_c(a[1],b[0],c2,c3,c1);
579         r[1]=c2;
580         c2=0;
581         mul_add_c(a[2],b[0],c3,c1,c2);
582         mul_add_c(a[1],b[1],c3,c1,c2);
583         mul_add_c(a[0],b[2],c3,c1,c2);
584         r[2]=c3;
585         c3=0;
586         mul_add_c(a[0],b[3],c1,c2,c3);
587         mul_add_c(a[1],b[2],c1,c2,c3);
588         mul_add_c(a[2],b[1],c1,c2,c3);
589         mul_add_c(a[3],b[0],c1,c2,c3);
590         r[3]=c1;
591         c1=0;
592         mul_add_c(a[4],b[0],c2,c3,c1);
593         mul_add_c(a[3],b[1],c2,c3,c1);
594         mul_add_c(a[2],b[2],c2,c3,c1);
595         mul_add_c(a[1],b[3],c2,c3,c1);
596         mul_add_c(a[0],b[4],c2,c3,c1);
597         r[4]=c2;
598         c2=0;
599         mul_add_c(a[0],b[5],c3,c1,c2);
600         mul_add_c(a[1],b[4],c3,c1,c2);
601         mul_add_c(a[2],b[3],c3,c1,c2);
602         mul_add_c(a[3],b[2],c3,c1,c2);
603         mul_add_c(a[4],b[1],c3,c1,c2);
604         mul_add_c(a[5],b[0],c3,c1,c2);
605         r[5]=c3;
606         c3=0;
607         mul_add_c(a[6],b[0],c1,c2,c3);
608         mul_add_c(a[5],b[1],c1,c2,c3);
609         mul_add_c(a[4],b[2],c1,c2,c3);
610         mul_add_c(a[3],b[3],c1,c2,c3);
611         mul_add_c(a[2],b[4],c1,c2,c3);
612         mul_add_c(a[1],b[5],c1,c2,c3);
613         mul_add_c(a[0],b[6],c1,c2,c3);
614         r[6]=c1;
615         c1=0;
616         mul_add_c(a[0],b[7],c2,c3,c1);
617         mul_add_c(a[1],b[6],c2,c3,c1);
618         mul_add_c(a[2],b[5],c2,c3,c1);
619         mul_add_c(a[3],b[4],c2,c3,c1);
620         mul_add_c(a[4],b[3],c2,c3,c1);
621         mul_add_c(a[5],b[2],c2,c3,c1);
622         mul_add_c(a[6],b[1],c2,c3,c1);
623         mul_add_c(a[7],b[0],c2,c3,c1);
624         r[7]=c2;
625         c2=0;
626         mul_add_c(a[7],b[1],c3,c1,c2);
627         mul_add_c(a[6],b[2],c3,c1,c2);
628         mul_add_c(a[5],b[3],c3,c1,c2);
629         mul_add_c(a[4],b[4],c3,c1,c2);
630         mul_add_c(a[3],b[5],c3,c1,c2);
631         mul_add_c(a[2],b[6],c3,c1,c2);
632         mul_add_c(a[1],b[7],c3,c1,c2);
633         r[8]=c3;
634         c3=0;
635         mul_add_c(a[2],b[7],c1,c2,c3);
636         mul_add_c(a[3],b[6],c1,c2,c3);
637         mul_add_c(a[4],b[5],c1,c2,c3);
638         mul_add_c(a[5],b[4],c1,c2,c3);
639         mul_add_c(a[6],b[3],c1,c2,c3);
640         mul_add_c(a[7],b[2],c1,c2,c3);
641         r[9]=c1;
642         c1=0;
643         mul_add_c(a[7],b[3],c2,c3,c1);
644         mul_add_c(a[6],b[4],c2,c3,c1);
645         mul_add_c(a[5],b[5],c2,c3,c1);
646         mul_add_c(a[4],b[6],c2,c3,c1);
647         mul_add_c(a[3],b[7],c2,c3,c1);
648         r[10]=c2;
649         c2=0;
650         mul_add_c(a[4],b[7],c3,c1,c2);
651         mul_add_c(a[5],b[6],c3,c1,c2);
652         mul_add_c(a[6],b[5],c3,c1,c2);
653         mul_add_c(a[7],b[4],c3,c1,c2);
654         r[11]=c3;
655         c3=0;
656         mul_add_c(a[7],b[5],c1,c2,c3);
657         mul_add_c(a[6],b[6],c1,c2,c3);
658         mul_add_c(a[5],b[7],c1,c2,c3);
659         r[12]=c1;
660         c1=0;
661         mul_add_c(a[6],b[7],c2,c3,c1);
662         mul_add_c(a[7],b[6],c2,c3,c1);
663         r[13]=c2;
664         c2=0;
665         mul_add_c(a[7],b[7],c3,c1,c2);
666         r[14]=c3;
667         r[15]=c1;
668         }
669
670 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
671         {
672 #ifdef BN_LLONG
673         BN_ULLONG t;
674 #else
675         BN_ULONG bl,bh;
676 #endif
677         BN_ULONG t1,t2;
678         BN_ULONG c1,c2,c3;
679
680         c1=0;
681         c2=0;
682         c3=0;
683         mul_add_c(a[0],b[0],c1,c2,c3);
684         r[0]=c1;
685         c1=0;
686         mul_add_c(a[0],b[1],c2,c3,c1);
687         mul_add_c(a[1],b[0],c2,c3,c1);
688         r[1]=c2;
689         c2=0;
690         mul_add_c(a[2],b[0],c3,c1,c2);
691         mul_add_c(a[1],b[1],c3,c1,c2);
692         mul_add_c(a[0],b[2],c3,c1,c2);
693         r[2]=c3;
694         c3=0;
695         mul_add_c(a[0],b[3],c1,c2,c3);
696         mul_add_c(a[1],b[2],c1,c2,c3);
697         mul_add_c(a[2],b[1],c1,c2,c3);
698         mul_add_c(a[3],b[0],c1,c2,c3);
699         r[3]=c1;
700         c1=0;
701         mul_add_c(a[3],b[1],c2,c3,c1);
702         mul_add_c(a[2],b[2],c2,c3,c1);
703         mul_add_c(a[1],b[3],c2,c3,c1);
704         r[4]=c2;
705         c2=0;
706         mul_add_c(a[2],b[3],c3,c1,c2);
707         mul_add_c(a[3],b[2],c3,c1,c2);
708         r[5]=c3;
709         c3=0;
710         mul_add_c(a[3],b[3],c1,c2,c3);
711         r[6]=c1;
712         r[7]=c2;
713         }
714
715 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
716         {
717 #ifdef BN_LLONG
718         BN_ULLONG t,tt;
719 #else
720         BN_ULONG bl,bh;
721 #endif
722         BN_ULONG t1,t2;
723         BN_ULONG c1,c2,c3;
724
725         c1=0;
726         c2=0;
727         c3=0;
728         sqr_add_c(a,0,c1,c2,c3);
729         r[0]=c1;
730         c1=0;
731         sqr_add_c2(a,1,0,c2,c3,c1);
732         r[1]=c2;
733         c2=0;
734         sqr_add_c(a,1,c3,c1,c2);
735         sqr_add_c2(a,2,0,c3,c1,c2);
736         r[2]=c3;
737         c3=0;
738         sqr_add_c2(a,3,0,c1,c2,c3);
739         sqr_add_c2(a,2,1,c1,c2,c3);
740         r[3]=c1;
741         c1=0;
742         sqr_add_c(a,2,c2,c3,c1);
743         sqr_add_c2(a,3,1,c2,c3,c1);
744         sqr_add_c2(a,4,0,c2,c3,c1);
745         r[4]=c2;
746         c2=0;
747         sqr_add_c2(a,5,0,c3,c1,c2);
748         sqr_add_c2(a,4,1,c3,c1,c2);
749         sqr_add_c2(a,3,2,c3,c1,c2);
750         r[5]=c3;
751         c3=0;
752         sqr_add_c(a,3,c1,c2,c3);
753         sqr_add_c2(a,4,2,c1,c2,c3);
754         sqr_add_c2(a,5,1,c1,c2,c3);
755         sqr_add_c2(a,6,0,c1,c2,c3);
756         r[6]=c1;
757         c1=0;
758         sqr_add_c2(a,7,0,c2,c3,c1);
759         sqr_add_c2(a,6,1,c2,c3,c1);
760         sqr_add_c2(a,5,2,c2,c3,c1);
761         sqr_add_c2(a,4,3,c2,c3,c1);
762         r[7]=c2;
763         c2=0;
764         sqr_add_c(a,4,c3,c1,c2);
765         sqr_add_c2(a,5,3,c3,c1,c2);
766         sqr_add_c2(a,6,2,c3,c1,c2);
767         sqr_add_c2(a,7,1,c3,c1,c2);
768         r[8]=c3;
769         c3=0;
770         sqr_add_c2(a,7,2,c1,c2,c3);
771         sqr_add_c2(a,6,3,c1,c2,c3);
772         sqr_add_c2(a,5,4,c1,c2,c3);
773         r[9]=c1;
774         c1=0;
775         sqr_add_c(a,5,c2,c3,c1);
776         sqr_add_c2(a,6,4,c2,c3,c1);
777         sqr_add_c2(a,7,3,c2,c3,c1);
778         r[10]=c2;
779         c2=0;
780         sqr_add_c2(a,7,4,c3,c1,c2);
781         sqr_add_c2(a,6,5,c3,c1,c2);
782         r[11]=c3;
783         c3=0;
784         sqr_add_c(a,6,c1,c2,c3);
785         sqr_add_c2(a,7,5,c1,c2,c3);
786         r[12]=c1;
787         c1=0;
788         sqr_add_c2(a,7,6,c2,c3,c1);
789         r[13]=c2;
790         c2=0;
791         sqr_add_c(a,7,c3,c1,c2);
792         r[14]=c3;
793         r[15]=c1;
794         }
795
796 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
797         {
798 #ifdef BN_LLONG
799         BN_ULLONG t,tt;
800 #else
801         BN_ULONG bl,bh;
802 #endif
803         BN_ULONG t1,t2;
804         BN_ULONG c1,c2,c3;
805
806         c1=0;
807         c2=0;
808         c3=0;
809         sqr_add_c(a,0,c1,c2,c3);
810         r[0]=c1;
811         c1=0;
812         sqr_add_c2(a,1,0,c2,c3,c1);
813         r[1]=c2;
814         c2=0;
815         sqr_add_c(a,1,c3,c1,c2);
816         sqr_add_c2(a,2,0,c3,c1,c2);
817         r[2]=c3;
818         c3=0;
819         sqr_add_c2(a,3,0,c1,c2,c3);
820         sqr_add_c2(a,2,1,c1,c2,c3);
821         r[3]=c1;
822         c1=0;
823         sqr_add_c(a,2,c2,c3,c1);
824         sqr_add_c2(a,3,1,c2,c3,c1);
825         r[4]=c2;
826         c2=0;
827         sqr_add_c2(a,3,2,c3,c1,c2);
828         r[5]=c3;
829         c3=0;
830         sqr_add_c(a,3,c1,c2,c3);
831         r[6]=c1;
832         r[7]=c2;
833         }
834
835 #ifdef OPENSSL_NO_ASM
836 #ifdef OPENSSL_BN_ASM_MONT
837 #include <alloca.h>
838 /*
839  * This is essentially reference implementation, which may or may not
840  * result in performance improvement. E.g. on IA-32 this routine was
841  * observed to give 40% faster rsa1024 private key operations and 10%
842  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
843  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
844  * reference implementation, one to be used as starting point for
845  * platform-specific assembler. Mentioned numbers apply to compiler
846  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
847  * can vary not only from platform to platform, but even for compiler
848  * versions. Assembler vs. assembler improvement coefficients can
849  * [and are known to] differ and are to be documented elsewhere.
850  */
851 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
852         {
853         BN_ULONG c0,c1,ml,*tp,n0;
854 #ifdef mul64
855         BN_ULONG mh;
856 #endif
857         volatile BN_ULONG *vp;
858         int i=0,j;
859
860 #if 0   /* template for platform-specific implementation */
861         if (ap==bp)     return bn_sqr_mont(rp,ap,np,n0p,num);
862 #endif
863         vp = tp = alloca((num+2)*sizeof(BN_ULONG));
864
865         n0 = *n0p;
866
867         c0 = 0;
868         ml = bp[0];
869 #ifdef mul64
870         mh = HBITS(ml);
871         ml = LBITS(ml);
872         for (j=0;j<num;++j)
873                 mul(tp[j],ap[j],ml,mh,c0);
874 #else
875         for (j=0;j<num;++j)
876                 mul(tp[j],ap[j],ml,c0);
877 #endif
878
879         tp[num]   = c0;
880         tp[num+1] = 0;
881         goto enter;
882
883         for(i=0;i<num;i++)
884                 {
885                 c0 = 0;
886                 ml = bp[i];
887 #ifdef mul64
888                 mh = HBITS(ml);
889                 ml = LBITS(ml);
890                 for (j=0;j<num;++j)
891                         mul_add(tp[j],ap[j],ml,mh,c0);
892 #else
893                 for (j=0;j<num;++j)
894                         mul_add(tp[j],ap[j],ml,c0);
895 #endif
896                 c1 = (tp[num] + c0)&BN_MASK2;
897                 tp[num]   = c1;
898                 tp[num+1] = (c1<c0?1:0);
899         enter:
900                 c1  = tp[0];
901                 ml = (c1*n0)&BN_MASK2;
902                 c0 = 0;
903 #ifdef mul64
904                 mh = HBITS(ml);
905                 ml = LBITS(ml);
906                 mul_add(c1,np[0],ml,mh,c0);
907 #else
908                 mul_add(c1,ml,np[0],c0);
909 #endif
910                 for(j=1;j<num;j++)
911                         {
912                         c1 = tp[j];
913 #ifdef mul64
914                         mul_add(c1,np[j],ml,mh,c0);
915 #else
916                         mul_add(c1,ml,np[j],c0);
917 #endif
918                         tp[j-1] = c1&BN_MASK2;
919                         }
920                 c1        = (tp[num] + c0)&BN_MASK2;
921                 tp[num-1] = c1;
922                 tp[num]   = tp[num+1] + (c1<c0?1:0);
923                 }
924
925         if (tp[num]!=0 || tp[num-1]>=np[num-1])
926                 {
927                 c0 = bn_sub_words(rp,tp,np,num);
928                 if (tp[num]!=0 || c0==0)
929                         {
930                         for(i=0;i<num+2;i++)    vp[i] = 0;
931                         return 1;
932                         }
933                 }
934         for(i=0;i<num;i++)      rp[i] = tp[i],  vp[i] = 0;
935         vp[num]   = 0;
936         vp[num+1] = 0;
937         return 1;
938         }
939 #else
940 /*
941  * Return value of 0 indicates that multiplication/convolution was not
942  * performed to signal the caller to fall down to alternative/original
943  * code-path.
944  */
945 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
946 {       return 0;       }
947 #endif /* OPENSSL_BN_ASM_MONT */
948 #endif
949
950 #else /* !BN_MUL_COMBA */
951
952 /* hmm... is it faster just to do a multiply? */
953 #undef bn_sqr_comba4
954 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
955         {
956         BN_ULONG t[8];
957         bn_sqr_normal(r,a,4,t);
958         }
959
960 #undef bn_sqr_comba8
961 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
962         {
963         BN_ULONG t[16];
964         bn_sqr_normal(r,a,8,t);
965         }
966
967 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
968         {
969         r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
970         r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
971         r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
972         r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
973         }
974
975 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
976         {
977         r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
978         r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
979         r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
980         r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
981         r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
982         r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
983         r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
984         r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
985         }
986
987 #ifdef OPENSSL_NO_ASM
988 #ifdef OPENSSL_BN_ASM_MONT
989 #include <alloca.h>
990 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
991         {
992         BN_ULONG c0,c1,*tp,n0=*n0p;
993         volatile BN_ULONG *vp;
994         int i=0,j;
995
996         vp = tp = alloca((num+2)*sizeof(BN_ULONG));
997
998         for(i=0;i<=num;i++)     tp[i]=0;
999
1000         for(i=0;i<num;i++)
1001                 {
1002                 c0         = bn_mul_add_words(tp,ap,num,bp[i]);
1003                 c1         = (tp[num] + c0)&BN_MASK2;
1004                 tp[num]    = c1;
1005                 tp[num+1]  = (c1<c0?1:0);
1006
1007                 c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
1008                 c1         = (tp[num] + c0)&BN_MASK2;
1009                 tp[num]    = c1;
1010                 tp[num+1] += (c1<c0?1:0);
1011                 for(j=0;j<=num;j++)     tp[j]=tp[j+1];
1012                 }
1013
1014         if (tp[num]!=0 || tp[num-1]>=np[num-1])
1015                 {
1016                 c0 = bn_sub_words(rp,tp,np,num);
1017                 if (tp[num]!=0 || c0==0)
1018                         {
1019                         for(i=0;i<num+2;i++)    vp[i] = 0;
1020                         return 1;
1021                         }
1022                 }
1023         for(i=0;i<num;i++)      rp[i] = tp[i],  vp[i] = 0;
1024         vp[num]   = 0;
1025         vp[num+1] = 0;
1026         return 1;
1027         }
1028 #else
1029 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1030 {       return 0;       }
1031 #endif /* OPENSSL_BN_ASM_MONT */
1032 #endif
1033
1034 #endif /* !BN_MUL_COMBA */