1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
60 # undef NDEBUG /* avoid conflicting definitions */
69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
76 if (num <= 0) return(c1);
78 #ifndef OPENSSL_SMALL_FOOTPRINT
81 mul_add(rp[0],ap[0],w,c1);
82 mul_add(rp[1],ap[1],w,c1);
83 mul_add(rp[2],ap[2],w,c1);
84 mul_add(rp[3],ap[3],w,c1);
90 mul_add(rp[0],ap[0],w,c1);
97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
102 if (num <= 0) return(c1);
104 #ifndef OPENSSL_SMALL_FOOTPRINT
107 mul(rp[0],ap[0],w,c1);
108 mul(rp[1],ap[1],w,c1);
109 mul(rp[2],ap[2],w,c1);
110 mul(rp[3],ap[3],w,c1);
111 ap+=4; rp+=4; num-=4;
116 mul(rp[0],ap[0],w,c1);
122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
127 #ifndef OPENSSL_SMALL_FOOTPRINT
144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w)
152 if (num <= 0) return((BN_ULONG)0);
157 #ifndef OPENSSL_SMALL_FOOTPRINT
160 mul_add(rp[0],ap[0],bl,bh,c);
161 mul_add(rp[1],ap[1],bl,bh,c);
162 mul_add(rp[2],ap[2],bl,bh,c);
163 mul_add(rp[3],ap[3],bl,bh,c);
164 ap+=4; rp+=4; num-=4;
169 mul_add(rp[0],ap[0],bl,bh,c);
175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w)
181 if (num <= 0) return((BN_ULONG)0);
186 #ifndef OPENSSL_SMALL_FOOTPRINT
189 mul(rp[0],ap[0],bl,bh,carry);
190 mul(rp[1],ap[1],bl,bh,carry);
191 mul(rp[2],ap[2],bl,bh,carry);
192 mul(rp[3],ap[3],bl,bh,carry);
193 ap+=4; rp+=4; num-=4;
198 mul(rp[0],ap[0],bl,bh,carry);
204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, size_t n)
209 #ifndef OPENSSL_SMALL_FOOTPRINT
212 sqr64(r[0],r[1],a[0]);
213 sqr64(r[2],r[3],a[1]);
214 sqr64(r[4],r[5],a[2]);
215 sqr64(r[6],r[7],a[3]);
221 sqr64(r[0],r[1],a[0]);
226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
228 #if defined(BN_LLONG) && defined(BN_DIV2W)
230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
232 return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-( */
239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
241 BN_ULONG dh,dl,q,ret=0,th,tl,t;
244 if (d == 0) return(BN_MASK2);
246 i=BN_num_bits_word(d);
247 assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
255 h=(h<<i)|(l>>(BN_BITS2-i));
258 dh=(d&BN_MASK2h)>>BN_BITS4;
262 if ((h>>BN_BITS4) == dh)
275 ((l&BN_MASK2h)>>BN_BITS4))))
282 tl=(tl<<BN_BITS4)&BN_MASK2h;
294 if (--count == 0) break;
297 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298 l=(l&BN_MASK2l)<<BN_BITS4;
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
311 if (n <= 0) return((BN_ULONG)0);
313 #ifndef OPENSSL_SMALL_FOOTPRINT
316 ll+=(BN_ULLONG)a[0]+b[0];
317 r[0]=(BN_ULONG)ll&BN_MASK2;
319 ll+=(BN_ULLONG)a[1]+b[1];
320 r[1]=(BN_ULONG)ll&BN_MASK2;
322 ll+=(BN_ULLONG)a[2]+b[2];
323 r[2]=(BN_ULONG)ll&BN_MASK2;
325 ll+=(BN_ULLONG)a[3]+b[3];
326 r[3]=(BN_ULONG)ll&BN_MASK2;
328 a+=4; b+=4; r+=4; n-=4;
333 ll+=(BN_ULLONG)a[0]+b[0];
334 r[0]=(BN_ULONG)ll&BN_MASK2;
338 return((BN_ULONG)ll);
340 #else /* !BN_LLONG */
341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, size_t n)
346 if (n <= 0) return((BN_ULONG)0);
349 #ifndef OPENSSL_SMALL_FOOTPRINT
376 a+=4; b+=4; r+=4; n-=4;
391 #endif /* !BN_LLONG */
393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, size_t n)
399 if (n <= 0) return((BN_ULONG)0);
401 #ifndef OPENSSL_SMALL_FOOTPRINT
405 r[0]=(t1-t2-c)&BN_MASK2;
406 if (t1 != t2) c=(t1 < t2);
408 r[1]=(t1-t2-c)&BN_MASK2;
409 if (t1 != t2) c=(t1 < t2);
411 r[2]=(t1-t2-c)&BN_MASK2;
412 if (t1 != t2) c=(t1 < t2);
414 r[3]=(t1-t2-c)&BN_MASK2;
415 if (t1 != t2) c=(t1 < t2);
416 a+=4; b+=4; r+=4; n-=4;
422 r[0]=(t1-t2-c)&BN_MASK2;
423 if (t1 != t2) c=(t1 < t2);
429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
436 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
442 #define mul_add_c(a,b,c0,c1,c2) \
444 t1=(BN_ULONG)Lw(t); \
445 t2=(BN_ULONG)Hw(t); \
446 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
447 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
449 #define mul_add_c2(a,b,c0,c1,c2) \
453 t1=(BN_ULONG)Lw(tt); \
454 t2=(BN_ULONG)Hw(tt); \
455 c0=(c0+t1)&BN_MASK2; \
456 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
457 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
459 #define sqr_add_c(a,i,c0,c1,c2) \
460 t=(BN_ULLONG)a[i]*a[i]; \
461 t1=(BN_ULONG)Lw(t); \
462 t2=(BN_ULONG)Hw(t); \
463 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
464 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
466 #define sqr_add_c2(a,i,j,c0,c1,c2) \
467 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
469 #elif defined(BN_UMULT_LOHI)
471 #define mul_add_c(a,b,c0,c1,c2) { \
472 BN_ULONG ta=(a),tb=(b); \
473 BN_UMULT_LOHI(t1,t2,ta,tb); \
474 c0 += t1; t2 += (c0<t1)?1:0; \
475 c1 += t2; c2 += (c1<t2)?1:0; \
478 #define mul_add_c2(a,b,c0,c1,c2) { \
479 BN_ULONG ta=(a),tb=(b),t0; \
480 BN_UMULT_LOHI(t0,t1,ta,tb); \
481 t2 = t1+t1; c2 += (t2<t1)?1:0; \
482 t1 = t0+t0; t2 += (t1<t0)?1:0; \
483 c0 += t1; t2 += (c0<t1)?1:0; \
484 c1 += t2; c2 += (c1<t2)?1:0; \
487 #define sqr_add_c(a,i,c0,c1,c2) { \
488 BN_ULONG ta=(a)[i]; \
489 BN_UMULT_LOHI(t1,t2,ta,ta); \
490 c0 += t1; t2 += (c0<t1)?1:0; \
491 c1 += t2; c2 += (c1<t2)?1:0; \
494 #define sqr_add_c2(a,i,j,c0,c1,c2) \
495 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
497 #elif defined(BN_UMULT_HIGH)
499 #define mul_add_c(a,b,c0,c1,c2) { \
500 BN_ULONG ta=(a),tb=(b); \
502 t2 = BN_UMULT_HIGH(ta,tb); \
503 c0 += t1; t2 += (c0<t1)?1:0; \
504 c1 += t2; c2 += (c1<t2)?1:0; \
507 #define mul_add_c2(a,b,c0,c1,c2) { \
508 BN_ULONG ta=(a),tb=(b),t0; \
509 t1 = BN_UMULT_HIGH(ta,tb); \
511 t2 = t1+t1; c2 += (t2<t1)?1:0; \
512 t1 = t0+t0; t2 += (t1<t0)?1:0; \
513 c0 += t1; t2 += (c0<t1)?1:0; \
514 c1 += t2; c2 += (c1<t2)?1:0; \
517 #define sqr_add_c(a,i,c0,c1,c2) { \
518 BN_ULONG ta=(a)[i]; \
520 t2 = BN_UMULT_HIGH(ta,ta); \
521 c0 += t1; t2 += (c0<t1)?1:0; \
522 c1 += t2; c2 += (c1<t2)?1:0; \
525 #define sqr_add_c2(a,i,j,c0,c1,c2) \
526 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
528 #else /* !BN_LLONG */
529 #define mul_add_c(a,b,c0,c1,c2) \
530 t1=LBITS(a); t2=HBITS(a); \
531 bl=LBITS(b); bh=HBITS(b); \
532 mul64(t1,t2,bl,bh); \
533 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
534 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
536 #define mul_add_c2(a,b,c0,c1,c2) \
537 t1=LBITS(a); t2=HBITS(a); \
538 bl=LBITS(b); bh=HBITS(b); \
539 mul64(t1,t2,bl,bh); \
540 if (t2 & BN_TBIT) c2++; \
541 t2=(t2+t2)&BN_MASK2; \
542 if (t1 & BN_TBIT) t2++; \
543 t1=(t1+t1)&BN_MASK2; \
544 c0=(c0+t1)&BN_MASK2; \
545 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
546 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
548 #define sqr_add_c(a,i,c0,c1,c2) \
549 sqr64(t1,t2,(a)[i]); \
550 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
551 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
553 #define sqr_add_c2(a,i,j,c0,c1,c2) \
554 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
555 #endif /* !BN_LLONG */
557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
570 mul_add_c(a[0],b[0],c1,c2,c3);
573 mul_add_c(a[0],b[1],c2,c3,c1);
574 mul_add_c(a[1],b[0],c2,c3,c1);
577 mul_add_c(a[2],b[0],c3,c1,c2);
578 mul_add_c(a[1],b[1],c3,c1,c2);
579 mul_add_c(a[0],b[2],c3,c1,c2);
582 mul_add_c(a[0],b[3],c1,c2,c3);
583 mul_add_c(a[1],b[2],c1,c2,c3);
584 mul_add_c(a[2],b[1],c1,c2,c3);
585 mul_add_c(a[3],b[0],c1,c2,c3);
588 mul_add_c(a[4],b[0],c2,c3,c1);
589 mul_add_c(a[3],b[1],c2,c3,c1);
590 mul_add_c(a[2],b[2],c2,c3,c1);
591 mul_add_c(a[1],b[3],c2,c3,c1);
592 mul_add_c(a[0],b[4],c2,c3,c1);
595 mul_add_c(a[0],b[5],c3,c1,c2);
596 mul_add_c(a[1],b[4],c3,c1,c2);
597 mul_add_c(a[2],b[3],c3,c1,c2);
598 mul_add_c(a[3],b[2],c3,c1,c2);
599 mul_add_c(a[4],b[1],c3,c1,c2);
600 mul_add_c(a[5],b[0],c3,c1,c2);
603 mul_add_c(a[6],b[0],c1,c2,c3);
604 mul_add_c(a[5],b[1],c1,c2,c3);
605 mul_add_c(a[4],b[2],c1,c2,c3);
606 mul_add_c(a[3],b[3],c1,c2,c3);
607 mul_add_c(a[2],b[4],c1,c2,c3);
608 mul_add_c(a[1],b[5],c1,c2,c3);
609 mul_add_c(a[0],b[6],c1,c2,c3);
612 mul_add_c(a[0],b[7],c2,c3,c1);
613 mul_add_c(a[1],b[6],c2,c3,c1);
614 mul_add_c(a[2],b[5],c2,c3,c1);
615 mul_add_c(a[3],b[4],c2,c3,c1);
616 mul_add_c(a[4],b[3],c2,c3,c1);
617 mul_add_c(a[5],b[2],c2,c3,c1);
618 mul_add_c(a[6],b[1],c2,c3,c1);
619 mul_add_c(a[7],b[0],c2,c3,c1);
622 mul_add_c(a[7],b[1],c3,c1,c2);
623 mul_add_c(a[6],b[2],c3,c1,c2);
624 mul_add_c(a[5],b[3],c3,c1,c2);
625 mul_add_c(a[4],b[4],c3,c1,c2);
626 mul_add_c(a[3],b[5],c3,c1,c2);
627 mul_add_c(a[2],b[6],c3,c1,c2);
628 mul_add_c(a[1],b[7],c3,c1,c2);
631 mul_add_c(a[2],b[7],c1,c2,c3);
632 mul_add_c(a[3],b[6],c1,c2,c3);
633 mul_add_c(a[4],b[5],c1,c2,c3);
634 mul_add_c(a[5],b[4],c1,c2,c3);
635 mul_add_c(a[6],b[3],c1,c2,c3);
636 mul_add_c(a[7],b[2],c1,c2,c3);
639 mul_add_c(a[7],b[3],c2,c3,c1);
640 mul_add_c(a[6],b[4],c2,c3,c1);
641 mul_add_c(a[5],b[5],c2,c3,c1);
642 mul_add_c(a[4],b[6],c2,c3,c1);
643 mul_add_c(a[3],b[7],c2,c3,c1);
646 mul_add_c(a[4],b[7],c3,c1,c2);
647 mul_add_c(a[5],b[6],c3,c1,c2);
648 mul_add_c(a[6],b[5],c3,c1,c2);
649 mul_add_c(a[7],b[4],c3,c1,c2);
652 mul_add_c(a[7],b[5],c1,c2,c3);
653 mul_add_c(a[6],b[6],c1,c2,c3);
654 mul_add_c(a[5],b[7],c1,c2,c3);
657 mul_add_c(a[6],b[7],c2,c3,c1);
658 mul_add_c(a[7],b[6],c2,c3,c1);
661 mul_add_c(a[7],b[7],c3,c1,c2);
666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
679 mul_add_c(a[0],b[0],c1,c2,c3);
682 mul_add_c(a[0],b[1],c2,c3,c1);
683 mul_add_c(a[1],b[0],c2,c3,c1);
686 mul_add_c(a[2],b[0],c3,c1,c2);
687 mul_add_c(a[1],b[1],c3,c1,c2);
688 mul_add_c(a[0],b[2],c3,c1,c2);
691 mul_add_c(a[0],b[3],c1,c2,c3);
692 mul_add_c(a[1],b[2],c1,c2,c3);
693 mul_add_c(a[2],b[1],c1,c2,c3);
694 mul_add_c(a[3],b[0],c1,c2,c3);
697 mul_add_c(a[3],b[1],c2,c3,c1);
698 mul_add_c(a[2],b[2],c2,c3,c1);
699 mul_add_c(a[1],b[3],c2,c3,c1);
702 mul_add_c(a[2],b[3],c3,c1,c2);
703 mul_add_c(a[3],b[2],c3,c1,c2);
706 mul_add_c(a[3],b[3],c1,c2,c3);
711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
724 sqr_add_c(a,0,c1,c2,c3);
727 sqr_add_c2(a,1,0,c2,c3,c1);
730 sqr_add_c(a,1,c3,c1,c2);
731 sqr_add_c2(a,2,0,c3,c1,c2);
734 sqr_add_c2(a,3,0,c1,c2,c3);
735 sqr_add_c2(a,2,1,c1,c2,c3);
738 sqr_add_c(a,2,c2,c3,c1);
739 sqr_add_c2(a,3,1,c2,c3,c1);
740 sqr_add_c2(a,4,0,c2,c3,c1);
743 sqr_add_c2(a,5,0,c3,c1,c2);
744 sqr_add_c2(a,4,1,c3,c1,c2);
745 sqr_add_c2(a,3,2,c3,c1,c2);
748 sqr_add_c(a,3,c1,c2,c3);
749 sqr_add_c2(a,4,2,c1,c2,c3);
750 sqr_add_c2(a,5,1,c1,c2,c3);
751 sqr_add_c2(a,6,0,c1,c2,c3);
754 sqr_add_c2(a,7,0,c2,c3,c1);
755 sqr_add_c2(a,6,1,c2,c3,c1);
756 sqr_add_c2(a,5,2,c2,c3,c1);
757 sqr_add_c2(a,4,3,c2,c3,c1);
760 sqr_add_c(a,4,c3,c1,c2);
761 sqr_add_c2(a,5,3,c3,c1,c2);
762 sqr_add_c2(a,6,2,c3,c1,c2);
763 sqr_add_c2(a,7,1,c3,c1,c2);
766 sqr_add_c2(a,7,2,c1,c2,c3);
767 sqr_add_c2(a,6,3,c1,c2,c3);
768 sqr_add_c2(a,5,4,c1,c2,c3);
771 sqr_add_c(a,5,c2,c3,c1);
772 sqr_add_c2(a,6,4,c2,c3,c1);
773 sqr_add_c2(a,7,3,c2,c3,c1);
776 sqr_add_c2(a,7,4,c3,c1,c2);
777 sqr_add_c2(a,6,5,c3,c1,c2);
780 sqr_add_c(a,6,c1,c2,c3);
781 sqr_add_c2(a,7,5,c1,c2,c3);
784 sqr_add_c2(a,7,6,c2,c3,c1);
787 sqr_add_c(a,7,c3,c1,c2);
792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
805 sqr_add_c(a,0,c1,c2,c3);
808 sqr_add_c2(a,1,0,c2,c3,c1);
811 sqr_add_c(a,1,c3,c1,c2);
812 sqr_add_c2(a,2,0,c3,c1,c2);
815 sqr_add_c2(a,3,0,c1,c2,c3);
816 sqr_add_c2(a,2,1,c1,c2,c3);
819 sqr_add_c(a,2,c2,c3,c1);
820 sqr_add_c2(a,3,1,c2,c3,c1);
823 sqr_add_c2(a,3,2,c3,c1,c2);
826 sqr_add_c(a,3,c1,c2,c3);
831 #ifdef OPENSSL_NO_ASM
832 #ifdef OPENSSL_BN_ASM_MONT
835 * This is essentially reference implementation, which may or may not
836 * result in performance improvement. E.g. on IA-32 this routine was
837 * observed to give 40% faster rsa1024 private key operations and 10%
838 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
840 * reference implementation, one to be used as starting point for
841 * platform-specific assembler. Mentioned numbers apply to compiler
842 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843 * can vary not only from platform to platform, but even for compiler
844 * versions. Assembler vs. assembler improvement coefficients can
845 * [and are known to] differ and are to be documented elsewhere.
847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
849 BN_ULONG c0,c1,ml,*tp,n0;
853 volatile BN_ULONG *vp;
856 #if 0 /* template for platform-specific implementation */
857 if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
859 vp = tp = alloca((num+2)*sizeof(BN_ULONG));
863 tp[num] = bn_mul_words(tp,ap,num,bp[0]);
869 c0 = bn_mul_add_words(tp,ap,num,bp[i]);
870 c1 = (tp[num] + c0)&BN_MASK2;
872 tp[num+1] = (c1<c0?1:0);
875 ml = (c1*n0)&BN_MASK2;
880 mul_add(c1,np[0],ml,mh,c0);
882 mul_add(c1,ml,np[0],c0);
888 mul_add(c1,np[j],ml,mh,c0);
890 mul_add(c1,ml,np[j],c0);
892 tp[j-1] = c1&BN_MASK2;
894 c1 = (tp[num] + c0)&BN_MASK2;
896 tp[num] = tp[num+1] + (c1<c0?1:0);
899 if (tp[num]!=0 || tp[num-1]>=np[num-1])
901 c0 = bn_sub_words(rp,tp,np,num);
902 if (tp[num]!=0 || c0==0)
904 for(i=0;i<num+2;i++) vp[i] = 0;
908 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
915 * Return value of 0 indicates that multiplication/convolution was not
916 * performed to signal the caller to fall down to alternative/original
919 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
921 #endif /* OPENSSL_BN_ASM_MONT */
924 #else /* !BN_MUL_COMBA */
926 /* hmm... is it faster just to do a multiply? */
928 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
931 bn_sqr_normal(r,a,4,t);
935 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
938 bn_sqr_normal(r,a,8,t);
941 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
943 r[4]=bn_mul_words( &(r[0]),a,4,b[0]);
944 r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
945 r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
946 r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
949 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
951 r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
952 r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
953 r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
954 r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
955 r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
956 r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
957 r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
958 r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
961 #ifdef OPENSSL_NO_ASM
962 #ifdef OPENSSL_BN_ASM_MONT
964 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
966 BN_ULONG c0,c1,*tp,n0=*n0p;
967 volatile BN_ULONG *vp;
970 vp = tp = alloca((num+2)*sizeof(BN_ULONG));
972 for(i=0;i<=num;i++) tp[i]=0;
976 c0 = bn_mul_add_words(tp,ap,num,bp[i]);
977 c1 = (tp[num] + c0)&BN_MASK2;
979 tp[num+1] = (c1<c0?1:0);
981 c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
982 c1 = (tp[num] + c0)&BN_MASK2;
984 tp[num+1] += (c1<c0?1:0);
985 for(j=0;j<=num;j++) tp[j]=tp[j+1];
988 if (tp[num]!=0 || tp[num-1]>=np[num-1])
990 c0 = bn_sub_words(rp,tp,np,num);
991 if (tp[num]!=0 || c0==0)
993 for(i=0;i<num+2;i++) vp[i] = 0;
997 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
1003 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1005 #endif /* OPENSSL_BN_ASM_MONT */
1008 #endif /* !BN_MUL_COMBA */