

User Guide
for the

OpenSSL FIPS Object Module v2.0
(for validations #1747, #2398, and #2473 including revisions v2.0.1, v2.0.2, v2.0.3, v2.0.4, v2.0.5,

v2.0.6, v2.0.7, 2.0.8, 2.0.9, 2.0.10, 2.0.11, 2.0.12)

OpenSSL Validation Services, Inc.
(formerly OpenSSL Software Foundation)

May 10, 2016

http://openssl.org/

User Guide - OpenSSL FIPS Object Module v2.0

Copyright and Trademark Notice

This document is licensed under a Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/)

OpenSSL® is a registered trademark of the OpenSSL Software Foundation, Inc.

Sponsored by:

Defense Advanced Research Projects Agency (DARPA)
Transformative Apps Program

Intersoft International, Inc.

Department of Homeland Security
Science and Technology Directorate

Page 2 of 222

http://www.securenetterm.com/
http://creativecommons.org/licenses/by/3.0/

User Guide - OpenSSL FIPS Object Module v2.0

Sponsored by:

Dell Inc.

Page 3 of 222

sponsor of Beaglebone Black platforms

http://www.dell.com/

User Guide - OpenSSL FIPS Object Module v2.0

Acknowledgments

The OpenSSL Software Foundation (OSF) serves as the "vendor" for this validation. Project
management coordination for this effort was provided by:

Steve Marquess +1 301-874-2571
OpenSSL Software Services, Inc. marquess@openssl.com
1829 Mount Ephraim Road
Adamstown, MD 21710
USA

with technical work by:

Dr. Stephen Henson
4 Monaco Place, shenson@openssl.com
Westlands, Newcastle-under-Lyme shenson@drh-consultancy.co.uk
Staffordshire. ST5 2QT.
England, United Kingdom http://www.drh-consultancy.co.uk/

Andy Polyakov
Chalmers University of Technology appro@openssl.org
SE-412 96 Gothenburg appro@fy.chalmers.se
Sweden

Tim Hudson
P.O. Box 6389 tjh@cryptsoft.com
Fairfield Gardens 4103
Australia http://www.cryptsoft.com/

in coordination with the OpenSSL team at www.openssl.org.

Validation testing was performed by Infogard Laboratories. For information on validation or
revalidations of software contact:

Marc Ireland 805-783-0810 tel
FIPS Program Manager, CISSP 805-783-0889 fax
InfoGard, a UL Company Marc.Ireland@ul.com
709 Fiero Lane, Suite 25 http://www.infogard.com/
San Luis Obispo, CA 93401

Page 4 of 222

http://www.infogard.com/
file:///mnt/nfs/local/ovs/validation/docs/FIPS140_Object_Module/Docs/SecurityPolicy/Released/www.openssl.org
http://www.cryptsoft.com/
mailto:tjh@cryptsoft.com
mailto:appro@openssl.org
http://www.drh-consultancy.co.uk/
mailto:shenson@drh-consultancy.co.uk
mailto:shenson@openssl.com
mailto:marquess@openssl.com

User Guide - OpenSSL FIPS Object Module v2.0

Revision History

This document will be revised over time as new information becomes available; check
http://www.openssl.org/docs/fips/ for the latest version. Suggestions for additions, corrections, or
improvement are welcome and will be gratefully acknowledged; please send document error
reports or suggestions to userguide@openssl.com.

Date Description

2016-05-10 Added discussion of Alternative Scenario 1A/1B clone validations
2016-04-12 Updates references to OpenSSL 1.0.1 (thanks to Jeremiah R. Niebuhr

jeremiah.niebuhr.ctr@us.af.mil)
2016-02-10 Update for revision 2.0.12, note OpenSSL Validation Services name change
2016-02-05 Fixed several typos (thanks to Ti Strga wearyofallthiscrap@gmail.com)
2016-02-03 Section 6.1.1, clarify discussion of the entropy callback
2015-11-05 Fix typo in section 4.1.2
2015-09-30 Section 6.1.1, expanded discussion of the entropy callback (thanks to Lee D Gibbins

ldgibbons@avaya.com)
2015-09-16 Section 6.7, corrected four typos (thanks to Conrad Gerhart Welling

CONRAD.GERHART.WELLING@leidos.com)
Added new section 6.10, "CCM".

2015-09-05 Reference the 2.0.10 revision
Fixed typo in section 6.5 (thanks to Conrad Gerhart Welling
CONRAD.GERHART.WELLING@leidos.com)

2015-06-09 Update team GPG/PGP keys in Appendix A, noted new 2.0.8, 2.0.9 platforms in
section 2.7

2015-04-16 Multiple typographical corrections (thanks to Mike Carden
mike.carden@au.ngc.com)

2014-09-02 Fixed typo in Section 4.3.3, added new platforms in Section 3
2014-07-21 Reference the 2.0.6 and 2.0.7 revisions
2013-12-04 Appendix B: Updated footnote referencing special cases in fips_algvs
2013-11-01 Added Citrix acknowledgment
2013-10-31 Update URL in section 5.6 (thanks to mscriven@sdisw.com)
2013-09-29 Fixed typo in section 6 (thanks to karanpopali@gmail.com)
2013-09-13 Added Cryptsoft acknowledgment, update for 2.0.5, note effective disabling of Dual

EC DRBG
2013-02-02 Documented FIPSDIR in Section 4.2
2013-01-24 Fixed issue with iOS and VALID_ARCHS vs ARCHS
2013-01-10 Clarified iOS procedures
2013-01-09 Added information on FIPS_module_mode()
2013-01-08 Spelling corrections and flow improvements
2012-12-02 Changed "vendor affirmed" references to "user affirmed"

Page 5 of 222

mailto:userguide@openssl.com
http://www.openssl.org/docs/fips/

User Guide - OpenSSL FIPS Object Module v2.0

2012-11-29 Corrections to instructions for iOS building
2012-11-01 Additions to section 6
2012-10-25 Additions to section 5.3, new Appendic E.3
2012-09-07 Added new section on GMAC
2012-07-17 Added iOS to Appendix E
2012-07-03 Correct typographical errors, update acknowledgment
2012-06-28 Update with certificate number
2012-05-15 Discussion of the new "secure installation" requirement.
2012-04-09 Updated and rename the "fips_hmac" sample application; added section 6.5
2012-03-15 Platform list and cross-reference, and additional discussion of platform issues
2012-02-21 Additional discussion of cross-compilation
2011-09-07 Initial draft for openssl-fips-2.0.tar.gz

Page 6 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Table of Contents

1. INTRODUCTION...10

1.1 FIPS WHAT? WHERE DO I START?...10
1.2 “CHANGE LETTER” MODIFICATIONS..11
1.3 THE “PRIVATE LABEL” VALIDATION..11

2. BACKGROUND..12

2.1 TERMINOLOGY...13
2.1.1 FIPS 140-2 Specific Terminology...13
2.1.2 General Glossary...14

2.2 THE FIPS MODULE AND INTEGRITY TEST...17
2.3 THE FIPS INTEGRITY TEST...18

2.3.1 Requirement for Exclusive Integrity Test..18
2.3.2 Requirement for Fixed Object Code Order..18

2.4 THE FILE INTEGRITY CHAIN..19
2.4.1 Source File (Build Time) Integrity..19
2.4.2 Object Module (Link Time) Integrity..20
2.4.3 Application Executable Object (Run Time) Integrity...20

2.5 RELATIONSHIP TO THE OPENSSL API..20
2.6 FIPS MODE OF OPERATION..22

2.6.1 FIPS Mode Initialization..22
2.6.2 Algorithms Available in FIPS Mode...22

2.7 REVISIONS OF THE 2.0 MODULE...23
2.8 PRIOR FIPS OBJECT MODULES...26
2.9 FUTURE FIPS OBJECT MODULES...26
2.10 CLONE VALIDATIONS..27

3. COMPATIBLE PLATFORMS...41

3.1 BUILD ENVIRONMENT REQUIREMENTS...41
3.2 KNOWN SUPPORTED PLATFORMS..42

3.2.1 Code Paths and Command Sets..46
3.2.2 32 versus 64 Bit Architectures..52
3.2.3 Assembler Optimizations..53

3.3 CREATION OF SHARED LIBRARIES...54
3.4 CROSS-COMPILATION...54

4. GENERATING THE FIPS OBJECT MODULE...57

4.1 DELIVERY OF SOURCE CODE..57
4.1.1 Creation of a FIPS Object Module from Other Source Code...58
4.1.2 Verifying Integrity of Distribution (Best Practice)...58

4.2 BUILDING AND INSTALLING THE FIPS OBJECT MODULE WITH OPENSSL (UNIX/LINUX).......................61
4.2.1 Building the FIPS Object Module from Source..61

Page 7 of 222

User Guide - OpenSSL FIPS Object Module v2.0

4.2.2 Installing and Protecting the FIPS Object Module..63
4.2.3 Building a FIPS Capable OpenSSL..63

4.3 BUILDING AND INSTALLING THE FIPS OBJECT MODULE WITH OPENSSL (WINDOWS)..........................64
4.3.1 Building the FIPS Object Module from Source..64
4.3.2 Installing and Protecting the FIPS Object Module..64
4.3.3 Building a FIPS Capable OpenSSL..65

5. CREATING APPLICATIONS WHICH REFERENCE THE FIPS OBJECT MODULE...67

5.1 EXCLUSIVE USE OF THE FIPS OBJECT MODULE FOR CRYPTOGRAPHY...67
5.2 FIPS MODE INITIALIZATION..67
5.3 GENERATE APPLICATION EXECUTABLE OBJECT..69

5.3.1 Linking under Unix/Linux..70
5.3.2 Linking under Windows..72

5.4 APPLICATION IMPLEMENTATION RECOMMENDATIONS...73
5.5 DOCUMENTATION AND RECORD-KEEPING RECOMMENDATIONS...74
5.6 WHEN IS A SEPARATE FIPS 140-2 VALIDATION REQUIRED?...75
5.7 COMMON ISSUES AND MISCONCEPTIONS..77

5.7.1 Don't Fight It..77
5.7.2 Don't Overthink It...77

6. TECHNICAL NOTES...78

6.1 DRBGS...78
6.1.1 Overview...78
6.1.2 The DRBG API...81

6.2 ROLE BASED MODULE AUTHENTICATION...90
6.3 SELF TESTS...94

6.3.1 POST Tests..95
6.3.2 Conditional self tests..99

6.4 ECDH..100
6.5 ECC AND THE NSA SUBLICENSE..101
6.6 THE "SECURE INSTALLATION" ISSUE...102

6.6.1 What Won't Work..103
6.6.2 What Might Work..104
6.6.3 Still Confused?...105

6.7 GMAC...106
6.7.1 CAVP Action...106
6.7.2 Options for Addressing...106
6.7.3 Practical Impact...107

6.8 DH..108
6.9 DSA...108
6.10 CCM..108

7. REFERENCES...110

Page 8 of 222

User Guide - OpenSSL FIPS Object Module v2.0

APPENDIX A OPENSSL DISTRIBUTION SIGNING KEYS..112

APPENDIX B CMVP TEST PROCEDURE...114

B.1 BUILDING THE SOFTWARE - LINUX/UNIX..114
B.2 ALGORITHM TESTS - LINUX/UNIX..116
B.3 BUILDING THE SOFTWARE - WINDOWS..117
B.4 ALGORITHM TESTS - WINDOWS...118
B.5 FIPS 140-2 TEST - ALL PLATFORMS..118
B.6 TESTVECTOR DATA FILES AND THE FIPSALGTEST.PL UTILITY..129
B.6 DOCUMENTATION...134

APPENDIX C EXAMPLE OPENSSL BASED APPLICATION..135

C.1 NATIVE COMPILATION OF STATICALLY LINKED PROGRAM..135
C.2 CROSS-COMPILATION OF "FIPS CAPABLE" SHARED OPENSSL LIBRARIES...138

APPENDIX D FIPS API DOCUMENTATION..140

D.1 FIPS MODE..140
D.2 FIPS_MODE_SET(), FIPS_SELFTEST()..141
D.3 FIPS_MODE()..142
D.4 ERROR CODES..142

APPENDIX E PLATFORM SPECIFIC NOTES...144

E.1 APPLE OS X SUPPORT...144
E.2 APPLE IOS SUPPORT..145

Acquire Required Files..145
Build the Incore Utility..146
Build the FIPS Object Module..148
Build the FIPS Capable Library...149
OpenSSL Xcode Application..152

E.3 WINDOWS CE SUPPORT..154

APPENDIX F RESTRICTIONS ON THE EXPORT OF CRYPTOGRAPHY.......................157

F.1 OPEN SOURCE SOFTWARE..157
F.2 “EXPORT JOBS, NOT CRYPTO”...158

APPENDIX G SECURITY POLICY ERRATA...159

APPENDIX H DTR ANALYSIS...160

APPENDIX I API ENTRY POINTS BY SOURCE FILE...161

Page 9 of 222

User Guide - OpenSSL FIPS Object Module v2.0

1. Introduction

This document is a guide to the use of the OpenSSL FIPS Object Module, a software component
intended for use with the OpenSSL cryptographic library and toolkit. It is a companion document
to the OpenSSL FIPS 140-2 Security Policy document submitted to NIST as part of the FIPS 140-2
validation process. It is intended as a technical reference for developers using, and system
administrators installing, the OpenSSL FIPS software, for use in risk assessment reviews by
security auditors, and as a summary and overview for program managers. It is intended as a guide
for annotation and more detailed explanation of the Security Policy, and not as a replacement. In
the event of a perceived conflict or inconsistency between this document and the Security Policy
the latter document is authoritative as only it has been reviewed and approved by the Cryptographic
Module Validation Program (CMVP), a joint U.S. - Canadian program for the validation of
cryptographic products (http://csrc.nist.gov/groups/STM/cmvp/).

Familiarity with the OpenSSL distribution and library API (Application Programming Interface) is
assumed. This document is not a tutorial on the use of OpenSSL and it only covers issues specific
to the FIPS 140-2 validation. For more information on the use of OpenSSL in general see the many
other sources of information such as http://openssl.org/docs/ and Network Security with OpenSSL
(Reference 4).

The Security Policy document (Reference 1) is available online at the NIST Cryptographic Module
Validation website, http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1747.pdf.

For more information on OpenSSL Validation Services and the OpenSSL Software Foundation see
http://openssl.com/. For more information on the OpenSSL project see http://openssl.org/. For
more information on NIST and the cryptographic module validation program, see
http://csrc.nist.gov/groups/STM/cmvp/.

For information and announcements regarding current and future OpenSSL related validations see
http://openssl.org/docs/fips/fipsnotes.html. That web page also has a very quick introduction
extracted here:

1.1 FIPS What? Where Do I Start?

Ok, so your company needs FIPS validated cryptography to land a big sale, and your product
currently uses OpenSSL. You haven't worked up the motivation to wade through the entire User
Guide and want the quick "executive summary". Here is a grossly oversimplified account:

OpenSSL itself is not validated,and never will be. Instead a carefully defined software component
called the OpenSSL FIPS Object Module has been created. The Module was designed for
compatibility with the OpenSSL library so products using the OpenSSL library and API can be
converted to use FIPS 140-2 validated cryptography with minimal effort.

Page 10 of 222

http://openssl.org/docs/fips/fipsnotes.html
http://csrc.nist.gov/cryptval/
http://openssl.org/
http://openssl.com/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1747.pdf
http://openssl.org/docs/
http://csrc.nist.gov/cryptval/

User Guide - OpenSSL FIPS Object Module v2.0

The OpenSSL FIPS Object Module validation is unique among all FIPS 140-2 validations in that
the product is "delivered" in source code form, meaning that if you can use it exactly as is and can
build it for your platform according to a very specific set of instructions, then you can use it as
validated cryptography3.

The OpenSSL library is also unique in that you can download and use it for free.

If you require source code or build process changes for your intended application, then you cannot
use the open source based validated module – you must obtain your own validation. This situation
is common; see "Private Label" validation, below.

New FIPS 140-2 validations (of any type) are slow (6-12 months is typical), expensive (US$50,000
is typical for an uncomplicated validation), and unpredictable (completion dates are not only
uncertain when first beginning a validation, but remain so during the process).

Note that FIPS 140-2 validation is a complicated topic that the above summary does not adequately
address. You have been warned!

1.2 “Change Letter” Modifications

If the existing validated OpenSSL FIPS Object Module is almost what you need, but some minor
modifications are necessary for your intended use, then it may be possible to retroactively modify
the original validation to include those necessary changes. The process by which this is done is
known as the “maintenance letter” or “change letter” process. A change letter can be substantially
faster and less expensive than obtaining a new, independent validation.

Modifications to the FIPS module to support a new platform (operating system or compiler) are
often compatible with the change letter process.

1.3 The “Private Label” Validation

The OSF would prefer to work on open source based validations which benefit the OpenSSL user
community at large. However, we understand not all work can benefit the community. We refer to
validations based directly on the OpenSSL FIPS Object Module but not available to the community
as "private label" validations. They are also sometimes referred to as "cookie cutter" validations.

Many ISVs and vendors are interested in private label validations, and the OSF will assist in such
efforts with a priced engagement. An ISV or vendor usually obtains a private label validation for
marketing or risk management purposes. For example, a company may choose to privately retain
its validation to ensure its competitive advantage, or a company might modify the sources and
choose to keep the changes private.

3Either directly or via "User Affirmation" which is discussed in §5.5.

Page 11 of 222

User Guide - OpenSSL FIPS Object Module v2.0

OSF has performed numerous private validations for desktop, server, and mobile platforms with
very competitive pricing. Often, the pricing is less than the account setup fee for closed sourced and
locked-in solution. Trivial and uncomplicated validations can often be performed using fixed rate
contracts to assure cost constraints.

2. Background

For the purposes of FIPS 140-2 validation, the OpenSSL FIPS Object Module v2.0 is defined as a
specific discrete unit of binary object code (the “FIPS Object Module”) generated from a specific
set and revision level of source files embedded within a source distribution. These platform
portable source files are compiled to create the object code in an isolated and separate form. That
object code is then used to provide a cryptographic services to external applications. The terms
FIPS Object Module and FIPS Module elsewhere in this document refer to this OpenSSL FIPS
Object Module object code.

The FIPS Object Module provides an API for invocation of FIPS approved cryptographic functions
from calling applications, and is designed for use in conjunction with standard OpenSSL 1.0.1 and
1.0.2 distributions. These standard OpenSSL 1.0.1/1.0.2 source distributions support the original
non-FIPS API as well as a FIPS Mode in which the FIPS approved algorithms are implemented by
the FIPS Object Module and non-FIPS approved algorithms are disabled by default. These non-
validated algorithms include, but are not limited to, Blowfish, CAST, IDEA, RC-family, and non-
SHA message digest and other algorithms.

The FIPS Object Module was designed and implemented to meet FIPS 140-2, Level 1
requirements. There are no special steps required to ensure FIPS 140-2 compliant operation of the
FIPS Object Module, other than building, loading, and initializing the FIPS approved and HMAC-
SHA-1 digest verified source code. This process of generating the application executable object
from source code for all supported platforms1 is documented in detail at §4 and §5.

The FIPS Object Module provides confidentiality, integrity signing, and verification services. The
FIPS Object Module supports the following algorithms: Triple DES, AES, CMAC, CCM, RSA (for
digital signatures), DH, DSA/DSA2, ECDSA/ECDSA2, SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, and HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-
SHA-512. The FIPS Object Module supports SP 800-90 and ANSI X9.31 compliant pseudo-
random number generators.

The FIPS Object Module supports the Suite B cryptographic algorithms and can be used with Suite
B cryptography exclusively. Suite B requires 128-bit security levels and forbids use of TLS lesser
than 1.2 (TLS 1.0 and 1.1 use MD5 as a PRF during key agreement).

1By definition, for all platforms to which the validation can be extended. Per the requirements of the Security Policy,
any change to the documented build process renders the result non-FIPS approved.

Page 12 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The FIPS Object Module v2.0 is similar in many respects to the earlier OpenSSL FIPS Object
Module v1.2.x. The v1.2.4 was originally validated in late 2008 with validation certificate #1051;
that original validation has been extended several times to incorporate additional platforms.

The v1.2.x Module is only compatible with OpenSSL 0.9.8 releases, while the v2.0 Module is
compatible with OpenSSL 1.0.1 and 1.0.2 releases. The v2.0 Module is the best choice for all new
software and product development.

2.1 Terminology

2.1.1 FIPS 140-2 Specific Terminology
During the course of multiple validations it became clear that some terminology was interpreted
differently by OpenSSL developers, cryptographers, the CMVP and FIPS 140-2 specialists. In this
section some of the potential confusions in terminology are discussed.

Approved Mode

The FIPS 140-2 Approved Mode of Operation is the operation of the FIPS Object Module when all
requirements of the Security Policy have been met and the software has successfully performed the
power-up and self test operation (invocation of the FIPS_mode_set() function call). In this
document this Approved Mode is referred to simply as FIPS mode.

Crypto Officer

System administrator. The FIPS 140-2 Crypto Officer4 is the person having the responsibility and
access privileges to install, configure, and initialize the cryptographic software.

HMAC-SHA-1 digest

A HMAC-SHA-1 digest of a file using a specific HMAC key (the ASCII string
“etaonrishdlcupfm”). Such digests are referred to in this document as “digests” or
“fingerprints”. The digests are used for integrity checking to verify that the software in question
has not been modified or corrupted from the form originally used as the basis of the FIPS 140-2
validation.

Note that the PGP or GPG signatures traditionally used to check the integrity of open source
software distributions are not a component of any of the FIPS 140-2 integrity checks.

Module

4The term “Officer” does not imply a requirement for a military or government official, although some military or
government organizations may choose to restrict the performance of this system administration role to certain official
capacities.

Page 13 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The concept of the cryptographic module is important for FIPS 140-2, and it has subtle nuances in
this context. Conceptually the Module is the binary object code and data in the FIPS Object Module
for a running process.

The “cryptographic module” is often referred to simply as “module”. That term is capitalized in
this document as a reminder that it has a somewhat different meaning than assumed by software
developers outside of a FIPS 140-2 context.

Note that traditionally the executable (or shared library) file on disk corresponding to this Module
as a running process is also considered to be a Module5 by the CMVP. An integrity check of the
entire executable file on disk prior to memory mapping is considered acceptable as long as that
executable file does not contain any extraneous6 software. In this traditional case the specific
executable file is submitted for testing and thus the precise content (as a bit string) is known in
advance.

In the case of the FIPS Object Module only source code is submitted for validation testing, so the
bit string value of the binary object code in memory cannot be known in advance. A chain of
checks beginning with the source code and extending through each step in the transformation of the
source code into a running process was established to provide a check equivalent to that used by
more traditional object based validations.

The chain of checks works backwards from the software as resident in memory for a process to the
executable program file from which the process was created (the existing precedent), then to the
FIPS Object Module used to link the program file, and finally to the original source files used to
create the FIPS Object Module. Each of those stages can be thought of as antecedents of the
Module, and the integrity of each needs to be verified to assure the integrity of the Module.

2.1.2 General Glossary

ABI Application Binary Interface
AES Advanced Encryption Standard
AES-NI AES New Instructions
ARM a processor instruction set architecture developed by

ARM Holdings
API Application Programming Interface
Blowfish A cryptographic algorithm not allowed in FIPS mode
CAST A cryptographic algorithm not allowed in FIPS mode
CC Common Criteria

5Presumably because the transformations of the disk resident file contents performed by the runtime loader are
considered to be well understood and sufficiently minimal.
6The definition of what constitutes “extraneous” is not formally specified and subject to interpretation.

Page 14 of 222

User Guide - OpenSSL FIPS Object Module v2.0

CCM Counter with Cipher Block Chaining-Message
Authentication Code, a mode of operation for
cryptographic block ciphers

CDH Cofactor Diffie-Hellman, a Discrete Logarithm
Cryptography (DLC) primitive, see SP 800-56A

CAVP Cryptographic Algorithm Validation Program, see
http://csrc.nist.gov/groups/STM/cavp/

CMAC Cipher-based MAC, a block cipher-based message
authentication code algorithm

CMVP Cryptographic Module Validation Program, see
http://csrc.nist.gov/groups/STM/cmvp/

CTR DRBG flavor
DH Diffie-Hellman, a FIPS approved cryptographic

algorithm
DLL Dynamic Link Library, a shared library for the

Microsoft Windows OS
DRBG Deterministic Random Bit Generator, see SP 800-90
DSA Digital Signature Algorithm, a FIPS approved

cryptographic hash function
DSA2 DSA as defined in FIPS 186-3
EC Elliptic Curve
ECC Elliptic Curve Cryptography (see EC)
ECDH Elliptic Curve Diffie–Hellman, a variant of Diffie–

Hellman used as an anonymous key agreement
protocol

ECDSA Elliptic Curve Digital Signature Algorithm, a variant
of DSA which uses ECC

ECDSA2 ECDSA as defined in FIPS 186-3
ELF Executable and Linkable Format, the standard binary

file format for Unix-like systems on x86
ENGINE An OpenSSL mechanism for interfacing with external

cryptographic implementations
EVP ENVelope encryption, an OpenSSL API that provides

a high-level interface to cryptographic functions
FIPS Federal Information Processing Standards, see

http://www.itl.nist.gov/fipspubs/
FIPS 140-2 See http://csrc.nist.gov/publications/fips/fips140-

2/fips1402.pdf

Page 15 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS Object Module the special monolithic object module built from the
special source distribution7 identified in the Security
Policy

GCM Galois/Counter Mode, a mode of operation for
symmetric key cryptographic block ciphers

GPG See PGP
GUI Graphical User Interface
HMAC Hash Message Authentication Code, a mechanism for

message authentication using cryptographic hash
functions

IA Information Assurance
IDEA A cryptographic algorithm not allowed in FIPS mode
IKE Internet Key Exchange, a protocol for exchanging

information required for secure communication.
IP Internet Protocol, a network communications protocol
IPsec Internet Protocol Security, a protocol suite for securing

IP communications by authenticating and encrypting
each IP packet

IT Information Technology
IUT Implementation Under Test
KAT Known Answer Test
MASM The Microsoft assembler, no longer supported by

OpenSSL
MD2 A cryptographic algorithm not allowed in FIPS mode
NEON an architecture extension for ARM Cortex™-A series

processors,
NASM the open source Netwide ASseMbler, see

http://www.nasm.us/
NID Name IDentifier for extracting information from a

certificate Distinguished Name.
NIST National Institute of Science and Technology, see

http://www.nist.gov/
OE See Operational Environment
Operational Environment The FIPS 140-2 term for "platform", though

with a somewhat different meaning than in the
software engineering world

OS Operating System
OSF The OpenSSL Software Foundation

7Roughly speaking, this special source distribution was created from the OpenSSL­fips­2_0­stable branch in
the CVS source code repository with the command make VERSION=fips­2.0 TARFILE=openssl­fips­
2.0.tar ­f Makefile.fips dist.

Page 16 of 222

User Guide - OpenSSL FIPS Object Module v2.0

PCLMULQDQ an instruction for x86 processors which performs
carry-less multiplication of two 64-bit operands

PGP Pretty Good Privacy, an encrypted E-mail program
PKCS#1 Public-Key Cryptography Standard #1
PKCS#3 Public-Key Cryptography Standard #3
POST Power Up Self Test, an initialization process required

by FIPS 140-2
PRNG Pseudo-Random Number Generator
RNG Random Number Generator
PSS Probabilistic Signature Scheme, a provably secure

way of creating signatures with RSA
RSA Rivest-Shamir-Adleman, a public key cryptographic

algorithm
SHA Secure Hash Algorithm, a cryptographic hash function
SSE2 Streaming SIMD Extension 2, an extension of the x86

instruction set
SSH Secure SHell, a network protocol for secure data

communication
SSL Secure Socket Layer, a predecessor to the TLS

protocol
SSSE3 Supplemental Streaming SIMD Extensions 3, an

extension of the x86 instruction set
Suite B a set of cryptographic algorithms created by the

National Security Agency
TLS Transport Layer Security, a cryptographic protocol

providing communication security over IP connections
VMS Virtual Memory System, an operating system that runs

on VAX, Alpha and Itanium-based families of
computers (now obsolete)

x86 a family of instruction set architectures originally
defined by Intel

XTS XEX Tweakable Block Cipher with Ciphertext
Stealing

XTS-AES a cryptographic algorithm specified in SP 800-38E

2.2 The FIPS Module and Integrity Test

The FIPS Object Module is generated in binary file format, with an embedded pre-calculated
HMAC-SHA-1 digest covering the module8 as it is loaded into application address space. The
Module integrity check consists of recalculating that digest from the memory areas and comparing
it to the embedded value which resides in an area not included in the calculated digest9. This “in-
core hashing” integrity test is designed to be both executable format independent and fail-safe.

8Specifically, the text and read-only data segments which constitute the initialized components of the module.

Page 17 of 222

User Guide - OpenSSL FIPS Object Module v2.0

For this scenario the Module is the text and data segments as mapped into memory for the running
application.

The term Module is also used, less accurately, to designate the antecedent of that memory mapped
code and data, the FIPS Object Module file residing on disk.

The FIPS Object Module is generated from source code, so the integrity of that source must also be
verified. The single runtime digest check typical of pre-built binary files is replaced by a chain of
digest checks in order to validate that the running code was in fact generated from the original
source code. As before the term Module properly designates the text and data segments mapped
into memory, but is also more loosely used to reference several levels of antecedents. These levels
are discussed below.

2.3 The FIPS Integrity Test

The FIPS 140-2 standard requires an integrity test of the Module to verify its integrity at
initialization. In addition to the requirement that the integrity test validate that the FIPS Object
Module code and data have not changed, two additional implicit requirements for the integrity test
were identified during the validation process.

2.3.1 Requirement for Exclusive Integrity Test

An integrity test that is merely guaranteed to fail if any of the cryptographic module software
changes is not sufficient. It is also necessary that the integrity test not fail if the cryptographic
module software is not directly corrupted, even though the application referencing the
cryptographic module may be damaged with unpredictable consequences for the correct
functioning of that application. Another way of looking at this is that as application failures are out
of scope of the integrity test there needs to be some level of assurance that changes to application
software do not affect the cryptographic module integrity test10.

This requirement is met with an in-core integrity test that carefully excludes any extraneous11 object
code from the digest calculation and verification.

2.3.2 Requirement for Fixed Object Code Order

9If the digest value resided in the data area included in the calculation of that digest, the calculated value of the digest
would itself be an input into that calculation.
10This assurance was given by showing during testing that corruption of code or data outside of the memory area
containing the FIPS Object Module did not result in an integrity test failure.
11The definition of what constitutes "extraneous" is not formally specified and thus subject to interpretation.

Page 18 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The relative order of all object code components within the module must be fixed and invariant.
The usual linking process does not care about the relative order of individual object modules, e.g.
both

gcc ­o runfile alpha.o beta.o gamma.o

and

gcc ­o runfile beta.o alpha.o gamma.o

produce functionally identical executable files. Likewise, the order of object modules in a static
link library is irrelevant:

ar r libxxx.a alpha.o beta.o gamma.o

and

ar r libxxx.a beta.o alpha.o gamma.o

produce interchangeable link libraries, and a given application may not incorporate all of the object
modules contained with the link library when resolving references. For the FIPS Object Module it
was required that any such omission or rearrangement of the Module object modules during the
application creation process not occur. This requirement is satisfied by simply compiling all the
source code into a single monolithic object module:

ld ­r ­o fipscanister.o fips_start.o ... fips_end.o

with all the object modules between the fips_start.o and fips_end.o modules that define the
low and high boundaries of a monolithic object module. All subsequent reference to this
monolithic object module will preserve the relative order, and presence, of the original object code
components.

2.4 The File Integrity Chain

Most validated products consisting of a pre-built binary executable implement the module integrity
check as a digest check over portions of that executable file or the corresponding memory mapped
image. For the FIPS Object Module the module integrity check instead takes the form of a chain of
digest checks beginning with the source files used for the CMVP validation testing. Note that
while this chain of checks is more complex, it provides much more visibility for independent
verification compared to the case of validated pre-built binary executables. With the FIPS Object
Module the prospective user can independently verify that the runtime executable does indeed
directly derive from the same source that was the basis of the validation.

2.4.1 Source File (Build Time) Integrity

“Build time” is when the FIPS Object Module is created from the OpenSSL FIPS source
distribution, in accordance with the Security Policy.

Page 19 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The first file integrity check occurs at build time when the HMAC-SHA-1 digest of the distribution
file is calculated and compared to the stored value published in the Security Policy (Appendix B).

Because the source files reside in this specific distribution and cannot be modified these source
files are referred to as sequestered files.

Note that a means to calculate the HMAC-SHA-1 digest is required in order to perform this
integrity check. A “bootstrap” standalone HMAC-SHA-1 utility, fips_standalone_sha1, is
included in the distribution. This utility is generated first before the sequestered files are compiled
in order to perform the integrity check. Appendix C gives an example of an equivalent utility.

2.4.2 Object Module (Link Time) Integrity

“Link time” is when the application is linked with the previously built and installed FIPS Object
Module to generate an executable program.

The build process described in the Security Policy results in the creation of an object module,
fipscanister.o, and a matching digest file, fipscanister.o.sha1. This FIPS Object
Module contains the object code corresponding to the sequestered source files (object code for
FIPS specific functions such as FIPS_mode_set()and for the algorithm implementations).

The link time integrity check occurs when the FIPS Object Module is used to create an application
executable object (binary executable or shared library). The digest stored in the installed file
fipscanister.o.sha1 must match the digest calculated for the fipscanister.o file.

Note that except in the most unusual circumstances the FIPS Object Module itself
(fipscanister.o) is not linked directly with application code. Instead the FIPS Object Module
is embedded in the OpenSSL libcrypto library (libcrypto.a/libcrypto.so) which is then referenced in
the usual way by the application code. That combination is known as a "FIPS capable" OpenSSL
library and is discussed in more detail in section 2.5.

2.4.3 Application Executable Object (Run Time) Integrity

Application “run time” occurs when the previously built and installed application program is
invoked. Unlike the previous step this invocation is usually performed repeatedly.

The runtime integrity check occurs when the application attempts to enable FIPS mode via the
FIPS_mode_set() function call. The digest embedded within the object code from
fipscanister.o must match the digest calculated for the memory mapped text and data areas.

2.5 Relationship to the OpenSSL API

Page 20 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The FIPS Object Module is designed for indirect use via the OpenSSL API. Applications linked
with the "FIPS capable" OpenSSL libraries can use both the FIPS validated cryptographic functions
of the FIPS Object Module and the high level functions of OpenSSL. The FIPS Object Module
should not be confused with OpenSSL library and toolkit or any specific official OpenSSL
distribution release.

A version of the OpenSSL product that is suitable for use with the FIPS Object Module is a FIPS
Compatible OpenSSL.

When the FIPS Object Module and a FIPS compatible OpenSSL are separately built and installed
on a system, with the FIPS Object Module embedded within the OpenSSL library as part of the
OpenSSL build process, the combination is referred to as a FIPS capable OpenSSL.

Summary of definitions

The FIPS Object Module is the FIPS 140-2 validated module described in the Security Policy

A FIPS compatible OpenSSL is a version of the OpenSSL product that is designed for compatibility with
the FIPS Object Module API

A FIPS capable OpenSSL is the combination of the separately installed FIPS Object Module along with a
FIPS compatible OpenSSL.

Table 2.5

The OpenSSL libraries, when built from a standard OpenSSL distribution with the “fips”
configuration option for use with the FIPS Object Module, will contain the usual non-FIPS
algorithms and non-cryptographic supporting functions, and the non-FIPS algorithm disabling
restrictions.

Note that use of individual object modules comprising the monolithic FIPS Object Module is
specifically forbidden by FIPS 140-2 and the CMVP12. In the absence of that restriction the
individual object modules would just be incorporated directly in the OpenSSL libcrypto.a
library. The monolithic FIPS Object Module must be used in its entirely and cannot be edited to
accommodate size constraints.

12Actually, to encourage use of fipscanister.o even in non-FIPS mode applications, a copy is incorporated into
libcrypto.a, but special care is taken to preclude its usage in FIPS enabled applications. The fipsld utility
provided in the FIPS compatible OpenSSL distributions prevents that usage as follows. In static link context that is
achieved by referencing the official fipscanister.o first on the command line., and in dynamic link context by
temporarily removing it from libcrypto.a. This removal is necessary because dynamic linking is commonly
accompanied by –whole­archive, which would force both copies of fipscanister.o into the shared library.
Note the integrity check is designed as a failsafe precaution in the event of link errors -- even if two copies are
included into the application in error, the integrity check will prevent the use of one copy for the integrity test and the
other for the actual implementation of cryptography. In other words, if both the official fipscanister.o and the
unvalidated version that is embedded in libcrypto.a both end up in an executable binary, and if
FIPS_mode_set() returns success, the unvalidated copy will not be used for cryptography.

Page 21 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Various non-FIPS algorithms such as Blowfish, IDEA, CAST, MD2, etc. are included in the
OpenSSL libraries (depending on the ./config options specified in addition to fips). For
applications that do not utilize FIPS 140-2 cryptography, the resulting libraries are drop-in
compatible with the libraries generated without the fips option (a deliberate design decision to
encourage wider availability and use of FIPS 140-2 validated algorithms). The converse is not true:
a non-FIPS OpenSSL library cannot be substituted for the FIPS Compatible library because the
FIPS specific function calls will not be present (such as FIPS_mode_set()).

2.6 FIPS Mode of Operation

Applications that utilize FIPS mode must call the FIPS_mode_set() function. After successful
FIPS mode initialization, the non-FIPS algorithms will be disabled by default.
The FIPS Object Module together with a compatible version of the OpenSSL product can be used
in the generation of both FIPS mode and conventional applications. In this sense, the combination
of the FIPS Object Module and the usual OpenSSL libraries constitutes a “FIPS capable API”, and
provide both FIP approved algorithms and non-FIPS algorithms.

2.6.1 FIPS Mode Initialization

Only one initialization call, FIPS_mode_set(), is required to operate the FIPS Object Module
in a FIPS 140-2 Approved mode, referred to herein as "FIPS mode". When the FIPS Object
Module is in FIPS mode all security functions and cryptographic algorithms are performed in
Approved mode. Use of the FIPS_mode_set() function call is described in §5.

A power-up self-test is performed automatically by the FIPS_mode_set() call, or optionally at
any time by the FIPS_selftest() call (see Appendix D). If any power-up self-test fails the
internal global error flag FIPS_selftest_fail is set and subsequently tested to prevent
invocation of any cryptographic function calls.

The internal global flag FIPS_mode is set to FALSE indicating non-FIPS mode by default. The
FIPS_mode_set() function verifies the integrity of the runtime executable using a HMAC-
SHA-1 digest computed at build time. If the digests match, the power-up self-test is then
performed. If the power-up self-test is successful FIPS_mode_set() sets the FIPS_mode flag
to TRUE and the FIPS Object Module is in FIPS mode.

2.6.2 Algorithms Available in FIPS Mode

Only the algorithms listed in tables 4a and 4b of the Security Policy are allowed in FIPS mode.
Note that Diffie-Hellman and RSA are allowed in FIPS mode for key agreement and key
establishment even though they are “Non-Approved” for that purpose. RSA for sign and verify is
“Approved” and hence also allowed, along with all the other Approved algorithms listed in that
table.

Page 22 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The OpenSSL library attempts to disable non-FIPS algorithms. when in FIPS mode. The disabling
occurs on the EVP_* APIs and most low level function calls. Failure to check the return code
from low level functions could result in unexpected behavior. Note also that sufficiently creative or
unusual use of the API may still allow the use of non-FIPS algorithms. The non-FIPS algorithm
disabling is intended as an aid to the developer in preventing the accidental use of non-FIPS
algorithms in FIPS mode, and not as an absolute guarantee. It is the responsibility of the application
developer to ensure that only FIPS algorithms are used when in FIPS mode.

OpenSSL provides mechanisms for interfacing with external cryptographic devices, such as
accelerator cards, via “ENGINES.” This mechanism is not disabled in FIPS mode. In general, if a
FIPS validated cryptographic device is used with OpenSSL in FIPS mode so that all cryptographic
operations are performed either by the device or the FIPS Object Module, then the result is still
FIPS validated cryptography.

However, if any cryptographic operations are performed by a non-FIPS validated device, the result
is use of non-validated cryptography. It is the responsibility of the application developer to ensure
that ENGINES used during FIPS mode of operation are also FIPS validated.

2.7 Revisions of the 2.0 Module

Existing FIPS 140-2 validations can be retroactively modified, within defined limits, via the
"maintenance letter" or "change letter" process. Change letter modifications are typically done to
correct minor "non-cryptographically significant" bugs or, most commonly, to add support for new
platforms. Change letter actions are usually less expensive and faster than a full validation; and are
an attractive option to the software vendor desiring to use the FIPS module for a platform not
currently covered by the validation.

Several change letter modifications were in process prior to the formal award of the initial
OpenSSL FIPS Object Module v2.0 validation. More change letters are anticipated over the
lifetime of the validation. For all past validations we have always been careful to introduce any
changes in a way that will not impact any previously tested platforms, so that the most recent
revision of the module can be used for new deployments on any platform.

The history of new revisions include:

2.0.1 Addition of Apple iOS 5.1 on ARMv7
2.0.1 Addition of WinCE 5.0 on ARMv7
2.0.1 Addition of Linux 2.6 on PowerPC32-e500 (PPC)
2.0.1 Addition of DSP Media Framework 1.4 on TI C64x+
2.0.1 Addition of WinCE 6.0 on ARMv7
2.0.1 Addition of Android 4.0 on OMAP 3 (ARMv7)
2.0.2 Addition of NetBSD 5.1 on PowerPC32-e500 (PPC)

Page 23 of 222

User Guide - OpenSSL FIPS Object Module v2.0

2.0.2 Addition of NetBSD 5.1 on Intel Xeon 5500 (x86)
2.0.3 Addition of Win2008 on Xeon E3-1220v2 (x86)
2.0.3 Addition of RHEL 32/64 bit on Xeon E3-1220v2 (x86) under vSphere
2.0.3 Addition of Win7 on Intel Core i5-2430M (x86) with AES-NI
2.0.3 Addition of Android 4.1/4.2 on Nvidia Tegra 3 (ARMv7) with/without NEON
2.0.3 Addition of WinEC7 on Freescale i.MX53xD (ARMv7) with/without NEON
2.0.3 Addition of Android 4.0 on Qualcomm Snapdragon APQ8060 (ARMv7)
2.0.3 Addition of VMware Horizon Module on Qualcomm MSM8X60 (ARMv7)
2.0.3 Addition of Apple OS X 10.7 on Intel Core i7-3615QM (x86)
2.0.3 Addition of Apple iOS 5.0 on ARM Cortex A8 (ARMv7)
2.0.4 Addition of OpenWRT 2.6 on MIPS 24Kc
2.0.5 Addition of QNX 6.4 on Freescale i.MX25 (ARMv4)
2.0.5 Addition of Apple iOS 6.1 on Apple A6X SoC (ARMv7s)
2.0.5 Addition of eCos 3 on Freescale i.MX27 926ejs (ARMv5TEJ)
2.0.5 Addition of VMware Horizon Workspace 1.5 under vSphere on Intel Xeon E3-1220

(x86) with/without AES-NI
2.0.5 Addition of Ubuntu 13.04 on AM335x Cortex-A8 (ARMv7) with/without NEON
2.0.5 Addition of Linux 3.8 on ARM926 (ARMv5TEJ)
2.0.5 Addition of Linux 3.4 under Citrix XenServer on Intel Xeon E5-2430L (x86)

with/without AES-NI
2.0.5 Addition of Linux 3.4 under VMware ESX on Intel Xeon E5-2430L (x86)

with/without AES-NI
2.0.5 Addition of Linux 3.4 under Microsoft Hyper-V on Intel Xeon E5-2430L (x86)

with/without AES-NI
2.0.5 Addition of Apple iOS 6.0 on Apple A5 / ARM Cortex-A9 with/without NEON
2.0.6 Removal of Dual EC DRBG (no platforms)
2.0.7 Addition of Linux 2.6 on Freescale e500v2 (PPC)
2.0.7 Addition of AcanOS 1.0 on Intel Core i7-3612QE (x86)
2.0.7 Addition of AcanOS 1.0 on Intel Core i7-3612QE (x86) with AES-NI
2.0.7 Addition of AcanOS 1.0 on Feroceon 88FR131 (ARMv5)
2.0.7 Addition of FreeBSD 8.4 on Intel Xeon E5440 (x86)
2.0.7 Addition of FreeBSD 9.1 on Xeon E5-2430L (x86)
2.0.7 Addition of FreeBSD 9.1 on Xeon E5-2430L (x86) with AES-NI
2.0.7 Addition of ArbOS 5.3 on Xeon E5645 (x86)
2.0.7 Addition of Linux ORACLESP 2.6 on ASPEED AST2100 (ARMv5)
2.0.7 Addition of Linux ORACLESP 2.6 on ServerEngines PILOT3 (ARMv5)
2.0.8 Addition of Linux ORACLESP 2.6 on ASPEED AST-Series (ARMv5)
2.0.8 Addition of Linux ORACLESP 2.6 on Emulex PILOT 3 (ARMv5)
2.0.8 Addition of FreeBSD 9.2 on Xeon E5-2430L (x86) with-without AES-NI
2.0.8 Addition of FreeBSD 10.0 on Xeon E5-2430L (x86) with/without AES-NI
2.0.8 Addition of FreeBSD 8.4 32-bit on Xeon E5440 (x86)
2.0.9 Addition of VMware Horizon Workspace 2.1 x86 under vSphere ESXi 5.5 on Intel

Xeon E3-1220 (x86) with/without AES-NI

Page 24 of 222

User Guide - OpenSSL FIPS Object Module v2.0

2.0.9 Addition of QNX 6.5 on ARMv4 Freescale i.MX25 (ARMv4)
2.0.9 Addition of Apple iOS 7.1 64-bit on ARMv8 Apple A7 (ARMv8) with/without

NEON
2.0.9 Addition of TS-Linux 2.4 on ARMv4
2.0.10 Addition of iOS 8.1 64-bit on Apple A7 (ARMv8) with/without NEON and Crypto

Extensions
2.0.10 Addition of VxWorks 6.9 on Freescale P2020 (PPC)
2.0.10 Addition of iOS 8.1 32-bit on Apple A7 (ARMv8) with/without NEON
2.0.10 Addition of Android 5.0 32-bit on Qualcomm APQ8084 (ARMv7) with/without

NEON
2.0.10 Addition of Android 5.0 64-bit on SAMSUNG Exynos7420 (ARMv8) with/without

NEON and Crypto Extensions
2.0.11 Addition of VxWorks 6.7 on Intel Core 2 Duo (x86)
2.0.11 Addition of AIX 6.1 32bit Power 7 (PPC)
2.0.11 Addition of AIX 6.1 64bit Power 7 (PPC)
2.0.11 Addition of AIX 7.1 32bit Power 7 (PPC)
2.0.11 Addition of AIX 7.1 64bit Power 7 (PPC)
2.0.11 Addition of DataGravity Discovery Series OS V2.0 Intel Xeon E52420 (x86)

with/without AES_NI
2.0.11 Addition of AIX 6.1 32bit Power 7 (PPC) with/without optimizations
2.0.11 Addition of Ubuntu 12.04 Intel Xeon E52430L (x86) with/without AES-NI
2.0.12 Addition of Linux 3.10 Intel Atom E3845 (x86) with/without AES-NI

Revisions 2.0.6 and 2.0.7 constitute an unfortunate perversity. The 2.0.6 revision removed the Dual
EC DRBG implementation which at the time of submission of the official paperwork (Maintenance
Letter) on January 20, 2014 had already been officially repudiated by NIST. However, approval of
the 2.0.6 revision languished for more than six months. In the meantime eleven13 new platforms
were tested using the most recent officially approved revision, 2.0.5, plus platform specific
modifications, resulting in revision 2.0.7 which still included the Dual EC DRBG revision14. The
official paperwork for the 2.0.7 revision was submitted months after 2.0.6 but both revisions were
approved with the span of a single week, with the preverse result that the 2.0.7 revision of the
OpenSSL FIPS Object Module still contained the deprecated and disgraced Dual EC DRBG. It was
again (and permanently) removed with revision 2.0.8.

Note that 2.0.10 will be the last revision for the #1747 validation, due to the risk of a new "hostage"
situation (see http://openssl.com/fips/aftermath.html).

13Only ten new platforms acually appeared with the 2.0.7 revision due to an unexplained "paperwork error" at the
CAVP which required repeating some of the algorithm tests for the eleventh platform which was thus omitted from the
2.0.7 revision. The eleventh platform will be included in a future revision.
14Approval of the removal of Dual EC DRBG implementation was far from certain; several interested parties including
one accredited test lab were absolutely certain it would not be permitted. While that issue was pending we did not want
to put the eleven new platforms at risk by testing on a revision that omitted Dual EC DRBG. As it was the unfortunate
sponsors of those new platforms had to wait up to six months for final official approval.

Page 25 of 222

http://openssl.com/fips/aftermath.html

User Guide - OpenSSL FIPS Object Module v2.0

2.8 Prior FIPS Object Modules
The 2.0 version of the FIPS Object Module is the latest in a series of open source based validated
modules derived from the OpenSSL product. As with those prior modules this version is delivered
in source code form and results in a statically linked object module.

There are some differences with respect to the previous version 1.2.x series of modules which have
been widely used, both directly as validated for certificate #1051, and indirectly as models for
separate "private label" validation. Some of the key differences are:

1. The source code distribution for the 1.2.x FIPS modules was a modified OpenSSL
distribution that contained a considerable amount of code superfluous to the generation of
the FIPS module. The 2.0 FIPS module is provided in a separate dedicated source
distribution containing far less extraneous code.

2. The 1.2.x FIPS modules were compatible only with the "FIPS capable" 0.9.8 baseline. The
2.0 FIPS module is compatible with the "FIPS capable" 1.0.1/1.0.2 baseline, but will not
remain usable with future OpenSSL versions (1.1.0 and later).

3. The 2.0 FIPS module has a significantly faster POST performance. The slow POST for the
1.2.x modules was a significant impediment to use on some low-powered processors.

4. The 2.0 FIPS module contains several additional cryptographic algorithms, including all of
Suite B.

5. The 2.0 FIPS module more directly accommodates cross-compilation, as both native and
cross-compilation now use the same technique for determining the module integrity digest
at build time.

2.9 Future FIPS Object Modules

The open source based OpenSSL FIPS Object Module validations are difficult and expensive, and
as a result have been done infrequently. The long intervals between validations compound the
difficulty of obtaining each new validation:

1. The companion OpenSSL product changes significantly, requiring significant rework to
both that product and the new FIPS module for the "FIPS capable" functionality;

2. A number of new and relatively untried algorithm tests are introduced by the CAVP;

3. New validation requirements are introduced by the CMVP.

The result is a vicious cycle: the new validation takes much more effort and time, during which
these factors continue to mount (the CMVP can and does introduce new requirements in the course

Page 26 of 222

User Guide - OpenSSL FIPS Object Module v2.0

of an ongoing validation). That cost and difficulty becomes an intimidating factor for planning, and
soliciting funding and/or collaboration for, the next validation.

In order to try and bypass this cycle the OSF would like to perform open source based validations
more frequently, ideally as often as the interval required to obtain a validation which is about a
year. That would mean that at any point in time there will be a relatively current completed
validation and a new validation in process. New features or modifications that would adversely
impact the ongoing validation can then be deferred to the next upcoming one. New requirements
and algorithm tests can be addressed a few at a time instead of all at once in a huge onslaught.

Potential sponsors of such an effort are welcome, and are invited to contact OSF to express their
interest.

2.10 Clone Validations

Section G.8 of the Implementation Guidance document (reference 3) defines an odd type of clone
or copycat validation, the "Alternative Scenario 1A" or "Alternative Scenario 1B" validation.
Basically these clone validations allow a vendor to copy an existing validation with minimal
cosmetic changes. Since most validated cryptographic modules are based on proprietary software,
such clone validations are most feasible for copying the validations based on open source licensed
modules, which is to say the OpenSSL FIPS Object Module validations.

And indeed a number of vendors have taken advantage of the Alternative Scenario 1A/1B
provision to create clone validations. These validations are often referred to as "re-brands" by the
test labs, as they basically consist of changing the title page of the Security Policy document and
supplying a proprietary brand name for what is still the OpenSSL FIPS Object Module software.

The known clone validations15 are:

Validation

#

Rebranded Module Name Module

Revision(s)

Notes

2631 Intel OpenSSL FIPS Object Module 2.0.5, 2.0.8 1

2575 Cellcrypt Secure Core 3 FIPS 140-2 Module 2.0.10

2473 OpenSSL FIPS Object Module 2

2454 LogRhythm FIPS Object Module Version 6.3.4 2.0.9 and prior

2422 Nimble Storage OpenSSL FIPS Object Module 2.0.9 and prior 1

2412 CellTrust Cryptographic Module (CTCM) 2.0.5

2398 OpenSSL FIPS Object Module 2

15Known and currently valid; a number of clone validation were delisted by the RNG transition of January 2016.

Page 27 of 222

User Guide - OpenSSL FIPS Object Module v2.0

2391 HP TippingPoint Crypto Core OpenSSL 2.0.8

2096 WatchDox® CryptoModule unknown 3

1747 OpenSSL FIPS Object Module

Note 1: the use of the OpenSSL name conflicts with the OpenSSL license and trademark. OpenSSL currently
lacks the financial and legal resources to pursue such violations, which are regretably common. The preferred
term for a third party product based on OpenSSL is "...for OpenSSL", as in "AcmeCo FIPS Object Module for
OpenSSL".

Note 2: these two clone validations were done by OpenSSL, for reasons too tediously and perversely dreary to
permit succinct explanation here. For background see the "hostage" situation trilogy concluding with the
dicsussion at http://openssl.com/fips/aftermath.html.

Note 3: this validation is clearly based on the OpenSSL FIPS Object Module, but the reference revision is
unknown and the Security Policy omits any mention of OpenSSL, the module tarball, or the secure
distribution requirement imposed on other OpenSSL related validations.

Since these clone validations are based on the same OpenSSL Object Module software, which is
available under a no-cost open source license, the formally tested platforms ("Operational
Environments") for these clone validations are available for use by anyone. Some of the clone
validations merely copy platforms from the original OpenSSL FIPS Object Module validations, but
some add new platforms.

Thus, the list of formally tested platforms for the prospective user of the OpenSSL FIPS Object
Module is the union of all platforms for the original #1747 validation plus all clone validations.
This union is shown in the following table (current as of May 10, 2016 and subject to change).
Note this table was constructed from the platform descriptions as shown on the NIST CMVP web
site (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm), and those
descriptions have been known to contain errors.

This table has 346 entries, of which only 178 are unique due to duplication among multiple
validations.

IMPORTANT NOTE: the latest revision of the OpenSSL FIPS Object Module, for any validation,
will build and execute correctly for any platform in this table (e.g. revision 2.0.13 form openssl-
fips-2.0.12.tar.gz). This is because each successive revision is carefully designed to retain full
support for all previously formally tested platforms. However, any given platform in this table may
not be righteous with respect to FIPS 140-2, as it may only be listed in a validation than names
module revision(s) earlier than the most current revision. So, be sure to check each of the
validation(s) listed for the platform of interest to be sure the module revision you are using is listed
by at least one of those validations. If not you will need to regress to an earlier revision even though
the module build from the later revision is fully functionally equivalent.

Page 28 of 222

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://openssl.com/fips/aftermath.html

User Guide - OpenSSL FIPS Object Module v2.0

Platform Validation

Page 29 of 222

User Guide - OpenSSL FIPS Object Module v2.0

AcanOS 1.0 running on Feroceon 88FR131 (ARMv5) (gcc Compiler Version 4.5.3) 1747

AcanOS 1.0 running on Feroceon 88FR131 (ARMv5) (gcc Compiler Version 4.5.3) 2391

AcanOS 1.0 running on Feroceon 88FR131 (ARMv5) (gcc Compiler Version 4.5.3) 2454

AcanOS 1.0 running on Intel Core i7-3612QE (x86) with AES-NI (gcc Compiler Version 4.6.2) 1747

AcanOS 1.0 running on Intel Core i7-3612QE (x86) with AES-NI (gcc Compiler Version 4.6.2) 2391

AcanOS 1.0 running on Intel Core i7-3612QE (x86) with AES-NI (gcc Compiler Version 4.6.2) 2454

AcanOS 1.0 running on Intel Core i7-3612QE (x86) without AES-NI (gcc Compiler Version 4.6.2) 1747

AcanOS 1.0 running on Intel Core i7-3612QE (x86) without AES-NI (gcc Compiler Version 4.6.2) 2391

AcanOS 1.0 running on Intel Core i7-3612QE (x86) without AES-NI (gcc Compiler Version 4.6.2) 2454

AIX 6.1 32-bit running on IBM POWER 7 (PPC) (IBM XL C/C++ for AIX Compiler Version V13.1) 2398

AIX 6.1 32-bit running on IBM POWER 7 (PPC) with optimizations (IBM XL C/C++ for AIX
Compiler Version V10.1)

2398

AIX 6.1 64-bit running on IBM POWER 7 (PPC) (IBM XL C/C++ for AIX Compiler Version V13.1) 2398

AIX 6.1 64-bit running on IBM POWER 7 (PPC) with optimizations (IBM XL C/C++ for AIX
Compiler Version V10.1)

2398

AIX 7.1 32-bit running on IBM POWER 7 (PPC) (IBM XL C/C++ for AIX Compiler Version V13.1) 2398

AIX 7.1 64-bit running on IBM POWER 7 (PPC) (IBM XL C/C++ for AIX Compiler Version V13.1) 2398

Android 2.2 (gcc Compiler Version 4.4.0) 2391

Android 2.2 running on OMAP 3530 (ARMv7) with NEON (gcc Compiler Version 4.1.0) 1747

Android 2.2 running on OMAP 3530 (ARMv7) with NEON (gcc Compiler Version 4.1.0) 2391

Android 2.2 running on OMAP 3530 (ARMv7) with NEON (gcc Compiler Version 4.1.0) 2454

Android 2.2 running on Qualcomm QSD8250 (ARMv7) with NEON (gcc Compiler Version 4.4.0) 1747

Android 2.2 running on Qualcomm QSD8250 (ARMv7) with NEON (gcc Compiler Version 4.4.0) 2391

Android 2.2 running on Qualcomm QSD8250 (ARMv7) with NEON (gcc Compiler Version 4.4.0) 2454

Android 2.2 running on Qualcomm QSD8250 (ARMv7) without NEON (gcc Compiler Version 4.4.0) 1747

Android 2.2 running on Qualcomm QSD8250 (ARMv7) without NEON (gcc Compiler Version 4.4.0) 2454

Android 3.0 (gcc Compiler Version 4.4.0) 2391

Android 3.0 running on NVIDIA Tegra 250 T20 (ARMv7) (gcc Compiler Version 4.4.0) 1747

Android 3.0 running on NVIDIA Tegra 250 T20 (ARMv7) (gcc Compiler Version 4.4.0) 2454

Android 4.0 (gcc Compiler Version 4.4.3) 2391

Android 4.0 running on NVIDIA Tegra 250 T20 (ARMv7) (gcc Compiler Version 4.4.3) 1747

Android 4.0 running on NVIDIA Tegra 250 T20 (ARMv7) (gcc Compiler Version 4.4.3) 2454

Android 4.0 running on Qualcomm Snapdragon APQ8060 (ARMv7) with NEON (gcc compiler
Version 4.4.3)

1747

Android 4.0 running on Qualcomm Snapdragon APQ8060 (ARMv7) with NEON (gcc compiler
Version 4.4.3)

2391

Page 30 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Android 4.0 running on Qualcomm Snapdragon APQ8060 (ARMv7) with NEON (gcc compiler
Version 4.4.3)

2454

Android 4.0 running on TI OMAP 3 (ARMv7) with NEON (gcc Compiler Version 4.4.3) 1747

Android 4.0 running on TI OMAP 3 (ARMv7) with NEON (gcc Compiler Version 4.4.3) 2391

Android 4.0 running on TI OMAP 3 (ARMv7) with NEON (gcc Compiler Version 4.4.3) 2454

Android 4.1 running on TI DM3730 (ARMv7) (gcc Compiler Version 4.6) 2391

Android 4.1 running on TI DM3730 (ARMv7) with NEON (gcc Complier Version 4.6) 1747

Android 4.1 running on TI DM3730 (ARMv7) with NEON (gcc Complier Version 4.6) 2391

Android 4.1 running on TI DM3730 (ARMv7) with NEON (gcc Complier Version 4.6) 2454

Android 4.1 running on TI DM3730 (ARMv7) without NEON (gcc Compiler Version 4.6) 1747

Android 4.1 running on TI DM3730 (ARMv7) without NEON (gcc Compiler Version 4.6) 2454

Android 4.2 running on Nvidia Tegra 3 (ARMv7) (gcc Compiler Version 4.6) 2391

Android 4.2 running on Nvidia Tegra 3 (ARMv7) with NEON (gcc Compiler Version 4.6) 1747

Android 4.2 running on Nvidia Tegra 3 (ARMv7) with Neon (gcc Compiler Version 4.6) 2391

Android 4.2 running on Nvidia Tegra 3 (ARMv7) with NEON (gcc Compiler Version 4.6) 2454

Android 4.2 running on Nvidia Tegra 3 (ARMv7) without NEON (gcc Compiler Version 4.6) 1747

Android 4.2 running on Nvidia Tegra 3 (ARMv7) without NEON (gcc Compiler Version 4.6) 2454

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) with NEON (gcc Compiler Version
4.9)

1747

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) with NEON (gcc Compiler Version
4.9)

2398

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) with NEON (gcc Compiler Version
4.9)

2473

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) with NEON (gcc Compiler Version
4.9)

2575

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) without NEON (gcc Compiler Version
4.9)

1747

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) without NEON (gcc Compiler Version
4.9)

2398

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) without NEON (gcc Compiler Version
4.9)

2473

Android 5.0 32-bit running on Qualcomm APQ8084 (ARMv7) without NEON (gcc Compiler Version
4.9)

2575

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) with NEON and Crypto Extensions
(gcc Compiler Version 4.9)

1747

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) with NEON and Crypto Extensions
(gcc Compiler Version 4.9)

2398

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) with NEON and Crypto Extensions
(gcc Compiler Version 4.9)

2473

Page 31 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) with NEON and Crypto Extensions
(gcc Compiler Version 4.9)

2575

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) without NEON and Crypto
Extensions (gcc Compiler Version 4.9)

1747

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) without NEON and Crypto
Extensions (gcc Compiler Version 4.9)

2398

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) without NEON and Crypto
Extensions (gcc Compiler Version 4.9)

2473

Android 5.0 64-bit running on SAMSUNG Exynos7420 (ARMv8) without NEON and Crypto
Extensions (gcc Compiler Version 4.9)

2575

Apple iOS 5.0 running on ARM Cortex A8 (ARMv7) with NEON (gcc Compiler Version 4.2.1) 1747

Apple iOS 5.0 running on ARM Cortex A8 (ARMv7) with NEON (gcc Compiler Version 4.2.1) 2391

Apple iOS 5.0 running on ARM Cortex A8 (ARMv7) with NEON (gcc Compiler Version 4.2.1) 2454

Apple iOS 5.1 (gcc Compiler Version 4.2.1) 2391

Apple iOS 5.1 running on ARMv7 (gcc Compiler Version 4.2.1) 1747

Apple iOS 5.1 running on ARMv7 (gcc Compiler Version 4.2.1) 2454

Apple iOS 6.1 running on Apple A6X SoC (ARMv7s) (gcc Compiler Version 4.2.1) 1747

Apple iOS 6.1 running on Apple A6X SoC (ARMv7s) (gcc Compiler Version 4.2.1) 2391

Apple iOS 6.1 running on Apple A6X SoC (ARMv7s) (gcc Compiler Version 4.2.1) 2454

Apple iOS 7.1 64-bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 5.1) 1747

Apple iOS 7.1 64-bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 5.1) 2454

Apple iOS 7.1 64-bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 5.1) 2575

Apple iOS 7.1 64- bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 5.1) 1747

Apple iOS 7.1 64- bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 5.1) 2454

Apple iOS 7.1 64- bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 5.1) 2575

Apple OS X 10.7 running on Intel Core i7-3615QM (Apple LLVM version 4.2) 1747

Apple OS X 10.7 running on Intel Core i7-3615QM (Apple LLVM version 4.2) 2391

Apple OS X 10.7 running on Intel Core i7-3615QM (Apple LLVM version 4.2) 2454

Apple OS X 10.7 running on Intel Core i7-3615QM (Apple LLVM version 4.2) 2575

ArbOS 5.3 running on Xeon E5645 (x86) with AES-NI (gcc Compiler Version 4.1.2) 1747

ArbOS 5.3 running on Xeon E5645 (x86) with AES-NI (gcc Compiler Version 4.1.2) 2391

ArbOS 5.3 running on Xeon E5645 (x86) with AES-NI (gcc Compiler Version 4.1.2) 2454

ArbOS 5.3 running on Xeon E5645 (x86) without AES-NI (gcc Compiler Version 4.1.2) 1747

ArbOS 5.3 running on Xeon E5645 (x86) without AES-NI (gcc Compiler Version 4.1.2) 2391

ArbOS 5.3 running on Xeon E5645 (x86) without AES-NI (gcc Compiler Version 4.1.2) 2454

CascadeOS 6.1 (32 bit) (gcc Compiler Version 4.4.5) 2391

CascadeOS 6.1 (32 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.4.5) 1747

Page 32 of 222

User Guide - OpenSSL FIPS Object Module v2.0

CascadeOS 6.1 (32 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.4.5) 2454

CascadeOS 6.1 (64 bit) (gcc Compiler Version 4.4.5) 2391

CascadeOS 6.1 (64 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.4.5) 1747

CascadeOS 6.1 (64 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.4.5) 2454

CentOS 5.6 64-bit running on Intel Xeon E5-2620v3 (gcc Compiler Version 4.1.2) 2391

CentOS 5.6 64-bit running on Intel Xeon E5-2690v3 (gcc Compiler Version 4.1.2) 2391

DataGravity Discovery Series OS V2.0 running on Intel Xeon E5-2420 (x86) with AES-NI (gcc
Compiler Version 4.7.2)

2398

DataGravity Discovery Series OS V2.0 running on Intel Xeon E5-2420 (x86) without AES-NI (gcc
Compiler Version 4.7.2)

2398

DSP Media Framework 1.4 running on TI C64x+ (TMS320C6x C/C++ Compiler v6.0.13) 1747

DSP Media Framework 1.4 running on TI C64x+ (TMS320C6x C/C++ Compiler v6.0.13) 2454

DSP Media Framework 1.4 (TMS320C6x C/C++ Compiler v6.0.13) 2391

eCos 3 running on Freescale i.MX27 926ejs (ARMv5TEJ) (gcc Compiler Version 4.3.2) 1747

eCos 3 running on Freescale i.MX27 926ejs (ARMv5TEJ) (gcc Compiler Version 4.3.2) 2391

eCos 3 running on Freescale i.MX27 926ejs (ARMv5TEJ) (gcc Compiler Version 4.3.2) 2454

Fedora 14 running on Intel Core i5 with AES-NI (gcc Compiler Version 4.5.1) 1747

Fedora 14 running on Intel Core i5 with AES-NI (gcc Compiler Version 4.5.1) 2391

Fedora 14 running on Intel Core i5 with AES-NI (gcc Compiler Version 4.5.1) 2454

Fedora 14 running on Intel Core i5 with AES-NI (gcc Compiler Version 4.5.1) 2575

FreeBSD 10.0 running on Xeon E5- 2430L (x86) with AES-NI (clang Compiler Version 3.3) 1747

FreeBSD 10.0 running on Xeon E5-2430L (x86) with AES-NI (clang Compiler Version 3.3) 2391

FreeBSD 10.0 running on Xeon E5- 2430L (x86) with AES-NI (clang Compiler Version 3.3) 2454

FreeBSD 10.0 running on Xeon E5- 2430L (x86) with AES-NI (clang Compiler Version 3.3) 2575

FreeBSD 10.0 running on Xeon E5-2430L (x86) without AES-NI (clang Compiler Version 3.3) 1747

FreeBSD 10.0 running on Xeon E5-2430L (x86) without AES-NI (clang Compiler Version 3.3) 2391

FreeBSD 10.0 running on Xeon E5-2430L (x86) without AES-NI (clang Compiler Version 3.3) 2454

FreeBSD 10.0 running on Xeon E5-2430L (x86) without AES-NI (clang Compiler Version 3.3) 2575

FreeBSD 10.2 running on Intel Xeon E5-2430L (x86) with AES-NI (clang Compiler Version 3.4.1) 2473

FreeBSD 10.2 running on Intel Xeon E5-2430L (x86) without AES-NI (clang Compiler Version 3.4.1) 2473

FreeBSD 8.4 running on Intel Xeon E5440 (x86) 32-bit (gcc Compiler Version 4.2.1) 1747

FreeBSD 8.4 running on Intel Xeon E5440 (x86) 32-bit (gcc Compiler Version 4.2.1) 2391

FreeBSD 8.4 running on Intel Xeon E5440 (x86) 32-bit (gcc Compiler Version 4.2.1) 2454

FreeBSD 8.4 running on Intel Xeon E5440 (x86) without AESNI (gcc Compiler Version 4.2.1) 1747

FreeBSD 8.4 running on Intel Xeon E5440 (x86) without AES-NI (gcc Compiler Version 4.2.1) 2391

FreeBSD 8.4 running on Intel Xeon E5440 (x86) without AESNI (gcc Compiler Version 4.2.1) 2454

Page 33 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FreeBSD 9.1 running on Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.2.1) 1747

FreeBSD 9.1 running on Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.2.1) 2391

FreeBSD 9.1 running on Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.2.1) 2454

FreeBSD 9.1 running on Xeon E5-2430L (x86) without AESNI (gcc Compiler Version 4.2.1) 1747

FreeBSD 9.1 running on Xeon E5-2430L (x86) without AES-NI (gcc Compiler Version 4.2.1) 2391

FreeBSD 9.1 running on Xeon E5-2430L (x86) without AESNI (gcc Compiler Version 4.2.1) 2454

FreeBSD 9.2 running on Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.2.1) 1747

FreeBSD 9.2 running on Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.2.1) 2391

FreeBSD 9.2 running on Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.2.1) 2454

FreeBSD 9.2 running on Xeon E5-2430L (x86) without AES-NI (gcc Compiler Version 4.2.1) 1747

FreeBSD 9.2 running on Xeon E5-2430L (x86) without AES-NI (gcc Compiler Version 4.2.1) 2391

FreeBSD 9.2 running on Xeon E5-2430L (x86) without AES-NI (gcc Compiler Version 4.2.1) 2454

HP-UX 11i (32 bit) (HP C/aC++ B3910B) 2391

HP-UX 11i (32 bit) running on Intel Itanium 2 (HP C/aC++ B3910B) 1747

HP-UX 11i (32 bit) running on Intel Itanium 2 (HP C/aC++ B3910B) 2454

HP-UX 11i (64 bit) (HP C/aC++ B3910B) 2391

HP-UX 11i (64 bit) running on Intel Itanium 2 (HP C/aC++ B3910B) 1747

HP-UX 11i (64 bit) running on Intel Itanium 2 (HP C/aC++ B3910B) 2454

iOS 6.0 running on Apple A5 / ARM Cortex-A9 (ARMv7) with NEON (gcc Compiler Version 4.2.1) 1747

iOS 6.0 running on Apple A5 / ARM Cortex-A9 (ARMv7) with NEON (gcc Compiler Version 4.2.1) 2391

iOS 6.0 running on Apple A5 / ARM Cortex-A9 (ARMv7) with NEON (gcc Compiler Version 4.2.1) 2454

iOS 6.0 running on Apple A5 / ARM Cortex-A9 (ARMv7) without NEON (gcc Compiler Version
4.2.1)

1747

iOS 6.0 running on Apple A5 / ARM Cortex-A9 (ARMv7) without NEON (gcc Compiler Version
4.2.1)

2391

iOS 6.0 running on Apple A5 / ARM Cortex-A9 (ARMv7) without NEON (gcc Compiler Version
4.2.1)

2454

iOS 8.1 32-bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 600.0.56) 1747

iOS 8.1 32bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 600.0.56) 2398

iOS 8.1 32-bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 600.0.56) 2473

iOS 8.1 32-bit running on Apple A7 (ARMv8) with NEON (clang Compiler Version 600.0.56) 2575

iOS 8.1 32-bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 600.0.56) 1747

iOS 8.1 32bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 600.0.56) 2398

iOS 8.1 32-bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 600.0.56) 2473

iOS 8.1 32-bit running on Apple A7 (ARMv8) without NEON (clang Compiler Version 600.0.56) 2575

iOS 8.1 64-bit running on Apple A7 (ARMv8) with NEON and Crypto Extensions (clang Compiler 1747

Page 34 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Version 600.0.56)

iOS 8.1 64bit running on Apple A7 (ARMv8) with NEON and Crypto Extensions (clang Compiler
Version 600.0.56)

2398

iOS 8.1 64-bit running on Apple A7 (ARMv8) with NEON and Crypto Extensions (clang Compiler
Version 600.0.56)

2473

iOS 8.1 64-bit running on Apple A7 (ARMv8) with NEON and Crypto Extensions (clang Compiler
Version 600.0.56)

2575

iOS 8.1 64bit running on Apple A7 (ARMv8) without NEON and Crypto Extensions (clang Compiler
Version 600.0.56)

2398

iOS 8.1 64-bit running on Apple A7 (ARMv8) without NEON and Crypto Extensions (clang Compiler
Version 600.0.56)

2473

iOS 8.1 64-bit running on Apple A7 (ARMv8) without NEON and Crypto Extensions (clang Compiler
Version 600.0.56)

2575

iOS 8.1 64-bit running on Apple A7 (ARMv8) without NEON and Crypto Extensions (clang
Compilerv Version 600.0.56)

1747

Linux 2.6.27 (gcc Compiler Version 4.2.4) 2391

Linux 2.6.27 running on PowerPC e300c3 (gcc Compiler Version 4.2.4) 1747

Linux 2.6.27 running on PowerPC e300c3 (gcc Compiler Version 4.2.4) 2454

Linux 2.6.32 (gcc Compiler Version 4.3.2) 2391

Linux 2.6.32 running on TI AM3703CBP (ARMv7) (gcc Compiler Version 4.3.2) 1747

Linux 2.6.32 running on TI AM3703CBP (ARMv7) (gcc Compiler Version 4.3.2) 2454

Linux 2.6.33 (gcc Compiler Version 4.1.0) 2391

Linux 2.6.33 running on PowerPC32 e300 (gcc Compiler Version 4.1.0) 1747

Linux 2.6.33 running on PowerPC32 e300 (gcc Compiler Version 4.1.0) 2454

Linux 2.6 (gcc Compiler Version 4.1.0) 2391

Linux 2.6 (gcc Compiler Version 4.3.2) 2391

Linux 2.6 running on a Nimble Storage CS300 with AES-NI 2422

Linux 2.6 running on a Nimble Storage CS500 with AES-NI 2422

Linux 2.6 running on a Nimble Storage CS700 with AES-NI 2422

Linux 2.6 running on Broadcom BCM11107 (ARMv6) (gcc Compiler Version 4.3.2) 1747

Linux 2.6 running on Broadcom BCM11107 (ARMv6) (gcc Compiler Version 4.3.2) 2454

Linux 2.6 running on Freescale e500v2 (PPC) (gcc Compiler Version 4.4.1) 1747

Linux 2.6 running on Freescale e500v2 (PPC) (gcc Compiler Version 4.4.1) 2391

Linux 2.6 running on Freescale e500v2 (PPC) (gcc Compiler Version 4.4.1) 2454

Linux 2.6 running on Freescale PowerPCe500 (gcc Compiler Version 4.1.0) 1747

Linux 2.6 running on Freescale PowerPCe500 (gcc Compiler Version 4.1.0) 2454

Linux 2.6 running on TI TMS320DM6446 (ARMv4) (gcc Compiler Version 4.3.2) 1747

Page 35 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Linux 2.6 running on TI TMS320DM6446 (ARMv4) (gcc Compiler Version 4.3.2) 2454

Linux 3.10 32-bit running on Intel Atom E3845 (x86) with AES-NI (gcc Compiler Version 4.8.1) 2398

Linux 3.10 32-bit running on Intel Atom E3845 (x86) without AES-NI (gcc Compiler Version 4.8.1) 2398

Linux 3.10 on VMware ESXi 6.00 running on Intel Xeon with AES-NI (gcc Compiler Version 4.8.3) 2631

Linux 3.10 on Vmware ESXi 6.00 running on Intel Xeon without AES-NI (gcc Compiler Version
4.8.3)

2631

Linux 3.10 running on Intel Xeon with AES-NI (gcc Compiler Version 4.8.3) 2631

Linux 3.10 running on Intel Xeon without AES-NI (gcc Compiler Version 4.8.3) 2631

Linux 3.4 64-bit under Citrix XenServer running on Intel Xeon E5-2430L (x86) without AES-NI 2422

Linux 3.4 under Citrix XenServer 6.2 running on Intel Xeon E5-2430L with AES-NI (gcc Compiler
Version 4.8.0)

1747

Linux 3.4 under Citrix XenServer 6.2 running on Intel Xeon E5-2430L with AES-NI (gcc Compiler
Version 4.8.0)

2454

Linux 3.4 under Citrix XenServer 6.2 running on Intel Xeon E5-2430L with AES-NI (gcc Compiler
Version 4.8.0)

2575

Linux 3.4 under Citrix XenServer 6.2 running on Intel Xeon E5-2430L without AES-NI (gcc
Compiler Version 4.8.0)

1747

Linux 3.4 under Citrix XenServer 6.2 running on Intel Xeon E5-2430L without AES-NI (gcc
Compiler Version 4.8.0)

2454

Linux 3.4 under Citrix XenServer 6.2 running on Intel Xeon E5-2430L without AES-NI (gcc
Compiler Version 4.8.0)

2575

Linux 3.4 under Microsoft Windows 2012 Hyper-V running on Intel Xeon E5-2430L with AES-NI
(gcc Compiler Version 4.8.0)2

1747

Linux 3.4 under Microsoft Windows 2012 Hyper-V running on Intel Xeon E5-2430L with AES-NI
(gcc Compiler Version 4.8.0)2

2454

Linux 3.4 under Microsoft Windows 2012 Hyper-V running on Intel Xeon E5-2430L with AES-NI
(gcc Compiler Version 4.8.0)

2575

Linux 3.4 under Microsoft Windows 2012 Hyper-V running on Intel Xeon E5-2430L without AES-NI
(gcc Compiler Version 4.8.0)

1747

Linux 3.4 under Microsoft Windows 2012 Hyper-V running on Intel Xeon E5-2430L without AES-NI
(gcc Compiler Version 4.8.0)

2454

Linux 3.4 under Microsoft Windows 2012 Hyper-V running on Intel Xeon E5-2430L without AES-NI
(gcc Compiler Version 4.8.0)

2575

Linux 3.4 under Vmware ESXi 5.1 running on Intel Xeon E5-2430L with AES-NI (gcc Compiler
Version 4.8.0)

1747

Linux 3.4 under Vmware ESXi 5.1 running on Intel Xeon E5-2430L with AES-NI (gcc Compiler
Version 4.8.0)

2454

Linux 3.4 under Vmware ESXi 5.1 running on Intel Xeon E5-2430L with AES-NI (gcc Compiler
Version 4.8.0)

2575

Linux 3.4 under Vmware ESXi 5.1 running on Intel Xeon E5-2430L without AES-NI (gcc Compiler
Version 4.8.0)

1747

Page 36 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Linux 3.4 under Vmware ESXi 5.1 running on Intel Xeon E5-2430L without AES-NI (gcc Compiler
Version 4.8.0)

2454

Linux 3.4 under Vmware ESXi 5.1 running on Intel Xeon E5-2430L without AES-NI (gcc Compiler
Version 4.8.0)

2575

Linux 3.8 running on ARM926 (ARMv5TEJ) (gcc Compiler Version 4.7.3) 1747

Linux 3.8 running on ARM926 (ARMv5TEJ) (gcc Compiler Version 4.7.3) 2391

Linux 3.8 running on ARM926 (ARMv5TEJ) (gcc Compiler Version 4.7.3) 2454

Linux 3.8 running on ARM926 (ARMv5TEJ) (gcc Compiler Version 4.7.3) 2575

Linux ORACLESP 2.6 running on ASPEED AST-Series (ARMv5) (gcc Compiler Version 4.4.5) 1747

Linux ORACLESP 2.6 running on ASPEED AST-Series (ARMv5) (gcc Compiler Version 4.4.5) 2391

Linux ORACLESP 2.6 running on ASPEED AST-Series (ARMv5) (gcc Compiler Version 4.4.5) 2454

Linux ORACLESP 2.6 running on Emulex PILOT3 (ARMv5) (gcc Compiler Version 4.4.5) 1747

Linux ORACLESP 2.6 running on Emulex PILOT3 (ARMv5) (gcc Compiler Version 4.4.5) 2391

Linux ORACLESP 2.6 running on Emulex PILOT3 (ARMv5) (gcc Compiler Version 4.4.5) 2454

Microsoft Windows 7 (32 bit) (Microsoft 32 bit C/C++ Optimizing Compiler Version 16.00) 2391

Microsoft Windows 7 (32 bit) running on Intel Celeron (Microsoft 32 bit C/C++ Optimizing Compiler
Version 16.00)

1747

Microsoft Windows 7 (32 bit) running on Intel Celeron (Microsoft 32 bit C/C++ Optimizing Compiler
Version 16.00)

2454

Microsoft Windows 7 (32 bit) running on Intel Celeron (Microsoft 32 bit C/C++ Optimizing Compiler
Version 16.00)

2575

Microsoft Windows 7 (64 bit) (Microsoft C/C++ Optimizing Compiler Version 16.00) 2391

Microsoft Windows 7 (64 bit) running on Intel Pentium 4 (Microsoft C/C++ Optimizing Compiler
Version 16.00)

1747

Microsoft Windows 7 (64 bit) running on Intel Pentium 4 (Microsoft C/C++ Optimizing Compiler
Version 16.00)

2454

Microsoft Windows 7 (64 bit) running on Intel Pentium 4 (Microsoft C/C++ Optimizing Compiler
Version 16.00)

2575

Microsoft Windows 7 running on Intel Core i5- 2430M (64-bit) with AES-NI (Microsoft ® C/C++
Optimizing Compiler Version 16.00 for x64)

1747

Microsoft Windows 7 running on Intel Core i5-2430M (64-bit) with AES-NI (Microsoft « C/C++
Optimizing Compiler Version 16.00 for x64)

2391

Microsoft Windows 7 running on Intel Core i5- 2430M (64-bit) with AES-NI (Microsoft ® C/C++
Optimizing Compiler Version 16.00 for x64)

2454

Microsoft Windows 7 running on Intel Core i5- 2430M (64-bit) with AES-NI (Microsoft ® C/C++
Optimizing Compiler Version 16.00 for x64)

2575

Microsoft Windows CE 5.0 (Microsoft C/C++ Optimizing Compiler Version 13.10 for ARM) 2391

Microsoft Windows CE 5.0 running on ARMv7 (Microsoft C/C++ Optimizing Compiler Version 13.10
for ARM)

1747

Page 37 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Microsoft Windows CE 5.0 running on ARMv7 (Microsoft C/C++ Optimizing Compiler Version 13.10
for ARM)

2454

Microsoft Windows CE 6.0 (Microsoft C/C++ Optimizing Compiler Version 15.00 for ARM) 2391

Microsoft Windows CE 6.0 running on ARMv5TEJ (Microsoft C/C++ Optimizing Compiler Version
15.00 for ARM)

1747

Microsoft Windows CE 6.0 running on ARMv5TEJ (Microsoft C/C++ Optimizing Compiler Version
15.00 for ARM)

2454

Microsoft Windows Server 2008 R2 running on an Intel Xeon E5-2420 (x64) (Microsoft 32-bit C/C++
Optimizing Compiler Version 16.00.40219.01 for 80x86)

2454

NetBSD 5.1 (gcc Compiler Version 4.1.3) 2391

NetBSD 5.1 running on Intel Xeon 5500 (gcc Compiler Version 4.1.3) 1747

NetBSD 5.1 running on Intel Xeon 5500 (gcc Compiler Version 4.1.3) 2454

NetBSD 5.1 running on PowerPCe500 (gcc Compiler Version 4.1.3) 1747

NetBSD 5.1 running on PowerPCe500 (gcc Compiler Version 4.1.3) 2454

OpenWRT 2.6 running on MIPS 24Kc (gcc Compiler Version 4.6.3) 1747

OpenWRT 2.6 running on MIPS 24Kc (gcc Compiler Version 4.6.3) 2391

OpenWRT 2.6 running on MIPS 24Kc (gcc Compiler Version 4.6.3) 2454

Oracle Linux 5 (64 bit) (gcc Compiler Version 4.1.2) 2391

Oracle Linux 5 (64 bit) running on Intel Xeon 5675 (gcc Compiler Version 4.1.2) 1747

Oracle Linux 5 (64 bit) running on Intel Xeon 5675 (gcc Compiler Version 4.1.2) 2454

Oracle Linux 5 running on Intel Xeon 5675 with AES-NI (gcc Compiler Version 4.1.2) 1747

Oracle Linux 5 running on Intel Xeon 5675 with AES-NI (gcc Compiler Version 4.1.2) 2391

Oracle Linux 5 running on Intel Xeon 5675 with AES-NI (gcc Compiler Version 4.1.2) 2454

Oracle Linux 6 (gcc Compiler Version 4.4.6) 2391

Oracle Linux 6 running on Intel Xeon 5675 with AES-NI (gcc Compiler Version 4.4.6) 1747

Oracle Linux 6 running on Intel Xeon 5675 with AES-NI (gcc Compiler Version 4.4.6) 2391

Oracle Linux 6 running on Intel Xeon 5675 with AES-NI (gcc Compiler Version 4.4.6) 2454

Oracle Linux 6 running on Intel Xeon 5675 without AES-NI (gcc Compiler Version 4.4.6) 1747

Oracle Linux 6 running on Intel Xeon 5675 without AES-NI (gcc Compiler Version 4.4.6) 2454

Oracle Solaris 10 (32 bit) (gcc Compiler Version 3.4.3) 2391

Oracle Solaris 10 (32 bit) running on SPARC-T3 (SPARCv9) (gcc Compiler Version3.4.3) 1747

Oracle Solaris 10 (32 bit) running on SPARC-T3 (SPARCv9) (gcc Compiler Version3.4.3) 2454

Oracle Solaris 10 (64 bit) (gcc Compiler Version 3.4.3) 2391

Oracle Solaris 10 (64 bit) running on SPARC-T3 (SPARCv9) (gcc Compiler Version 3.4.3) 1747

Oracle Solaris 10 (64 bit) running on SPARC-T3 (SPARCv9) (gcc Compiler Version 3.4.3) 2454

Oracle Solaris 11(32 bit) (gcc Compiler Version 4.5.2) 2391

Page 38 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Oracle Solaris 11 (32 bit) running on Intel Xeon 5675 (gcc Compiler Version 4.5.2) 1747

Oracle Solaris 11 (32 bit) running on Intel Xeon 5675 (gcc Compiler Version 4.5.2) 2454

Oracle Solaris 11 (32 bit) running on SPARC-T3 (SPARCv9) (Sun C Version 5.12) 1747

Oracle Solaris 11 (32 bit) running on SPARC-T3 (SPARCv9) (Sun C Version 5.12) 2454

Oracle Solaris 11 (32 bit) (Sun C Version 5.12) 2391

Oracle Solaris 11 (64 bit) (gcc Compiler Version 4.5.2) 2391

Oracle Solaris 11 (64 bit) running on Intel Xeon 5675 (gcc Compiler Version 4.5.2) 1747

Oracle Solaris 11 (64 bit) running on Intel Xeon 5675 (gcc Compiler Version 4.5.2) 2454

Oracle Solaris 11 (64 bit) running on SPARC-T3 (SPARCv9) (Sun C Version 5.12) 1747

Oracle Solaris 11 (64 bit) running on SPARC-T3 (SPARCv9) (Sun C Version 5.12) 2454

Oracle Solaris 11 (64 bit) (Sun C Version 5.12) 2391

Oracle Solaris 11 running on Intel Xeon 5675 with AESNI (32 bit) (gcc Compiler Version 4.5.2) 1747

Oracle Solaris 11 running on Intel Xeon 5675 with AES-NI (32 bit) (gcc Compiler Version 4.5.2) 2391

Oracle Solaris 11 running on Intel Xeon 5675 with AESNI (32 bit) (gcc Compiler Version 4.5.2) 2454

Oracle Solaris 11 running on Intel Xeon 5675 with AESNI (64 bit) (gcc Compiler Version 4.5.2) 1747

Oracle Solaris 11 running on Intel Xeon 5675 with AES-NI (64 bit) (gcc Compiler Version 4.5.2) 2391

Oracle Solaris 11 running on Intel Xeon 5675 with AESNI (64 bit) (gcc Compiler Version 4.5.2) 2454

PexOS 1.0 under vSphere ESXi 5.1 running on Intel Xeon E52430L with AES-NI (gcc Compiler
Version 4.6.3)3

1747

PexOS 1.0 under vSphere ESXi 5.1 running on Intel Xeon E52430L with AES-NI (gcc Compiler
Version 4.6.3)3

2454

PexOS 1.0 under vSphere ESXi 5.1 running on Intel Xeon E52430L without AES-NI (gcc Compiler
Version 4.6.3)

1747

PexOS 1.0 under vSphere ESXi 5.1 running on Intel Xeon E52430L without AES-NI (gcc Compiler
Version 4.6.3)

2454

QNX 6.4 running on Freescale i.MX25 (ARMv4) (gcc Compiler Version 4.3.3) 1747

QNX 6.4 running on Freescale i.MX25 (ARMv4) (gcc Compiler Version 4.3.3) 2391

QNX 6.4 running on Freescale i.MX25 (ARMv4) (gcc Compiler Version 4.3.3) 2454

QNX 6.5 running on Freescale i.MX25 (ARMv4) (gcc Compiler Version 4.3.3) 1747

QNX 6.5 running on Freescale i.MX25 (ARMv4) (gcc Compiler Version 4.3.3) 2391

QNX 6.5 running on Freescale i.MX25 (ARMv4) (gcc Compiler Version 4.3.3) 2454

TS-Linux 2.4 running on Arm920Tid (ARMv4) (gcc Compiler Version 4.3.2) 2398

TS-Linux 2.4 running on Arm920Tid (ARMv4) (gcc Compiler Version 4.3.2) 2473

TS-Linux 2.4 running on Arm920Tid (ARMv4) (gcc Compiler Version 4.3.2)4 1747

Ubuntu 10.04 (32 bit) (gcc Compiler Version 4.1.3) 2391

Ubuntu 10.04 (32 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.1.3) 1747

Page 39 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Ubuntu 10.04 (32 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.1.3) 2454

Ubuntu 10.04 (64 bit) (gcc Compiler Version 4.1.3) 2391

Ubuntu 10.04 (64 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.1.3) 1747

Ubuntu 10.04 (64 bit) running on Intel Pentium T4200 (gcc Compiler Version 4.1.3) 2454

Ubuntu 10.04 running on Intel Core i5 with AES-NI (32 bit) (gcc Compiler Version 4.1.3) 1747

Ubuntu 10.04 running on Intel Core i5 with AES-NI (32 bit) (gcc Compiler Version 4.1.3) 2391

Ubuntu 10.04 running on Intel Core i5 with AES-NI (32 bit) (gcc Compiler Version 4.1.3) 2454

Ubuntu 10.04 running on Intel Pentium T4200 (gcc Compiler Version 4.1.3) 1747

Ubuntu 10.04 running on Intel Pentium T4200 (gcc Compiler Version 4.1.3) 2454

Ubuntu 12.04 running on Intel Xeon E5-2430L (x86) with AES-NI (gcc Compiler Version 4.6.3) 2398

Ubuntu 12.04 running on Intel Xeon E5-2430L (x86) without AES-NI (gcc Compiler Version 4.6.3) 2398

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) (gcc Compiler Version 4.7.3) 2391

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) with NEON (gcc Compiler Version 4.7.3) 1747

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) with NEON (gcc Compiler Version 4.7.3) 2391

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) with NEON (gcc Compiler Version 4.7.3) 2454

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) with NEON (gcc Compiler Version 4.7.3) 2575

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) without NEON (gcc Compiler Version 4.7.3) 1747

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) without NEON (gcc Compiler Version 4.7.3) 2454

Ubuntu 13.04 running on AM335x Cortex-A8 (ARMv7) without NEON (gcc Compiler Version 4.7.3) 2575

uCLinux 0.9.29 (gcc Compiler Version 4.2.1) 2391

uCLinux 0.9.29 running on ARM 922T (ARMv4) (gcc Compiler Version 4.2.1) 1747

uCLinux 0.9.29 running on ARM 922T (ARMv4) (gcc Compiler Version 4.2.1) 2454

Vmware Horizon Workspace 1.5 under Vmware ESXi 5.0 running on Intel Xeon E3-1220 (x86) with
AES-NI (gcc Compiler Version 4.5.1)1

1747

Vmware Horizon Workspace 1.5 under Vmware ESXi 5.0 running on Intel Xeon E3-1220 (x86) with
AES-NI (gcc Compiler Version 4.5.1)1

2454

Vmware Horizon Workspace 1.5 under Vmware ESXi 5.0 running on Intel Xeon E3-1220 (x86)
without AES-NI (gcc Compiler Version 4.5.1)

1747

Vmware Horizon Workspace 1.5 under Vmware ESXi 5.0 running on Intel Xeon E3-1220 (x86)
without AES-NI (gcc Compiler Version 4.5.1)

2454

Vmware Horizon Workspace 2.1 under vSphere ESXi 5.5 running on Intel Xeon E3-1220 (x86) with
AES-NI (gcc Compiler Version 4.5.1)

1747

Vmware Horizon Workspace 2.1 under vSphere ESXi 5.5 running on Intel Xeon E3-1220 (x86) with
AESNI (gcc Compiler Version 4.5.1)

2391

Vmware Horizon Workspace 2.1 under vSphere ESXi 5.5 running on Intel Xeon E3-1220 (x86) with
AES-NI (gcc Compiler Version 4.5.1)

2454

Vmware Horizon Workspace 2.1 under vSphere ESXi 5.5 running on Intel Xeon E3-1220 (x86)
without AES-NI (gcc Compiler Version 4.5.1)

1747

Page 40 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Vmware Horizon Workspace 2.1 under vSphere ESXi 5.5 running on Intel Xeon E3-1220 (x86)
without AES-NI (gcc Compiler Version 4.5.1)

2391

Vmware Horizon Workspace 2.1 under vSphere ESXi 5.5 running on Intel Xeon E3-1220 (x86)
without AES-NI (gcc Compiler Version 4.5.1)

2454

VxWorks 6.7 running on Intel Core 2 Duo (x86) (gcc Compiler Version 4.1.2) 2398

VxWorks 6.8 (gcc Compiler Version 4.1.2) 2391

VxWorks 6.8 running on TI TNETV1050 (MIPS) (gcc Compiler Version 4.1.2) 1747

VxWorks 6.8 running on TI TNETV1050 (MIPS) (gcc Compiler Version 4.1.2) 2454

VxWorks 6.9 running on Freescale P2020 (PPC) (gcc Compiler Version 4.3.3) 1747

VxWorks 6.9 running on Freescale P2020 (PPC) (gcc Compiler Version 4.3.3) 2398

VxWorks 6.9 running on Freescale P2020 (PPC) (gcc Compiler Version 4.3.3) 2473

Windows Embedded Compact 7 running on Freescale i.MX53xA (ARMv7) with NEON (Microsoft
C/C++ Optimizing Compiler Version 15.00.20720)

1747

Windows Embedded Compact 7 running on Freescale i.MX53xA (ARMv7) with NEON (Microsoft
C/C++ Optimizing Compiler Version 15.00.20720)

2391

Windows Embedded Compact 7 running on Freescale i.MX53xA (ARMv7) with NEON (Microsoft
C/C++ Optimizing Compiler Version 15.00.20720)

2454

Windows Embedded Compact 7 running on Freescale i.MX53xD (ARMv7) with NEON (Microsoft
C/C++ Optimizing Compiler Version 15.00.20720)

1747

Windows Embedded Compact 7 running on Freescale i.MX53xD (ARMv7) with NEON (Microsoft
C/C++ Optimizing Compiler Version 15.00.20720)

2391

Windows Embedded Compact 7 running on Freescale i.MX53xD (ARMv7) with NEON (Microsoft
C/C++ Optimizing Compiler Version 15.00.20720)

2454

Page 41 of 222

User Guide - OpenSSL FIPS Object Module v2.0

3. Compatible Platforms

The FIPS Object Module is designed to run on a wide range of hardware and software platforms.
Any computing platform that meets the conditions in the Security Policy can be used to host a FIPS
140-2 validated FIPS Object Module provided that module is generated in accordance with the
Security Policy.

At the time the OpenSSL FIPS Object Module v2.0 was developed, all Unix®16-like environments
supported by the full OpenSSL distribution were also supported by the FIPS validated source files
included in the FIPS Object Module. However, successful compilation of the FIPS Object Module
for all such platforms was not verified. If any platform specific compilation errors occur that can
only be corrected by modification of the FIPS distribution files (see Appendix B of the Security
Policy), then the FIPS Object Module will not be validated for that platform.

It is also noted that a platform which is currently supported (but untested) may not be supported in
the future as revisions are made to the FIPS validated sources. For example, a change made for one
platform may adversely affect another, untested platform.

By default, the FIPS Object Module software utilizes assembly language optimizations for some
supported platforms. Currently assembler language code residing within the cryptographic module
boundary is used for the x86/Intel® 17 ELF and ARM®18 machine architectures. The FIPS Object
Module build process will automatically select and include these assembly routines by default
when building on a x86 platform. The assembly language code was included in the validation
testing, so a FIPS Object Module built using the x86/Intel® assembly language routines will result
in a FIPS 140-2 validated Object Module. Assembly Language and Optimizations are discussed in
detail in Section 3.2.3 Assembler Optimizations.

3.1 Build Environment Requirements

The platform portability of the FIPS Object Module source code is contingent on several basic
assumptions about the build environment:

1. The environment is either a) “Unix®-like” with a make command and a ld command with
a “­r” (or “­i”) option, or Microsoft Windows.

Creation of the monolithic FIPS Object Module fipscanister.o requires a linker
capable of merging several object modules into one. This requirement is known to be a
problem with VMS and some older versions of LD.EXE under Windows®.

16UNIX is a registered trademark of The Open Group
17Intel is a registered trademark of the Intel Corporation
18ARM is a trademark of ARM Limited.

Page 42 of 222

User Guide - OpenSSL FIPS Object Module v2.0

2. The compiler is required to place variables declared with the const qualifier in a read-only
segment. This behavior is true of almost all modern compilers. If the compiler fails to do
so the condition will be detected at run-time and the in-core hashing integrity check will
fail.

3. The platform supports execution of compiled code on the build system (i.e. build host and
target are binary compatible); or an appropriate "incore" utility is available to calculate the
digest from the on-disk resident object code. See further discussion of cross-compilation in
§3.4.

4. Cross-compilation uses a technique for determining the integrity check digest that may not
work for all cross-compilation environments, so each such new environment must be
analyzed for suitability. See further discussion of cross-compilation in §3.4.

3.2 Known Supported Platforms

The generation of a monolithic object module and the in-core hashing integrity test have been
verified to work with both static and shared builds on the following platforms (note the ./config
“shared” option is forbidden by the terms of the validation when building a FIPS validated
module, but the fipscanister.o object module can be used in a shared library19). Note a
successful build of the FIPS module may be possible on other platforms; only the following were
explicitly tested as of the date this document was last updated:

● Android®20 on ARMv721 32 bit
● Android® on ARMv7 with NEON 32 bit
● HP-UX®22, on IA64 with 32 and 64 bit
● Linux®23 on ARMv6, ARMv7 32 bit
● Linux on x86-64 32 and 64 bit
● Linux on x86-64 32 with SSE2 and 64 bit
● Linux on x86-64 with AES-NI 32 and 64 bit
● Linux on PowerPC®24

● Solaris®25 on x86-64 with 32 and 64 bit
● Solaris® on SPARCv926 with 32 and 64 bit
● Solaris® on x86-64 with SSE2 32 and 64 bit
● Windows® on x86-64 with SSE2 32 and 64 bit

19A convenient way of generating a shared library containing fipscanister.o is discussed in Appendix B
20Android is a trademark of Google Inc.
21ARM, is a trademark or registered trademark of ARM Ltd or its subsidiaries.
22HP-UX is a registered trademark of Hewlett-Packard Company.
23Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
24PowerPC is a trademark of International Business Machines Corporation in the United States, other countries, or
both.
25Solaris is a registered trademark of Oracle and/or its affiliates.
26SPARC® is a registered trademark of SPARC International, Inc.

Page 43 of 222

User Guide - OpenSSL FIPS Object Module v2.0

● uClinux®27 on ARMv4
● VxWorks®28 on MIPS®29

● DSP Media Framework 1.4 on TI®30 C64x+
● Apple®31 iOS® on ARMv7
● Windows CE on ARMv7
● NetBSD32 on PowerPC
● NetBSD on x86-64

Among the platforms known to not be supported are Windows on x86-64 with AES-NI, VMS®33,
Mac OS X®34.

Platform Cross Reference

Operating System



Processor



Android 2.2, 4.0

HP-UX 11i

Linux 2.6

Solaris 10

Solaris 11

Windows 7

uCLinux 0.9

VxWorks 6.8

Windows CE

NetBSD

Apple A6 (ARMv7 and ARMv7s)

Apple A5 (ARMv6 and ARMv7)

ARMv4 ✔

ARMv6 ✔

27uClinux is a registered trademark of Arcturus Networks Inc.
28VxWorks is a registered trademarks of Wind River Systems, Inc.
29MIPS is a trademark or registered trademark of MIPS Technologies, Inc. in the United States and other countries.
30TI is a registered trademark of Texas Instruments Incorporated
31Apple and iOS are registered trademarks of Apple Inc.
32NetBSD® is a registered trademark of The NetBSD Foundation, Inc.
33VMS is a registered trademark of Digital Equipment Corporation.
34Mac OS X is a registered trademark of Apple, Inc.

Page 44 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Platform Cross Reference

ARMv7 ✔ ✔

ARMv7 NEON ✔

IA64 32 bit ✔

IA64 64 bit ✔

MIPS ✔

PowerPC ✔

SPARCv9 32 bit ✔ ✔

SPARCv9 64 bit ✔ ✔

x86-64 32 bit ✔

x86-64 64 bit ✔

x86-64 SSE2 32 bit ✔ ✔ ✔

x86-64 SSE2 64 bit ✔ ✔ ✔

x86-64 AES-NI 32 bit ✔ ✔

x86-64 AES-NI 64 bit ✔ ✔

Table 3.2

A commonly asked question is "does this validation extend to my specific platform X"? For
instance: “is use of the Module validated on CentOS x86-64 when CentOS was not formally tested
but Fedora was?” Or “is use with Linux kernel 2.6.35 validated when only 2.6.33 was formally
tested?” Unfortunately there is no hard and fast answer to such questions.

Based on extensive discussions over the years we have developed some informal rules of thumb to
determine when a given target platform corresponds with a formally tested platform (Operational
Environment)

Rules of thumb:

Page 45 of 222

Important Disclaimer

Only the CMVP can provide authoritative answers to questions
about FIPS 140-2. The following discussion represents the un-
enlightened and non-authoritative opinions of persons and
institutions lacking any official standing to interpret the meaning or
intent of FIPS 140-2 or the validation process. CMVP guidance
always takes precedence over any statements in this document.

User Guide - OpenSSL FIPS Object Module v2.0

1. Does the target system "code path" (see following section) correspond with that of a
formally tested platform?

2. Do any run-time selectable optimizations (see section §3.2.3) correspond with those of a
formally tested platform?

3. Will a binary module that builds and runs on one of the formally tested platforms (or was
built on the build-time system for a formally tested cross-compiled platform) run as-is on
the target system?

4. Does the processor "core" (ARMv6 versus ARMv7, for instance) correspond to that of a
formally tested platform? Here the consideration is ABI compatibility -- two processors
which can interchangeably execute the same set of machine instructions are effectively
equivalent.

5. Does the "major" OS version (e.g. Solaris 10 versus Solaris 11) correspond to that of a
formally tested platform? The "major" version is generally taken to be the full revision
label for OS's using only one or two "dot" levels (e.g., Android 2.2 or Solaris 10, 11), and
the first two "dot" levels for OS's using more than two "dot" levels (e.g., Linux 2.6.37,
uCLinux 0.9.29)35.

If the answer to all of these questions is "yes" then -- in general -- the prospective target platform
can in general be reasonably considered as equivalent to a formally tested platform.

Arguments based on apparent "common sense" considerations should be used cautiously where
FIPS 140-2 is concerned, but where general purpose validated software modules are concerned a
little thought shows that strict insistence on an exact match between target platforms and formally
tested Operational Environments would make it effectively impossible to widely deploy validated
software through most enterprises. For instance, one of the formally tested platforms was "Android
2.2.20.A995" on an "ARMv7 rev 2 v71" processor. If a formally tested platform had to correspond
at that level of detail then provision of validated modules would be very difficult, as the extensive
amount of time required to obtain a FIPS 140-2 validation means that the specific platform used for
testing will be updated or obsolete by the time the validation is completed.

The role of the compiler used for building the validated Module has never been fully delineated.
The general – and unofficial – consensus of the FIPS 140-2 user and test lab communities appears
to be that the precise version of the compiler need not correspond exactly with that used for the
generation of the formally tested Module (for instance, gcc 4.4.1 versus 4.4.7).

If a review determines that no formally tested platform corresponds to the target platform of
interest, there are several options:

35Note this rule of thumb has implications for the recent and more or less arbitrary jump of the Linux kernel version
number from 2.6.x to 3.0.x.

Page 46 of 222

User Guide - OpenSSL FIPS Object Module v2.0

1. Vendor or user "affirmation" per section G.5 of the Implementation Guidance document
(Reference 3). This topic is discussed in more detail in §5.5.

2. A "change letter" modification to extend an existing validation to include the platform of
interest. The change letter process can often be performed in a few weeks with a price tag
in the low five figures, as opposed to the many months and high five figure to low six figure
price tag of a conventional full validation.

3. A full validation leveraging the source code and documentation from the OpenSSL FIPS
Object Module validation. Such a "private label" validation will still take many months but
is typically much less expensive than an unrelated validation. An advantage of the "private
label" validation is that upon formally engaging an accredited test lab the vendor becomes
eligible36 to have the prospective module listed on the "Modules In Process" list37
(http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140InProcess.pdf). The presence
of a vendor module on that list is a sufficient condition for completion of many procurement
actions in the U.S. Department of Defense and federal government.

3.2.1 Code Paths and Command Sets

For the purposes of the validation testing a “platform” is a unique combination of source code and
the specific build-time options used to turn that source code into binary code. The build-time
inclusion of assembler optimizations effectively changes the source code, and source code
selections vary based on the target architecture word size of 32 or 64 bits.

Due to budget and schedule constraints only some assembler optimizations for ARM and x86-64
were tested, so only those optimizations are available for building the FIPS Object Module. Two
separate sets of source code were identified to cover plain C (no assembler) for x86-64 Linux 32
and 64 bits.

Even though the same source code is used for both Linux/Unix and Windows operating systems,
the build instructions are sufficiently unique to each of the two OS families that the decision was
made to test each code path for both OS families.

The resulting test cases can be represented in the following tables:

Code Path Command Set

Linux/Unix Windows

Representative Platform

Linux/Unix Windows

pure C 32 bit U1 W1 u1 w1

36Strictly speaking the test lab must also be in possession of drafts of all required documentation. In the case of private
label validations closely modeled on an OpenSSL FIPS Object Module validation that is readily accomplished, usually
before the formal contract with the test lab is executed.
37The "Module in Process" list is often referred to as the "pre-val" list.

Page 47 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Code Path Command Set

Linux/Unix Windows

Representative Platform

Linux/Unix Windows

pure C 64 bit U2 W2 u1 w2

x86 assembler U3 W3 u2 w3

x86-64 assembler U4 W4 u2 w4

Table 3.2.1a - Code Paths and Command Sets

where the command sets are

Command Set Name Build Commands

U1 Linux/Unix, pure C ./config no­asm
make
make install

U2 Linux/Unix with x86/x86-64
optimizations

./config
make
make install

W1 Windows, pure C ms\do_fips no­asm

W2 Windows with x86/x86-64 optimizations ms\do_fips

3.2.1b - Command Sets

The actual representative systems tested for the validation were:

Generic System Actual System

OS - Processor - Optimization

1 Android 2.2 on ARMv7 with
NEON

Android 2.2 (HTC
Desire)

Qualcomm QSD 8250 (ARMv7) NEON

1 Android 2.2 on ARMv7 with
NEON

Android 2.2 (HTC
Desire)

Qualcomm QSD 8250 (ARMv7) NEON

2 Android 2.2 on ARMv7 Android 2.2 (Dell
Streak)

Qualcomm QSD 8250 (ARMv7) None

3 Windows x86 32 bit Microsoft Windows 7
32 bit

Intel Celeron (x86) None

4 uCLinux on ARMv4 uClinux 0.9.29 ARM 922T (ARMv4) None

Page 48 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Generic System Actual System

OS - Processor - Optimization

5 Linux 2.6 on x86 with AES-NI
64 bit

Fedora 14 Intel Core i5 (x86) AES-NI

6 HP-UX 11 on IA64 32 bit HP-UX 11i (hpux-
ia64-cc, 32 bit mode)

Intel Itanium 2 (IA64) None

7 HP-UX 11 on IA64 64 bit HP-UX 11i (hpux64-
ia64-cc, 64 bit mode)

Intel Itanium 2 (IA64) None

8 Linux on x86 32bit Ubuntu 10.04 Intel Pentium T4200 (x86) None

9 Android 2.2 on ARMv7
(duplicate of platform 2)

Android 2.2
(Motorola Xoom)

NVIDIA Tegra 250 T20 (ARMv7) None

10 Linux 2.6 on PPC Linux 2.6.27 PowerPC e300c3 (PPC) None

11 Windows on x86 64 bit Microsoft Windows 7
64 bit

Intel Pentium 4 (x86) None

12 Linux 2.6 on x86 with AES-NI
32 bit

Ubuntu 10.04 32 bit Intel Core i5 (x86) AES-NI

13 Linux 2.6 on PPC (duplicate of
platform 10)

Linux 2.6.33 PowerPC32 e300 (PPC) None

16 Android 2.2 on ARMv7 with
NEON (duplicate of platform
1)

Android 2.2 OMAP 3530 (ARMv7) NEON

17 C64x+ DSP DSP Media
Framework 1.4

TI C64x+ None

19 VxWorks 6.8 on MIPS VxWorks 6.8 TI TNETV1050 (MIPS) None

20 Linux 2.6 on ARMv6 Linux 2.6 Broadcom BCM11107 (ARMv6) None

21 Linux 2.6 on ARMv7 Linux 2.6 TI TMS320DM6446 (ARMv4) None

22 Linux 2.6 on ARMv7 Linux 2.6.32 TI AM3703CBP (ARMv7) None

23 Solaris 10 on SPARCv9 32 bit Solaris 10 32bit SPARC-T3 (SPARCv9) None

24 Solaris 10 on SPARCv9 32 bit Solaris 10 64bit SPARC-T3 (SPARCv9) None

25 Solaris 11 on x86-64 32 bit Solaris 11 32bit Intel Xeon 5260 (x86) None

26 Solaris 11 on x86-64 64 bit Solaris 11 64bit Intel Xeon 5260 (x86) None

27 Solaris 11 on x86-64 with
AES-NI 32 bit

Solaris 11 32bit Intel Xeon 5260 (x86) AES-NI

Page 49 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Generic System Actual System

OS - Processor - Optimization

28 Solaris 11 on x86-64 with
AES-NI 64 bit

Solaris 11 64bit Intel Xeon 5260 (x86) AES-NI

29 Oracle Linux 5 on x86-64 64
bit

Oracle Linux 5 64bit Intel Xeon 5260 (x86) None

30 CascadeOS 6.1 3 on x86 32 bit CascadeOS 6.1 32bit Intel Pentium T4200 (x86) None

31 CascadeOS 6.1 3 on x86 64 bit CascadeOS 6.1 64bit Intel Pentium T4200 (x86) None

32 Linux 2.6 on x86-64 32 bit Ubuntu 10.04 32bit Intel Pentium T4200 (x86) None

33 Linux 2.6 on x86-64 64 bit Ubuntu 10.04 64bit Intel Pentium T4200 (x86) None

34 Oracle Linux 5 on x86-64 with
AES-NI

Oracle Linux 5 Intel Xeon 5675 (x86) AES-NI

35 Oracle Linux 6 on x86-64 Oracle Linux 6 Intel Xeon 5675 (x86) None

36 Oracle Linux 6 on x86-64 with
AES-NI

Oracle Linux 6 Intel Xeon 5675 (x86) AES-NI

37 Solaris 11 32bit on SPARCv9 Solaris 11 32bit SPARC-T3 (SPARCv9) None

38 Solaris 11 64bit on SPARCv9 Solaris 11 64bit SPARC-T3 (SPARCv9) None

39 Android 4.0 on ARMv7 Android 4.0
(Motorola Xoom)

NVIDIA Tegra 250 T20 None

40 Linux 2.6 on PPC Linux 2.6 Freescale PowerPC-e500 None

41 Apple iOS 5.1 on ARMv7 Apple iOS 5.1 ARMv7 None

42 WinCE 6.0 on ARMv5TEJ WinCE 6.0 ARMv5TEJ None

43 WinCE 5.0 on ARMv7 WinCE 5.0 ARMv7 None

44 Android 4.0 on ARMv7 Android 4.0 OMAP 3 NEON

45 NetBSD 5.1 on PPC NetBSD 5.1 PowerPC-e500 None

46 NetBSD 5.1 on x86-64 NetBSD 5.1 Intel Xeon 5500 (x86) None

47 Windows 2008 32-bit under
vSphere on x86-64

Windows 2008 Xeon E3-1220v2 (x86) None

48 Windows 2008 64-bit under
vSphere on x86-64

Windows 2008 Xeon E3-1220v2 (x86) None

49 RHEL 6 32-bit on x86-64 RHEL 6 Xeon E3-1220v2 (x86) None

50 RHEL 6 64-bit on x86-64 RHEL 6 Xeon E3-1220v2 (x86) None

Page 50 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Generic System Actual System

OS - Processor - Optimization

51 Windows 7 64-bit on x86-64
with AES-NI

Windows 7 Intel Core i5-2430M (x86) AES-NI

52 Android 4.1 on ARMv7 Android 4.1 TI DM3730 (ARMv7) None

53 Android 4.1 on ARMv7 with
NEON

Android 4.1 TI DM3730 (ARMv7) NEON

54 Android 4.2 on ARMv7 Android 4.2 Nvidia Tegra 3 (ARMv7) None

55 Android 4.2 on ARMv7 with
NEON

Android 4.2 Nvidia Tegra 3 (ARMv7) NEON

56 Windows Embedded Compact
7 on ARMv7 with NEON

Windows Embedded
Compact 7

Freescale i.MX53xA (ARMv7) NEON

57 Windows Embedded Compact
7 on ARMv7 with NEON

Windows Embedded
Compact 7

Freescale i.MX53xA (ARMv7) NEON

58 Android 4.0 on ARMv7 with
NEON

Android 4.0 Qualcomm Snapdragon APQ8060

(ARMv7)

NEON

59 VMware Horizon Mobile 1.3
under VMware under Android
4.0 on ARMv7 with NEON

VMware Horizon
Mobile 1.3 under
VMware under
Android 4.0

Qualcomm MSM8X60 (ARMv7) NEON

60 Apple OS X 10.7 on x86-64 Apple OS X 10.7 Intel Core i7-3615QM (x86) None

61 Apple iOS 5.0 on ARMv7 with
NEON

Apple iOS 5.0 ARM Cortex A8 (ARMv7) NEON

62 OpenWRT 2.6 on MIPS OpenWRT 2.6 MIPS 24Kc None

63 QNX 6.4 on ARMv4 QNX 6.4 Freescale i.MX25 (ARMv4) None

64 Apple iOS 6.1 on ARMv7s Apple iOS 6.1 Apple A6X SoC (ARMv7s) None

65 eCos 3 on ARMv5TEJ eCos 3 Freescale i.MX27 926ejs

(ARMv5TEJ)

None

66 VMware Horizon Workspace
1.5 under vSphere on x86-64

VMware Horizon
Workspace 1.5 under
vSphere

Intel Xeon E3-1220 (x86) None

67 VMware Horizon Workspace
1.5 under vSphere on x86-64
with AES-NI

VMware Horizon
Workspace 1.5 under
vSphere

Intel Xeon E3-1220 (x86) AES-NI

68 Ubuntu 13.04 on ARMv7 Ubuntu 13.04 AM335x Cortex-A8 (ARMv7) None

Page 51 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Generic System Actual System

OS - Processor - Optimization

69 Ubuntu 13.04 on ARMv7 with
NEON

Ubuntu 13.04 AM335x Cortex-A8 (ARMv7) NEON

70 Linux 3.8 on ARMv5TEJ Linux 3.8 ARM926 (ARMv5TEJ) None

71 Linux 3.4 under Citrix
XenServer on x86-64

Linux 3.4 under
Citrix XenServer

Intel Xeon E5-2430L (x86) None

72 Linux 3.4 under Citrix
XenServer on x86-64 with
AES-NI

Linux 3.4 under
Citrix XenServer

Intel Xeon E5-2430L (x86) AES-NI

73 Linux 3.4 under VMware ESX
on x86-64

Linux 3.4 under
VMware ESX

Intel Xeon E5-2430L (x86) None

74 Linux 3.4 under VMware ESX
on x86-64 with AES-NI

Linux 3.4 under
VMware ESX

Intel Xeon E5-2430L (x86) AES-NI

75 Linux 3.4 under Microsoft
Hyper-V on x86-64

Linux 3.4 under
Microsoft Hyper-V

Intel Xeon E5-2430L (x86) None

76 Linux 3.4 under Microsoft
Hyper-V on x86-64 with AES-
NI

Linux 3.4 under
Microsoft Hyper-V

Intel Xeon E5-2430L (x86) AES-NI

77 Apple iOS 6.0 on ARMv7 Apple iOS 6.0 Apple A5 / ARM Cortex-A9

(ARMv7)

None

78 Apple iOS 6.0 on ARMv7 with
NEON

Apple iOS 6.0 Apple A5 / ARM Cortex-A9

(ARMv7)

NEON

79 PexOS 1.0 under vSphere on
x86-64

PexOS 1.0 under
vSphere

Intel Xeon E5-2430L (x86) None

80 PexOS 1.0 under vSphere on
x86-64 with AES-NI

PexOS 1.0 under
vSphere

Intel Xeon E5-2430L (x86) AES-NI

81 Linux 2.6 on PPC Linux 2.6 Freescale e500v2 (PPC) None

82 AcanOS 1.0 on x86-64 AcanOS 1.0 ntel Core i7-3612QE (x86) None

83 AcanOS 1.0 on x86-64 with
AES-NI

AcanOS 1.0 Intel Core i7-3612QE (x86) AES-NI

84 AcanOS 1.0 on ARMv5 AcanOS 1.0 Intel Core i7-3612QE (x86) None

85 FreeBSD 8.4 on x86-64 FreeBSD 8.4 Intel Xeon E5440 (x86) None

86 FreeBSD 9.1 on x86-64 FreeBSD 9.1 Xeon E5-2430L (x86) None

Page 52 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Generic System Actual System

OS - Processor - Optimization

87 FreeBSD 9.1 on x86-64 with
AES-NI

FreeBSD 9.1 Xeon E5-2430L (x86) AES-NI

88 ArbOS 5.3 on x86-64 ArbOS 5.3 Xeon E5645 (x86) None

89 ArbOS 5.3 on x86-64 with
AES-NI

ArbOS 5.3 Xeon E5645 (x86) AES-NI

90 Linux ORACLESP 2.6 on
ARMv5

Linux ORACLESP
2.6

ASPEED AST-Series (ARMv5) None

91 Linux ORACLESP 2.6 on
ARMv5

Linux ORACLESP
2.6

Emulex PILOT 3 (ARMv5) None

92 FreeBSD 9.2 on x86-64 FreeBSD 9.2 Xeon E5-2430L (x86) None

93 FreeBSD 9.2 on x86-64 with
AES-NI

FreeBSD 9.2 Xeon E5-2430L (x86) AES-NI

94 FreeBSD 10.0 on x86-64 FreeBSD 10.0 Xeon E5-2430L (x86) None

95 FreeBSD 10.0 on x86-64 with
AES-NI

FreeBSD 10.0 Xeon E5-2430L (x86) AEs-NI

96

97

98

99

100
Table 3.2.1c - Representative Systems

3.2.2 32 versus 64 Bit Architectures

Many 64 bit platforms provide backward compatible support for 32 bit code via hardware or
software emulation. Software built on a 32 bit version of a specific operating system will generally
run as-is on the equivalent 64 bit version of that operating system. Software built on a 64 bit
operating system can be either 32 bit or 64 bit code depending on vendor build environment
defaults and explicit build time options. Any such 64 bit code will not run on a 32 bit equivalent
operating system, so care must be taken when compiling code for distribution to both 32 and 64 bit
systems.

By default the FIPS Object Module build process will generate 64 bit code on 64 bit systems.

Page 53 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Since the command sets included in the validation testing do not permit the explicit specification of
the compile time options that would otherwise be used to specify the generation of 32 or 64 bit
code, it may be necessary for some platforms to build a 32 bit FIPS Object Module on a 32 bit
system, and conversely for 64 bit.

It is also possible on most 64-bit platforms to install a 32-bit build environment which would be
supported. Details as to how to configure such an environment are beyond the scope of this
document.

3.2.3 Assembler Optimizations

The only option for processor architectures other than x86/x86-64 and ARM is to use the pure C
language implementation and not any of the hand-coded performance optimized assembler as each
assembler implementation requires separate FIPS testing. For example, an Itanium or PowerPC
system can only build and use the pure C language module.

For the x86/x86-64 and ARM processors several levels of optimization are supported by the code.
Note that most such optimizations, if compiled into executable code, are selectively enabled at
runtime depending on the capabilities of the target processor. If the Module is built and executed
on the same platform (the build-time and run-time systems are the same) then the appropriate
optimization will automatically be utilized (assuming that the build+target system corresponds to a
formally tested platform).

For x86-64 there are three possible optimization levels:

1. No optimization (plain C)
2. SSE2 optimization
3. AES-NI+PCLMULQDQ+SSSE3 optimization

Note that other theoretically possible combinations (e.g. AES-NI only, or SSE3 only) are not
addressed individually, so that a processor which does not support all three of AES-NI,
PCLMULQDQ, and SSSE3 will fall back to only SSE2 optimization.

The runtime environment variable OPENSSL_ia32cap=~0x200000200000000 disables use of
AES-NI, PCLMULQDQ, and SSSE3 optimizations for x86-64.

For ARM there are two possible optimization levels:

1. Without NEON
2. With NEON (ARM7 only)

The runtime variable OPENSSL_armcap=0 disables use of NEON optimizations for ARM.

Page 54 of 222

User Guide - OpenSSL FIPS Object Module v2.0

If all optimization levels have not been formally tested for a given platform, care must be taken to
verify that the optimizations enabled at run-time on any target systems correspond to a formally
tested platform. For instance, if "Windows on x86 32-bit" was formally tested but "Windows on
x86 with AES-NI 32-bit" was not38 then the Module would be validated when executed on a non-
AES-NI capable target processor, but would not be validated when executed on an AES-NI capable
system. Note the processor optimization capabilities will often not be obvious to administrators or
end users installing software.

When the target platforms are not known to have capabilities corresponding to tested platforms
then the risk of inadvertently utilizing the unvalidated optimizations at run-time can can be avoided
by setting the appropriate environment variables at run-time39:

Disabling run-time selectable optimizations

Platform Environment Variable Value

x86/x86-64 OPENSSL_ia32cap ~0x200000200000000

ARM OPENSSL_armcap 0

3.3 Creation of Shared Libraries

The FIPS Object Module is not directly usable as a shared library, but it can be linked into an
application that is a shared library. A “FIPS compatible” OpenSSL distribution will automatically
incorporate an available FIPS Object Module into the libcrypto shared library when built using
the fips option (see §4.2.3).

3.4 Cross-compilation

Compilers and linkers are separate programs which work together to generate object code for a
target system. They are also programs composed of object code that is executed on the build
system. When the build and target systems are the same we say the process is referred to as a
"native" build; when they are different it is referred to as a "cross-compilation" build.

Many compilers and linkers (or build environments containing compilers and linkers) are capable
of creating object code for multiple target platforms. For the case of the native build the
./config command40 automatically determines the target system from the characteristics of the
build system. This determination is made by setting a series of variables that are used to select an

38This was the case as of the initial OpenSSL FIPS Object Module 2.0 validation, though such platforms may be added
by subsequent modifications.
39An alternative is to sponsor the addition of the unsupported platform optimization to the validated Module
40Microsoft Windows platforms are handled somewhat differently and are discussed elsewhere.

Page 55 of 222

User Guide - OpenSSL FIPS Object Module v2.0

arbitrary architecture label defined in the ./Configure command that is invoked by
./config. This architecture label can be displayed with the "­t" command line option:

$./config ­t
Operating system: i686­whatever­linux2
Configuring for linux­elf
/usr/bin/perl ./Configure linux­elf ­march=pentium ­Wa,­­
noexecstack
$

In this example the architecture target is "linux-elf" and the ./Configure command will be
invoked with the additional arguments "­march=pentium ­Wa,­­noexecstack ".

This implicit determination of the target architecture can be overridden by manually specifying the
appropriate environment variables. This explicit determination is optional and unnecessary for
native builds, but required for cross-compilation. A typical example is shown here for cross-
compilation for the Android ARM target platform:

#!/bin/sh
Edit this to wherever you unpacked the NDK
export ANDROID_NDK=”$PWD”
Edit to wherever you put incore script
export FIPS_SIG=”$PWD/incore”

Shouldn't need to edit anything past here.
PATH=$ANDROID_NDK/android­ndk­r4b/build/prebuilt/linux­
x86/arm­eabi­4.4.0/bin:$PATH ; export PATH
export MACHINE=armv7l
export RELEASE=2.6.32.GMU
export SYSTEM=android
export ARCH=arm
export CROSS_COMPILE="arm­eabi­"
export ANDROID_DEV="$ANDROID_NDK/android­ndk­
r4b/build/platforms/android­8/arch­arm/usr"
export HOSTCC=gcc

With those environment variables specified on a Linux x86 system the ./config now selects a
different target architecture:

$./config ­t
Operating system: armv7l­whatever­android
Configuring for android­armv7

Page 56 of 222

User Guide - OpenSSL FIPS Object Module v2.0

/usr/bin/perl ./Configure android­armv7 ­Wa,­­noexecstack
$

When building using cross-compilation a different technique must be used to determine the
embedded integrity check digest value. For native builds an interim executable is created and
executed to calculate this digest from live memory, in the same way that the digest is calculated at
runtime during the POST integrity test. When cross-compiling that technique cannot be used
because the cross-compiled executables cannot (in general) be run on the build host.

Instead of building and executing an interim executable, a special purpose utility is used to
calculate the digest by examining the cross-compiled object code as it resides on disk. One such
utility, incore, is provided to handle ELF formats. Even though this utility is effectively platform
neutral on most Linux-like operating systems , the process as a whole is not designed to work with
arbitrary ELF code and can be relied on only for explicitly verified cross-compile cases as reflected
in fips/fips_canister.c. Accommodation of new cross-compilation targets is likely to be trivial but
will still require separate validation.

Thus, although the incore utility is theoretically capable of handling arbitrary ELF binary code
(native or not), it is not used in non-cross-compile/native cases. Cross-compiled non-ELF
platforms would require different utilities and separate validation.

In general the C compiler is required to segregate constant data in a contiguous area (e.g. by placing
it in a dedicated segment) to compile the FIPS module. Some compilers were found to fail to meet
the const data segment requirement. In the cases where the errant behavior was observed, the
compiler was instructed to generate position-independent code41.

In such cases it might be possible to rectify the problem by defining the __fips_constseg macro in
fips/fipssyms.h and harmonizing that definition with declaration of FIPS_rodata_start and
FIPS_rodata_end in fips/fips_canister.c. Unfortunately, such an approach will require a separate
FIPS 140-2 validation, however.

41The primary reason for compiling the FIPS 2.0 module with -fPIC is for versatility, so that the fipscanister object
module will be usable in either the context of a statically-linked application or dynamic library. Use of non-PIC code
is inappropriate in a dynamic library, but linking PIC statically was proven to work on all tested platforms. Thus,
where such versatility is not of interest then -fPIC could be dropped to target statically-linked applications only. A
separate validation will be required, of course.

Page 57 of 222

User Guide - OpenSSL FIPS Object Module v2.0

4. Generating the FIPS Object Module

This section describes the creation of a FIPS Object Module for subsequent use by an application.
The Security Policy provides procedures for acquiring, verifying, building, installing, protecting,
and initializing the FIPS Object Module. In case of discrepancies between the User Guide and the
Security Policy, the Security Policy should be used.

Finally, recall from Section 2.4.2, Object Module (Link Time) Integrity, that applications link
against libcrypto.so or libcrypto.a, and not directly to fipscanister.o.

4.1 Delivery of Source Code

The OpenSSL FIPS Object Module software is only available in source format. The specific source
code distributions can be found at http://www.openssl.org/source/42. as files with names of the form
openssl-fip-2.0.N.tar.gz where the revision number N reflects successive extensions of the FIPS
Object Module to support additional platforms:

 http://www.openssl.org/source/openssl-fips-2.0.tar.gz
 http://www.openssl.org/source/openssl-fips-2.0.1.tar.gz
 http://www.openssl.org/source/openssl-fips-2.0.2.tar.gz

The latest revision will be suitable for all tested platforms, whereas earlier revisions will work only
for the platforms tested as of that revision.

The CMVP introduced significant new requirements for verification of the 2.0 source code
distribution. This requirement is discussed in more detail in §4.1.3; but in summary, it can no
longer be downloaded and used as before. A "trusted path" must be used for transfer of the source
code distribution.

At present the one method known to satisfy the “trusted path” requirement is
obtain the source code distribution from the vendor of record (OSF) on
physical media (CD). For instructions on requesting this CD see
http://openssl.com/fips/verify.html.

The OpenSSL FIPS Object Module software was delivered to the FIPS 140-2
testing laboratory in source form as this complete OpenSSL distribution, and was built by the
testing laboratory using the standard build procedure as described in the Security Policy document
and reproduced below and in Appendix B.

42Closely related distributions lacking binary curve ECC, opensl-fips-ecp-2.0.N.tar.gz, are also available; see §6.5.

Page 58 of 222

http://openssl.org/fips/verify.html
http://www.openssl.org/source/openssl-fips-2.0.2.tar.gz
http://www.openssl.org/source/openssl-fips-2.0.1.tar.gz
http://www.openssl.org/source/openssl-fips-2.0.tar.gz
http://www.openssl.org/source/

User Guide - OpenSSL FIPS Object Module v2.0

For each of the openssl­fips­2.0.N.tar.gz distributions there is also a distribution file
with the name of the form openssl­fips­ecp­2.0.N.tar.gz. These "ecp" distributions
are the same as the corresponding 2.0.N distributions with binary curve ECC omitted (see Section
6.5).

Note: OSF recommends that the downloaded tarballs be considered untrusted for any purpose until
verified as described in §4.1.2.

4.1.1 Creation of a FIPS Object Module from Other Source Code
Many OpenSSL distributions other than the specific distributions used for the validation can be
used to build a fipscanister.o object using undocumented build-time options. The reader is
reminded that any such object code cannot be used or represented as FIPS 140-2 validated. The
Security Policy document is very clear on that point.

4.1.2 Verifying Integrity of Distribution (Best Practice)
This step is optional and not mandated by the FIPS140-2 validation. It is also not recognized as
having any value by the CMVP, but is considered a best practice by the OpenSSL team for all
software downloads from OpenSSL.

The integrity and authenticity of the complete OpenSSL distribution should be validated manually
with the PGP signatures43 published by the OpenSSL team with the distributions
(ftp://ftp.openssl.org/source/) to guard against a corrupted source distribution. Note this check is
separate and distinct from the CMVP mandated FIPS 140-2 source file integrity check (§4.1.3).

The PGP signatures are contained in the file

openssl­fips­2.0.tar.gz.asc

This digital signature of the distribution file can be verified against the OpenSSL PGP public key
by using the PGP or GPG applications (GPG can be obtained free of charge from
http://www.gnupg.org/)44. This validation consists of confirming that the distribution was signed by
a known trusted key as identified in Appendix A, “OpenSSL Distribution Signing Keys”.

First, find out which key was used to sign the distribution. Any of several different valid keys may
have been used for this purpose. The "hexadecimal key id", an identifier used for locating keys on
the keystore servers, is displayed when attempting to verify the distribution. If the signing key is
not already in your keyring the hexadecimal key id of the unknown key will still be displayed:

43Note this PGP/GPG signature check is not related to any of the FIPS integrity checks!
44Note that although PGP and GPG are functionally interoperable, some versions of PGP are currently FIPS 140-2
validated and no versions of GPG are. For the purposes of FIPS 140-2 validation a validated version of PGP must be
used. The examples given here are applicable to both GPG and PGP.

Page 59 of 222

$ gpg openssl­1.0.1z.tar.gz.asc
gpg: Signature made Tue Sep 30 09:00:37 2009 using RSA key ID 49A563D9
gpg: Can't check signature: public key not found
$

http://www.gnupg.org/
ftp://ftp.openssl.org/source/

User Guide - OpenSSL FIPS Object Module v2.0

Example 4.1.2a - Find Id of Signing Key

In this example the key id is 0x49A563D9. Next see if this key id belongs to one of the OpenSSL
core team members authorized to sign distributions. The authorized keys are listed in Appendix A.

Note that some older versions of gpg will not display the key id of an unknown public key; either
upgrade to a newer version or load all of the authorized keys.

If the hexadecimal key id matches one of the known valid OpenSSL core team keys then download
and import the key.

PGP keys can be downloaded interactively from a keyserver web interface or directly by the pgp or
gpg commands.

The hexadecimal key id of the team member key (for example, the search string "0x49A563D9"
can be used to download the OpenSSL PGP key from a public keyserver
(http://www.keyserver.net/, http://pgp.mit.edu, or others). Keys can be downloaded interactively to
an intermediate file or directly by the pgp or gpg program.

Once downloaded to an intermediate file, markcox.key in this example, the key can be imported
with the command:

Example 4.1.2b - Importing a Key from a Downloaded file

These examples assume the pgp or gpg software is installed. The key may also be imported
directly into your keyring:

Example 4.1.2c - PGP Key Import

Note that at this point we have not yet established that the key is authentic or that the distribution
was signed with that key; a key that might be authentic has been obtained in a form where it can be
utilized for further validation.

Page 60 of 222

$ gpg ­­keyserver pgp.mit.edu ­­recv­key 49a563d9
gpg: key 49A563D9: public key "Mark Cox <mjc@redhat.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

$ gpg ­­import markcox.key
gpg: key 49A563D9: public key "Mark Cox <mjc@redhat.com>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
$

http://pgp.mit.edu/
http://www.keyserver.net/

User Guide - OpenSSL FIPS Object Module v2.0

To verify that the distribution file was signed by the imported key use the pgp or gpg command
with the signature file as the argument, with the distribution file also present in the same directory:

Example 4.1.2d - PGP File Signature Verification

In this example the validity of the file signature with respect to the key was verified. That is, the
target file openssl­fips­2.0.tar.gz was signed by the key with id 49A563D9. The
warning message in this example is alerting the key is not part of the "web of trust", a relational
ranking system based on manually assigned confidence levels. Instead of relying on the web of
trust which will differ from one user to another, the key should be matched directly to a list of
known valid keys.

The final step of verification is to establish that the signing key is authentic. To do so, confirm the
key fingerprint of the key which signed the distribution is one of the valid OpenSSL core team keys
listed in Appendix A, “OpenSSL Distribution Signing Keys”. In this example, 7B 79 19 FA 71 6B
87 25 0E 77 21 E5 52 D9 83 BF is in fact authentic according to Appendix A.
4.1.3 Verifying Integrity of the Full Distribution for the FIPS Object Module

IMPORTANT NOTE: This step has changed from prior validations, and is required
per the OpenSSL Security Policy!

The validation now includes a requirement for “secure installation.” In practice that means the
distribution file should be obtained directly from the vendor (OSF) on physical media. A more
complete discussion of this requirement including the elaborate steps needed when the distribution
is not obtained on physical media can be found in §6.6.

Physical media can be requested from OSF at:

OpenSSL Software Foundation, Inc.
1829 Mount Ephraim Road

Adamstown, MD 21710

Page 61 of 222

$ gpg /work/build/openssl/openssl­1.0.1.tar.gz.asc
gpg: Signature made Tue Sep 30 09:00:37 2009 using RSA key ID 49A563D9
gpg: Good signature from "Mark Cox <mjc@redhat.com>"
gpg: aka "Mark Cox <mark@awe.com>"
gpg: aka "Mark Cox <mark@c2.net>"
gpg: aka "Mark Cox <mcox@c2.net>"
gpg: aka "Mark Cox <mark@ukweb.com>"
gpg: aka "Mark Cox <mjc@apache.org>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 7B 79 19 FA 71 6B 87 25 0E 77 21 E5 52 D9 83 BF
$

User Guide - OpenSSL FIPS Object Module v2.0

USA
+1 877-OPENSSL
(+1 877 673 6775)

verifycd@openssl.com

An E-mail containing the full postal address is the preferred point of contact. It is our intention to
provide these CDs at no cost as long as we are able. We ask that you only request this CD if you
plan to use it for generation of FIPS 140-2 validated cryptography in a context that requires such
compliance. For any other purposes the downloaded files are bit-for-bit identical and will generate
exactly the same results.

The simpler verification requirement for prior OpenSSL FIPS Object Module validations, namely:

The HMAC-SHA-1 digest of the distribution file is published in Appendix B of the
Security Policy. The Security Policy can be found at NIST,
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf.

This digest should be calculated and compared against the published value, as in:

$ env OPENSSL_FIPS=1 openssl sha1 -hmac etaonrishdlcupfm openssl-fips-2.0.tar.gz

where the openssl command is from a recent version of OpenSSL that supports the
­hmac option45. If you don't have the openssl command yet it will be generated by
the build process.

...is now specifically disallowed. With the new requirement use of the openssl command, even
from another version of the OpenSSL FIPS Object Module, is no longer permitted as in general it
will not have been obtained via a "secure installation".

4.2 Building and Installing the FIPS Object Module with OpenSSL
(Unix/Linux)
Due to significant differences in the two basic operating system families, Unix®/Linux® and
Microsoft® Windows® platforms are discussed separately. Instructions for Windows® are given in
§4.3. In addition, a Mac OS X example is offered at E.1 Apple OS X Support; and an iOS example
is given in Error: Reference source not found.

4.2.1 Building the FIPS Object Module from Source

Next build the FIPS Object Module from source. The FIPS 140-2 validation specific code is
incorporated into the resulting FIPS Object Module when the fips configuration option is

45The OPENSSL_FIPS=1 environment variable will enable FIPS mode for an openssl command built from a FIPS
capable OpenSSL distribution.

Page 62 of 222

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
mailto:verifycd@openssl.com

User Guide - OpenSSL FIPS Object Module v2.0

specified. Per the conditions of the FIPS 140-2 validation only two configuration commands may
be used:

./config
or

./config no­asm

where the specific option used depends on the platform (see §3.2.1). Note that “fips canister” is
implied, so there is no need for either ./config fipscanisterbuild or ./config fips.

The environment variable FIPSDIR, if present, points to the pathname of the location where the
validated module will be installed. This location defaults to /usr/local/ssl/fips­2.0.

The specification of any other options on the command line, such as

./config shared

is not permitted. Note that in the case of the “shared” option position independent code is
generated by default so the generated FIPS Object Module can be included in a shared library46.

Note that as a condition of the FIPS 140-2 validation no other user specified configuration options
may be specified. This restriction means that an optional install prefix cannot be specified –
however, there is no restriction on subsequent manual relocation of the generated files to the
desired final location.

Then:

make

to generate the FIPS Object Module file fipscanister.o, the digest for the FIPS Object
Module file, fipscanister.o.sha1, and the source file used to generate the embedded digest,
fips_premain.c. The fipscanister.o, fipscanister.o.sha1, and
fips_premain.c files are intermediate files (i.e., used in the generation of an application but
not referenced by that application at runtime). The object code in the fipscanister.o file is
incorporated into the runtime executable application at the time the binary executable is generated.

This should also be obvious, but modifications to any of the intermediate files generated by the
“./config” or “make” commands are not permitted. If the original distribution is modified, or
if anything other than those three specified commands are used, or if any intermediate files are
modified, the result is not FIPS validated.

46If not for the FIPS validation prohibition, on most but not all platforms the “shared” option could safely be chosen
regardless of the intended use. See Appendix E for one known exception.

Page 63 of 222

User Guide - OpenSSL FIPS Object Module v2.0

4.2.2 Installing and Protecting the FIPS Object Module

The system administrator should install the generated fipscanister.o,
fipscanister.o.sha1, and fips_premain.c files in a location protected by the host
operating system security features. These protections should allow write access only to authorized
system administrators (FIPS 140-2 Crypto Officers) and read access only to authorized users.

For Unix® based or Linux® systems this protection usually takes the form of root ownership and
permissions of 0755 or less for those files and all parent directories. When all system users are not
also authorized users the world (public) read and execute permissions should be removed from
these files.

The usual

make install

will install the fipscanister.o, fipscanister.o.sha1, fips_premain.c, and
fips_premain.c.sha1 files in the target location (typically /usr/local/ssl/fips­
2.0/lib/ for Unix® based or Linux® systems, or as specified by the FIPSDIR environment
variable) with the appropriate permissions to satisfy the security requirement. These four files
constitute the validated FIPS Object Module; the other files also installed by this command are not
validated. Note that it is also permissible to install these files in other locations by other means,
provided that they are protected with appropriate permissions as noted above:

cp fipscanister.o fipscanister.o.sha1 <target­directory>
cp fips_premain.c fips_premain.c.sha1 <target­directory>

Note that fipscanister.o can either be statically linked into an application binary executable,
or statically linked into a shared library.

4.2.3 Building a FIPS Capable OpenSSL

Once the validated FIPS Object Module has been generated it is usually combined with an
OpenSSL distribution in order to provide the standard OpenSSL API. Any 1.0.1 or 1.0.2 release
can be used for this purpose. The commands

./config fips <...other options...>
make <...options...>
make install

Page 64 of 222

User Guide - OpenSSL FIPS Object Module v2.0

will build and install the new OpenSSL without overwriting the validated FIPS Object Module
files. The FIPSDIR environment variable or the --with­fipsdir command line option can
be used to explicitly reference the location of the FIPS Object Module (fipscanister.o).

The combination of the validated FIPS Object Module plus an OpenSSL distribution built in this
way is referred to as a FIPS capable OpenSSL, as it can be used either as a drop-in replacement for
a non-FIPS OpenSSL or for use in generating FIPS mode applications.

Note that a standard OpenSSL distribution built for use with the FIPS Object Module must have the
./config fips option specified. Other configuration options may be specified in addition to
fips, but omission of the fips option will cause errors when using the OpenSSL libraries with
the FIPS Object Module.

4.3 Building and Installing the FIPS Object Module with OpenSSL
(Windows)

The build procedure for Windows is similar to that for the regular OpenSSL product, using MSVC
and NASM for compilation. Note MASM is not supported.

The second stage uses VC++ to link OpenSSL 1.0.1 or 1.0.2 against the installed FIPS module, to
obtain the complete FIPS capable OpenSSL. Both static and shared libraries are supported.

4.3.1 Building the FIPS Object Module from Source

Build the FIPS Object Module from source:

ms\do_fips [no­asm]

where the no­asm option may or may not be present depending on the platform (see §3.2.1).

Note that as a condition of the FIPS 140-2 validation no other user specified configuration options
may be specified.

4.3.2 Installing and Protecting the FIPS Object Module

The system administrator should install the generated fipscanister.lib,
fipscanister.lib.sha1, and fips_premain.c files in a location protected by the host
operating system security features. These protections should allow write access only to authorized
system administrators (FIPS 140-2 Crypto Officers) and read access only to authorized users.

Page 65 of 222

User Guide - OpenSSL FIPS Object Module v2.0

For Microsoft® Windows® based systems this protection can be provided by ACLs limiting write
access to the administrator group. When all system users are not authorized users the Everyone
(public) read and execute permissions should be removed from these files.

4.3.3 Building a FIPS Capable OpenSSL

The final stage is VC++ compilation of a standard OpenSSL distribution to be referenced in
conjunction with the previously built and installed FIPS Object Module.

Download an OpenSSL 1.0.1 or 1.0.2 distribution. Follow the standard Windows® build procedure
except that instead of the command:

perl Configure VC­WIN32

do:

perl Configure VC­WIN32 fips ­­with­fipsdir=c:\fips\path

where "c:\fips\path" is wherever the FIPS module from the first stage was installed. Static
and shared library builds are supported.

This command is followed by the usual

ms\do_nasm

and

nmake ­f ms\ntdll.mak

to build the shared libraries only, or

nmake ­f ms\nt.mak

to build the OpenSSL static libraries. The standard OpenSSL build with the fips option will use a
base address for libeay32.dll of 0xFB00000 by default. This value was chosen because it is
unlikely to conflict with other dynamically loaded libraries. In the event of a clash with another
dynamically loaded library which will trigger runtime relocation of libeay32.dll, the integrity
check will fail with the error

FIPS_R_FINGERPRINT_DOES_NOT_MATCH_NONPIC_RELOCATED

A base address conflict can be resolved by shuffling the other DLLs or re-compiling OpenSSL with
an alternative base address specified with the --with­baseaddr= option.

Page 66 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Note that the developer can identify which DLLs are relocated with the Process Explorer utility
from http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/ProcessExplorer.mspx.

The resulting FIPS capable OpenSSL can be used for shared or static linking. The shared library
built (when ms\ntdll.mak is used as the Makefile) links fipscanister.lib into
libeay32.dll using fipslink.pl in accordance with the requirements of the Security
Policy.

Page 67 of 222

http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/ProcessExplorer.mspx
http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/ProcessExplorer.mspx

User Guide - OpenSSL FIPS Object Module v2.0

5. Creating Applications Which Reference the FIPS Object
Module

Only minor modifications are needed to adapt most applications that currently use OpenSSL for
cryptography to use the FIPS capable OpenSSL with the FIPS Object Module. The checklist in
Figure 4 summarizes the modifications which are covered in more detail in the following
discussion:

Figure 4 - Application Checklist

Appendix C contains a simple but complete sample application utilizing the FIPS Object Module
with OpenSSL as described in this section.

5.1 Exclusive Use of the FIPS Object Module for Cryptography

In order for the referencing application to claim FIPS 140-2 validation, all cryptographic functions
utilized by the application must be provided exclusively by the FIPS Object Module. The
OpenSSL API used in conjunction with the FIPS Object Module in FIPS mode is designed to
automatically disable all non-FIPS cryptographic algorithms.

5.2 FIPS Mode Initialization

Somewhere very early in the execution of the application FIPS mode must be enabled. This should
be done by invocation of the FIPS_mode_set() function call, either directly or indirectly as in
these following examples.

Note that it is permitted to not enable FIPS mode, in which case OpenSSL should function as it
always has. The application will not, of course, be operating in validated mode.

The FIPS_mode_set() function call when invoked with any positive argument will enable the FIPS
mode of operation. Depending on the argument it may also enable additional restrictions. For
example, an argument of 1 will enable the basic FIPS mode where all FIPS approved algorithms are
available. An argument of FIPS_SUITEB (2) will restrict the available algorithms to those
allowed by the Suite B specification.

Option 1: Direct call to FIPS_mode_set()

Page 68 of 222

q Use the FIPS Object Module for all cryptography
q Initialize FIPS mode with FIPS_mode_set()
q Generate application executable object with embedded FIPS

Object Module digest
q Protect critical security parameters

User Guide - OpenSSL FIPS Object Module v2.0

Option 2: Indirect call via OPENSSL_config()

The OPENSSL_config() call can be used to enable FIPS mode via the standard openssl.conf
configuration file:

Page 69 of 222

#ifdef OPENSSL_FIPS
if(options.no_fips <= 0)
{
if(!FIPS_mode_set(1))
{
ERR_load_crypto_strings();
ERR_print_errors_fp(stderr);
exit(1);
 }
else
fprintf(stderr,"*** IN FIPS MODE ***\n");
}
#endif

Example 5.2a – Direct Invocation of FIPS_mode_set()

OPENSSL_config("XXXX_conf")

#ifdef OPENSSL_FIPS
if (FIPS_mode())
{

fprintf(stderr,"*** IN FIPS MODE ***\n");
}
#endif

Example 5.2b – Indirect Invocation of FIPS_mode_set()

User Guide - OpenSSL FIPS Object Module v2.0

The call to OPENSSL_config("XXXX_conf") will check the system default OpenSSL
configuration file for a section XXXX_conf. If section XXXX_conf is not found then the section
defaults to openssl_conf. The resulting section is checked for an alg_section specification
naming a section that can contain an optional “fips_mode = yes” statement.

Note that OPENSSL_config() has no return code. If a configuration error occurs it will write to
STDERR and forcibly exit the application. Applications that want finer control can call the
underlying functions such as CONF_modules_load_file() directly.

5.3 Generate Application Executable Object

Note that applications interfacing with the FIPS Object Module are outside of the cryptographic
boundary.

When statically linking the application with the FIPS Object Module two steps are necessary:

1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified
against the installed digest to ensure the integrity of the FIPS Object Module.

2. A HMAC-SHA1 digest of the FIPS Object Module code and read-only data must be generated
and embedded in the application executable object for use by the FIPS_mode_set()
function at runtime initialization.

Note the application that statically links the Module can be a shared library (DLL for Microsoft
Windows).

When the FIPS Object Module has been incorporated in a shared library then subsequent dynamic
linking of an application to that shared library is done the usual way and these steps are irrelevant.

Page 70 of 222

 # Default section
XXXX_conf = XXXX_options

...

[XXXX_options]
alg_section = algs

...

[algs]
fips_mode = yes

...
Example 5.2c – Sample openssl.conf File

User Guide - OpenSSL FIPS Object Module v2.0

For static linking the embedding of the runtime digest can be accomplished in one of two ways:

1. Two Step Linking with Interim Runtime Executable

Earlier versions of the FIPS Object Module supported only this technique, where an initial link
is performed to create an interim executable which is then executed in the target environment to
calculate and display the digest value. A second link is performed to create the final executable
with the embedded digest value. This two step process is typically performed by the fipslink.pl
utility.

This two step technique works well enough for native builds, where the build system and
runtime target system are the same, but is awkward at best for cross-compilation due to the need
to move the interim executable to the target system, execute it, and retrieve the calculated
digest.

This technique does have the advantage of working (at least in principle) for all platforms.

2. In-place Editing of the Object Code

In order to ease the task of cross-compiling the FIPS Object Module, a new technique was
developed. Instead of determining the runtime digest value by actual execution on the target
system, a utility is used to analyze the compiled object code on the build system and calculate
the digest. This utility is platform (or object code format) sensitive. For ELF binaries it is called
incore, for Microsoft Windows msincore, for OS X and iOS incore_macho.

5.3.1 Linking under Unix/Linux

The OpenSSL distribution contains a utility, fipsld, which both performs the check of the FIPS
Object Module and generates the new HMAC-SHA-1 digest for the application executable. The
fipsld utility has been designed to act as a front end for the actual compilation and linking
operations in order to ease the task of modifying an existing software project to incorporate the
FIPS Object Module. It can be used to create either binary executables or shared libraries.

The fipsld command requires that the CC and/or FIPSLD_CC environment variables be set,
with the latter taking precedence. These variables allow a typical Makefile to be used without
modification by specifying a command of the form

make CC=fipsld FIPSLD_CC=gcc

where fipsld is invoked by make in lieu of the original compiler and linker (gcc in this
example), and in turn invokes that compiler where appropriate. Note that CC=fipsld can be
passed to autoconf configure scripts as well.

Page 71 of 222

User Guide - OpenSSL FIPS Object Module v2.0

This type of command line macro overloading will work for many smaller software projects. The
makefile can also be modified to achieve the same macro substitutions. Depending on the form of
the Makefile this substitution may be as simple as defining FIPSLD_CC to reference the actual C
compiler and redefining the CC macro to reference fipsld:

FIPSLD_CC = $(CC)
CC = fipsld

.

.

.
<application>: $(OBJS)

$(CC) $($CFLAGS) ­o $@ $(OBJS) $(LIBCRYPTO) ...

Setting CC=fipsld is appropriate when the link rules rely on $(CC) instead of ld to produce the
executable images, but in some cases it may be desirable or necessary to not redefine the $(CC)
macro variable. A typical makefile rule referencing fipsld directly for the link step would look
something like47:

OPENSSLDIR = /usr/local/ssl/fips­2.0
FIPSMODULE = $(OPENSSLDIR)/lib/fipscanister.o

.

.

.
<application>: $(OBJS) $(FIPSMODULE)
 env FIPSLD_CC=$(CC) fipsld $(CFLAGS) ­o $@ $(OBJS) \

$(LIBS) $(LIBCRYPTO)

Even though the fipsld command name implies use as a replacement for the ld command, it
also invokes the C compiler between the two link stages, hence fipsld can also replace $(CC)
in rules producing .o object files, replacing both compilation and linking steps for the entire
Makefile, i.e.:

<application>.o: <application>.c
$(CC) $(CFLAGS) ­c <application>.c ...

<application>: $(OBJS)
ld ­o $@ $(OBJS) $(LIBCRYPTO) ...

becomes

47The use of env is actually redundant in a Makefile context, but is specified here to give a command line also valid
for non-Bourne shells.

Page 72 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<application>: <application>.c
env FIPSLD_CC=$(CC) fipsld $(CFLAGS) ­o $@ $@.c \

$(LIBCRYPTO) ...

Larger software projects are likely to prefer to modify only the Makefile rule(s) linking the
application itself, leaving other Makefile rules intact. For these more complicated Makefiles the
individual rules can be modified to substitute fipsld for just the relevant compilation linking
steps.

The fipsld command is designed to locate fipscanister.o automatically. It will verify that
the HMAC-SHA-1 digest in file fipscanister.o.sha1 matches the digest generated from
fipscanister.o, and will then create the file <application> containing the object code
from fipscanister.o, and embedded within that the digest calculated from the object code
and data in fipscanister.o .

At runtime the FIPS_mode_set() function compares the embedded HMAC-SHA-1 digest with
a digest generated from the text and data areas. This digest is the final link in the chain of validation
from the original source to the application executable object file.

5.3.2 Linking under Windows

For a shared library application just linking with the DLL is sufficient. Linking an application with
the static libraries involves a bit more work, and can be complicated by the fact that GUI based
tools are often used for such linking.

For the Windows® environment a perl script fipslink.pl is provided which performs a
function similar to fipsld for Unix®/Linux®. Several environment variables need to be set:

FIPS_LINK is the linker name, normally “link”

FIPS_CC is the C compiler name, normally “cl”

FIPS_CC_ARGS is a string of C compiler arguments for compiling fips_premain.c

PREMAIN_DSO_EXE should be set to the path to fips_premain_dso.exe if a DLL is
being linked (can be omitted otherwise)

PREMAIN_SHA1_EXE is the full path to fips_standalone_sha1.exe

FIPS_TARGET is the path of the target executable or DLL file

Page 73 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPSLIB_D is the path to the directory containing the installed FIPS module

When these variables are specified fipslink.pl can be called in the same way as the standard
linker. It will automatically check the hashes, link the target, generate the target in-core hash, and
link a second time to embed the hash in the target file.

The static library Makefile ms\nt.mak in the OpenSSL distribution gives an example of the
usage of fipslink.pl.

5.4 Application Implementation Recommendations

This section describes additional steps not strictly required for FIPS 140-2 validation but
recommended as good practice.

Provide an Indication of FIPS Mode

Security and risk assessment auditors will want to verify that an application utilizing cryptography
is using FIPS 140-2 validated software in a FIPS compliant mode. Many such applications will
superficially appear to function the same whether built with a non-FIPS OpenSSL, when built with
the FIPS Object Module and running in non-FIPS mode, and when built with the FIPS Object
Module and running in FIPS mode.

As an aid to such reviews the application designer should provide a readily visible indication that
the application has initialized the FIPS Object Module to FIPS mode, after a successful return from
the FIPS_mode_set() API call. The indication can take the form of a tty or stdout
message, a syslog entry, or an addition to a protocol greeting banner. For example a SSH server
could print a protocol banner of the form:

SSH­2.0­OpenSSH_3.7.1p2 FIPS

to provide an easily referenced indication that the server was properly initialized to FIPS mode.

Graceful Avoidance of Non-FIPS Algorithms

Many applications allow end user and/or system administrator configurable specification of
cryptographic algorithms. The OpenSSL API used with the FIPS Object Module in FIPS mode is
designed to return error conditions when an attempt is made to use a non-FIPS algorithm via the
OpenSSL API. These errors may result in unexpected failure of the application, including fatal
assert errors for algorithm function calls lacking a testable return code. However, there is no
guarantee that the OpenSSL API will always return an error condition in every possible permutation
or sequence of API calls that might invoke code relating to non-FIPS algorithms. In any case, it is
the responsibility of the application programmer to avoid the use of non-FIPS algorithms.
Unexpected run-time errors can be avoided if the cipher suites or other algorithm selection options

Page 74 of 222

User Guide - OpenSSL FIPS Object Module v2.0

are defaulted to FIPS approved algorithms, and if warning or error messages are generated for any
end user selection of non-FIPS algorithms.

5.5 Documentation and Record-keeping Recommendations

The supplier or developer of a product based on the FIPS Object Module cannot claim that the
product itself is FIPS 140-2 validated under certificate #1747. Instead a statement similar to the
following is recommended:

Product XXXX uses an embedded FIPS 140-2-validated cryptographic module (Certificate
#1747) running on a YYYY platform per FIPS 140-2 Implementation Guidance section G.5
guidelines.

where XXXX is the product name (“Cryptomagical Enfabulator v3.1®”) and YYYY is the host
operating system (“Solaris 10”).

This statement asserts "user affirmation" of the validation per Section G.5 of the Implementation
Guidance document.

While not strictly required by the Security Policy or FIPS 140-2, a written record documenting
compliance with the Security Policy would be a prudent precaution for any party generating and
using or distributing an application that will be subject to FIPS 140-2 compliance requirements.
This record should document the following:

For the FIPS Object Module generation:

1. Where the openssl­fips­2.0.tar.gz distribution file was obtained from, and how
the HMAC SHA-1 digest of that file was verified per Appendix B of the Security Policy.

2. The host platform on which the fipscanister.o, fipscanister.o.sha1,
fips_premain.c, and fips_premain.c.sha1 files were generated. This platform
identification at a minimum should note the processor architecture (“x86”, “PA-RISC”,...),
the operating system (“Solaris 10”, “Windows XP”,...), and the compiler (“gcc 3.4.3”,...).

3. An assertion that the fipscanister.o module was generated with the three commands
./config [no­asm]
make
make install

and specifically that no other build-time options were specified.

4. A record of the HMAC SHA-1 digest of the fipscanister.o (the contents of the
fipscanister.o.sha1 file). That digest identifies this specific FIPS Object Module;

Page 75 of 222

User Guide - OpenSSL FIPS Object Module v2.0

if you immediately build another module it will have a different digest and is a different
FIPS Object Module.

5. An assertion that the contents of the distribution file were not manually modified in any
way at any time during the build process.

For the application in which the FIPS Object Module is embedded:

1. A record of the HMAC SHA-1 digest of the fipscanister.o that was embedded in the
application.

2. An assertion that the application does not utilize any cryptographic implementations other
that those provided by the FIPS Object Module or contained in the FIPS capable OpenSSL
1.0.1 or 1.0.2 libraries (where non-FIPS algorithms are disabled in FIPS mode).

3. A description of how the application clearly indicates when FIPS mode is enabled
(assuming that FIPS mode is a runtime selectable option). Note that the application must
call FIPS_mode_set(), whether that call is triggered by runtime options or not.

5.6 When is a Separate FIPS 140-2 Validation Required?

When a decision is made on whether a particular IT solution is FIPS 140-2 compliant, multiple
factors need to be taken into account, including the FIPS Pub 140-2 standard, FIPS 140-2 Derived
Test Requirements, CMVP FAQ and Implementation Guidance. The ultimate authority in this
process belongs to the CMVP. The CMVP provides its current interpretations and guidelines as to
the interpretation of the FIPS 140-2 standard and the conformance testing/validation process on its
public web site http://csrc.nist.gov/groups/STM/cmvp/.

In particular, the only official document known to us which discusses use of embedded
cryptographic modules is the CMVP FAQ available at
http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPFAQ.pdf. This FAQ (Frequently Asked
Questions document) discusses incorporation of another vendor's cryptographic modules in a
subsection of Section 2.2.1 entitled "Can I incorporate another vendor's validated cryptographic
module". In particular, the following is specified:

"Yes. A cryptographic module that has already been issued a FIPS 140-1 or FIPS 140-2
validation certificate may be incorporated or embedded into another product. The new
product may reference the FIPS 140-1 or FIPS 140-2 validated cryptographic module so
long as the new product does not alter the original validated cryptographic module. A
product which uses an embedded validated cryptographic module cannot claim itself to be
validated; only that it utilizes an embedded validated cryptographic module. There is no
assurance that a product is correctly utilizing an embedded validated cryptographic module
- this is outside the scope of the FIPS 140-1 or FIPS 140-2 validation."

Page 76 of 222

http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPFAQ.pdf
http://csrc.nist.gov/cryptval/

User Guide - OpenSSL FIPS Object Module v2.0

Note that the CMVP FAQ does specify that a FIPS 140-1/2 validated module may be incorporated
into another product. It then specifies that making a decision on whether a product is correctly
utilizing an embedded module is outside of the scope of the FIPS 140-1 or FIPS 140-2 validation.

A subsection of Section 2.1 of the CMVP FAQ entitled "A vendor is selling me a crypto solution -
what should I ask?" states:

"Verify with the vendor that the application or product that is being offered is either a
validated cryptographic module itself (e.g. VPN, SmartCard, etc) or the application or
product uses an embedded validated cryptographic module (toolkit, etc). Ask the vendor to
supply a signed letter stating their application, product or module is a validated module or
incorporates a validated module, the module provides all the cryptographic services in the
solution, and reference the modules validation certificate number."

It is specified that the module provides "all the cryptographic services in the solution". It is not
specified that the module provides "all the security-relevant services in the solution". A typical IT
product may provide a variety of services, both cryptographic and non-cryptographic. A network
protocol such as SSH or TLS provides both cryptographic services such as encryption and network
services such as transmission of data packets, packet fragmentation, etc.

The FIPS 140-2 standard is focused on the cryptography. There are many generic security relevant
functionalities such as anti-virus protection, firewalling, IPS/IDS and others which are not currently
covered by the FIPS 140-2 standard. An anti-virus solution which uses a cryptographic module for
its operations can satisfy requirements of the FIPS 140-2 by delegating its cryptographic functions
to an embedded FIPS 140-2 validated module. Including the entire anti-virus solution in the FIPS
140-2 validation would hardly improve the overall security since FIPS 140-2 does not currently
have requirements in the field of anti-virus protection. In a similar fashion, the FIPS 140-2
standard does not currently have requirements related to network vulnerabilities or denial of service
attacks.

Validated modules typically provide algorithm implementations only, no network functionality such
as IPSec, SSH, TLS etc. This does not, for example, prevent Microsoft Windows from providing
IPSec/IKE and TLS/SSL functionality. Therefore, for example, an OpenSSH based product
properly using the OpenSSL FIPS Object Module would not differ from Microsoft using its
Microsoft Kernel Mode Crypto Provider in Microsoft IPSec/IKE client which is shipped with every
copy of Windows. If an application product delegates all cryptographic services to a validated
module the entire product will be FIPS compliant.

Since the CMVP does not have a formal program for validation of IT solutions with embedded
FIPS 140-2 modules, the question is one of how the actual compliance/non-compliance is
determined. In practice the compliance is determined by the federal agency/buyer selecting the
solution. During the process the customer may contact the CMVP, testing labs or security experts
for an opinion. In many cases, though, the buyers make such decisions independently. Here it

Page 77 of 222

User Guide - OpenSSL FIPS Object Module v2.0

should be noted that FIPS 140-2 is only a baseline and each federal agency may establish its own
requirements exceeding the requirements of FIPS 140-2. In the particular example of network
protocols federal agencies generally do accept networking products (IPSec/TLS/SSH etc.) with
embedded FIPS 140-2 validated cryptographic software modules or hardware cards as FIPS 140-2
compliant.

For those vendors desiring a “sanity check” of the compliance status of their OpenSSL FIPS Object
Module based product, the OpenSSL Software Foundation (OSF) can perform a review and provide
an opinion letter stating whether, based on information provided by the vendor, that product
appears to OSF to satisfy the requirements of the OpenSSL FIPS Object Module Security Policy.
This opinion letter can include a review by one or more CMVP test labs and/or a OpenSSL team
member as appropriate. This opinion letter clearly states that only the CMVP can provide an
authoritative ruling on FIPS 140-2 compliance.

5.7 Common Issues and Misconceptions
In the years since the first versions of the OpenSSL FIPS Object Module were validated we've seen
new users of the FIPS module struggle with some of the same issues over and over again. Here we
attempt to offer some possibly useful advice:

5.7.1 Don't Fight It
Rightly or wrongly, the Security Policy very clearly mandates specific fixed build commands.
Normal and natural practice in other contexts is to use build-time configuration options to control
aspects of the build process, but that is not an option here. Instead think about the end result you
want to accomplish and whether that can be done by any other means. For instance, the default
install location can't be specified by the usual --prefix= build-time configuration option. But,
once created via the canonical commands you can copy the fipscanister.o and associated files
somewhere else. So, one option is to create a new build system, build the FIPS module with
whatever permissions necessary to write to the default --prefix location, copy from there to the
desired destination, and then discard the build system. Yes, that's a silly waste of time from a
technical software developer objective, but you wouldn't be using the FIPS module in the first place
on purely technical considerations.

5.7.2 Don't Overthink It
We have seen quite a few software vendors make the mistake of trying to force the FIPS module
build process into an in-house configuration management scheme. Our recommendation: don't do
that. There is no point in trying to manage the individual source files of the FIPS module source
tarball because the canonical build process mandates that you start with the original tarball,
openssl-fips-2.0.tar.gz, which has a fixed digest and cannot be modified.

Likewise there is no point in constantly rebuilding the FIPS module from source. While legal, as
long as the Security Policy build process is followed, there is no benefit to be gained from the
generation of multiple binary modules. The source code can never change (the usual reason for a

Page 78 of 222

User Guide - OpenSSL FIPS Object Module v2.0

structured build-from-source process), and per the recommendations in §5.5 each distinct binary
FIPS module should be separately tracked.

In lieu of trying to jam the mandated FIPS module build process into an existing elaborate in-house
configuration management process, we recommend that the binary FIPS module be generated by
hand one time only (per distinct platform) in a solemn documented ceremony, and that the resulting
binary files be managed through the formal source/version/configuration control process.

6. Technical Notes

This section has technical details of primary interest to the FIPS module developers and more
advanced users. The typical application developer will not need to reference this material.

6.1 DRBGs

With very rare exceptions the internal functioning of the DRBGs is irrelevant to the end user and
application software. In FIPS mode DRBGs are transparently used by the OpenSSL RAND API
and applications will automatically use them.

Random numbers are critical for the proper operation of cryptographic software and hardware. The
DRBG or Deterministic Random Bit Generator is intended as a higher quality replacement for the
earlier PRNGs or Pseudo-Random Number Generators and is defined by SP 800-90A.

6.1.1 Overview

The way entropy is gathered and used for the DRBG is part of the FIPS capable OpenSSL so it can
be modified outside the context of the FIPS 140-2 validation. The current version is in
crypto/rand/rand_lib.c.

There is a "default DRBG" whose context is accessed using FIPS_get_default_drbg().
This default DRBG is mapped to the RAND_*() calls. By default, the FIPS Object Module will
use the AES/CTR generator from SP800-90A, Section 10.2, DRBG Mechanisms Based on Block
Ciphers. The default generator can be overridden by the calling application at runtime via the
function RAND_set_fips_drbg_type(). The default is equivalent to CTR_DRBG using
AES with a 256 bit key and a derivation function.

The actual default DRBG type can also be specified via a preprocessor macro when the "FIPS
capable" OpenSSL is built:

#ifndef OPENSSL_DRBG_DEFAULT_TYPE
#define OPENSSL_DRBG_DEFAULT_TYPE NID_aes_256_ctr
#endif
#ifndef OPENSSL_DRBG_DEFAULT_FLAGS

Page 79 of 222

User Guide - OpenSSL FIPS Object Module v2.0

#define OPENSSL_DRBG_DEFAULT_FLAGS DRBG_FLAG_CTR_USE_DF
#endif

This might be useful in environments where some DRBG type is mandated by local
policy. For example, to use the HMAC DRBG with sha256 by default:

./config -DOPENSSL_DRBG_DEFAULT_TYPE=NID_hmacWithSHA256 \
-DOPENSSL_DRBG_DEFAULT_FLAGS=0 (other options)

The RAND_add() function just seeds the OpenSSL non-standard PRNG and does not feed into
the DRBG directly. However that function would be used if the DRBG was reseeded. The reason it
does this is that the DRBG design does not permit the addition of "out of band" entropy; the
addition of entropy needs to be combined with a generate operation (additional input) or a full
reseed/reinstantiate (which would require the minimum entropy). Environments with a better
source of entropy (e.g. fast hardware RNG) could do far better.

The entropy callbacks are completely under application control so the calling application can
override the ones provided by default. They can be set by supplying a callback function to
FIPS_drbg_set_callbacks()after calling OPENSSL_init(). This callback function is
invoked whenever the DRBG requires additional entropy:

size_t (*get_entropy)(DRBG_CTX *ctx, unsigned char **pout,
 int entropy, size_t min_len, size_t max_len)

A call to this function requests entropy bits of entropy in a buffer of between min_len and
max_len size bytes inclusive. The values of these are mechanism specific and taken from
SP800-90 tables. This callback should then return the amount of data in the buffer *pout and the
length in the return value, or zero in case of being unable to retrieve sufficient entropy.

Few applications provide external entropy callbacks; those that do define a (*get_entropy)()
callback which should return at least two full "blocks" of entropy where a "block" refers to the
entropy source block length specified in FIPS_drbg_set_callbacks().

This is because the FIPS 140-2 mandated continuous PRNG test has to be applied to the entropy
source. It has to compare consecutive blocks (discarding the first) which means the entropy source
needs to supply a multiple of the block size.

Due to a bug in the callback code the "entropy" value passed is no correct, but as a workaround
applications can determine an appropriate entropy value for themselves. The solution isn't obvious
so a detailed discusson follows.

FIPS_drbg_get_strength() returns the strength of the DRBG context which is the number of bits of
entropy needed to seed the DRBG without the continuous PRNG test. When an application adds its
own entropy callbacks it has to tell the FIPS module what the block length of the entropy source is.

Page 80 of 222

User Guide - OpenSSL FIPS Object Module v2.0

So arguably the entropy parameter with the continuous PRNG test is:

FIPS_drbg_get_strength(dctx) + block_length * 8

But, that calculation determines a maximum value and an entropy source could conceivably supply
less. For instance, suppose we want 256 bits of entropy and the callback supplies it as high grade
entropy uniformly in a 32 byte buffer (the absolute minimum) and has a 16 byte block length. An
extra block is needed for the PRNG test so we should supply a 48 byte buffer (three blocks) and
effectively 384 bits of entropy.

Now suppose we have a low grade entropy source which provides just 1 bit of entropy per byte.
Again assume it is uniform (e.g. we don't get 8 bits of entropy in byte 1 and nothing in the next 7).
Again lets have a block size of 16 bytes. This time to get 256 bits of entropy the source must
provides it in a 256 byte buffer. An extra block is required which makes 272 bytes but because we
only have 1 bit of entropy per byte it just needs to supply 272 bits of entropy.

Once this call completes successfully the DRBG is instantiated at the appropriate (maximum)
security strength again taking values from SP800-90 and SP800-57.

We request random data from the caller of sufficient entropy for the security level of the DRBG.

When asymmetric algorithms are used (key generation, parameter generation and indeed signing
for DSA/ECDSA) we check that the RNG has sufficient security strength (as dictated by the
relevant standards) to perform the operation. Insufficient security strength is an error and the
operation cannot be performed.

There is a mechanism, "entropy draining", which causes the DRBG to automatically reseed after a
certain number of uses. See SP800-90 for details of how this operates. The function
FIPS_drbg_set_reseed_interval() can be used to modify the number of calls before
auto reseeding.

The function FIPS_rand_strength() returns the security strength of the default RNG (the
one used for key generation et. al.).

Individual operations (for example key generation) then check the security strength of the RNG and
return a fatal error if there is insufficient security strength to complete the operation. The values
used are from SP800-57.

This check is performed by the following functions:

fips_check_dsa_prng()
fips_check_rsa_prng()

Page 81 of 222

User Guide - OpenSSL FIPS Object Module v2.0

fips_check_ec_prng()

Currently there is no equivalent for DH. One could be added if required but it isn't clear how the
strengths should be compared when PKCS#3 DH is used.

There is no version for ECDH either but the only operation performed by that code (shared secret
computation) does not make use of the RNG.

By default the health checks are automatically performed every 224 generate operations; this count
can be modified (up or down) by the calling application via the
FIPS_drbg_set_check_interval() function. If a DRBG health check fails then
the DRBG is placed in an error state that can be cleared by uninstantiating and reinstantiating the
DRBG.

For the CTR DRBG a flag allows the optional use of a derivation function. Note the DRBG is
always instantiated at maximum security.

6.1.2 The DRBG API
All DRBG operations are performed through an opaque DRBG_CTX structure which corresponds to
an SP800-90 "instance". The function

DRBG_CTX *FIPS_drbg_new(int type, unsigned int flags);

allocates and initializes a new DRBG_CTX structure for DRBG. The "type" and "flags"
parameters determine the mechanism and primitives used and the security strength. Only the
maximum security strength is supported for each type: i.e. it is not possible to instantiate the DRBG
at lower than the maximum strength.

In addition to type specific values the "flags" field can be set to DRBG_FLAG_TEST to enable
"test mode". This mode disables periodic health checks and the continuous PRNG test. It is used for
internal purposes and to support algorithm validation testing. This flag MUST NOT be set for a live
instance.

Before a valid DRBG_CTX is returned to the application an extensive health check is performed on
a DRBG using the same mechanism and primitives. If the check fails an error is returned.

If the type parameter is set to 0 an uninitialized DRBG structure is returned. This structure may be
initialized by calling FIPS_drbg_init(). This function returns a valid DRBG_CTX structure if
it succeeds or NULL if it fails (for example a invalid type parameter).

DRBG Characteristics

Page 82 of 222

User Guide - OpenSSL FIPS Object Module v2.0

All four DRBGs defined by SP800-90 are implemented. The mechanisms, parameters and strength
are summarized below:

Hash DRBG

The type parameters NID_sha1, NID_sha224, NID_sha256, NID_sha384 and
NID_sha512 select the hash DRBG and the corresponding hash primitive. The SHA1 Hash
DRBG has a security strength of 128 bits, the SHA224 DRBG has a security strength of 192 bits
and all others 256 bits.

HMAC DRBG

The type parameters NID_hmacWithSHA1, NID_hmacWithSHA224,
NID_hmacWithSHA256, NID_hmacWithSHA384 and NID_hmacWithSHA512 select the
HMAC DRBG mechanism and associated hash primitive. Security strengths are the same as for
the Hash DRBG.

CTR DRBG

The type parameters NID_aes_128_ctr, NID_aes_192_ctr and NID_aes_256_ctr
select the CTR DRBG type using AES and the appropriate key length. TDES is not supported.
The security strength matches the number of bits in the key. For this DRBG type the flag
DRBG_FLAG_CTR_USE_DF is supported which enables the use of a derivation function. If this
flag is not set a derivation function is not used.

Dual EC DRBG

The type parameter is of the form (curve << 16) | hash. The curve value
NID_X9_62_prime256v1 corresponds to the curve P-256, NID_secp384r1 to P-384, and
NID_secp521r1 to P-521. The hash value should be set to the same value as for the Hash
DRBG. Thus (NID_secp384r1 << 16) | NID_sha224 corresponds to P-384 with hash
SHA-224. As indicated in SP800-90 SHA1 can only be used with P-256 and SHA-224 cannot be
used with P-521. P-256 has a security strength of 128 bits, P-384 192 bits and P-521 256 bits.

Note: Due to widely reported serious vulnerabilities Dual EC DRBG has been removed from recent
versions of the OpenSSL FIPS module.

General Functions

FIPS_drbg_init

The function

Page 83 of 222

User Guide - OpenSSL FIPS Object Module v2.0

int FIPS_drbg_init(DRBG_CTX *dctx, int type,
unsigned int flags);

initializes a pre-existing DRBG_CTX. This is an efficiency measure to avoid the need to reallocate
a new DRBG_CTX. This function returns 1 for success and zero or a negative value for failure. The
return value -2 is used to indicate an invalid or unsupported type value. The type value cannot be 0.
This function is otherwise identical to FIPS_drbg_new().

FIPS_drbg_free

The function

void FIPS_drbg_free(DRBG_CTX *dctx);

frees up a DRBG_CTX. After this call the DRBG_CTX pointer is no longer valid. The underlying
DRBG is first uninstantiated.

FIPS_drbg_set_callbacks

The function

int FIPS_drbg_set_callbacks(DRBG_CTX *dctx,
 size_t (*get_entropy)(DRBG_CTX *ctx, unsigned

char**pout, int entropy, size_t min_len, size_t
 max_len),

void (*cleanup_entropy)(DRBG_CTX *ctx, unsigned char
*out, size_t olen), size_t entropy_blocklen,
size_t (*get_nonce)(DRBG_CTX *ctx, unsigned char
**pout, int entropy, size_t min_len, size_t
max_len),

void (*cleanup_nonce)(DRBG_CTX *ctx, unsigned char *out,
size_t olen)
);

sets entropy and nonce callbacks for a DRBG_CTX. The DRBG_CTX must be in an uninstantiated
state to set the callbacks: i.e. the callbacks cannot be set on an instantiated DRBG. This function is
typically called immediately following FIPS_drbg_new(). This function returns 1 for success
and 0 if an error occurred: the only way an error can occur is if an attempt is made to set the
callbacks of an instantiated DRBG.

Whenever the DRBG requires entropy or a nonce the corresponding callbacks will be called.

Page 84 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The callbacks get_entropy and get_nonce request "entropy" bits of entropy in a
buffer of between min_len and max_len bytes. The function should set *pout to the buffer
containing the entropy and return the length in bytes of the buffer.

If the source of entropy or nonce is unable to satisfy the request it MUST return zero. This will
place the DRBG in an error condition due to the source failure.

The callbacks cleanup_entropy and cleanup_nonce are called after the entropy or nonce
buffers have been used and can be utilized to zeroize the buffers. The "out" and "olen"
parameters contains the same value returned by the get function.

The "entropy_blocklen" is used to specify the block length of the underlying entropy source.
This is used for the continuous RNG test on the entropy source.

FIPS_drbg_instantiate

The function

int FIPS_drbg_instantiate(DRBG_CTX *dctx,
const unsigned char *pers, size_t perslen);

instantiates a DRBG with the supplied personalization string pers. This function returns 1 for
success and 0 for failure.

If the personalization string is of an invalid length for the DRBG mechanism a non-fatal error is
returned.

Internally this function instantiates the DRBG. This will request entropy and a nonce using the
supplied get_entropy and get_nonce callbacks.

There are no security strength and prediction resistance arguments to this function. The DRBG is
always instantiated at the maximum strength for its type and prediction resistance requests are
always supported.

This function returns 1 for success and 0 for failure.

FIPS_drbg_reseed

The function

int FIPS_drbg_reseed(DRBG_CTX *dctx, const unsigned char
*adin, size_t adinlen);

Page 85 of 222

User Guide - OpenSSL FIPS Object Module v2.0

reseeds the DRBG using optional additional input "adin" of length "adinlen".

If the additional input is of an invalid length for the DRBG mechanism a non-fatal error is returned.

The get_entropy callback of the DRBG is called internally to request entropy.

An extensive health check is performed on a DRBG of the same type before reseeding the DRBG.
If this fails the DRBG is placed in an error condition and the caller must un-instantiate and re-
instantiate the DRBG before attempting further calls.

This function returns 1 for success and 0 for failure.

FIPS_drbg_generate

The function

int FIPS_drbg_generate(DRBG_CTX *dctx, unsigned char *out,
size_t outlen,int prediction_resistance,

 const unsigned char *adin, size_t adinlen);

attempts to generate "outlen" bytes of random data from the DRBG. Using optional additional
input "adin" of length "adinlen". If the "predication_resistance" parameter is non-
zero a prediction resistance request will be made and internal reseeding of the DRBG and
requesting entropy as required by SP800-90 is performed.

If an attempt is made to request too much data for a single request or to supply additional input of
an invalid length a non-fatal error is returned.

If an internal request for entropy fails a fatal error occurs and the DRBG is placed in an error state.
The caller must un-instantiate and re-instantiate the DRBG before attempting further calls.

This function returns 1 for success and 0 for failure.

FIPS_drbg_uninstantiate

The function

int FIPS_drbg_uninstantiate(DRBG_CTX *dctx);

uninstantiates a DRBG. This zeroizes any CSPs and returns the DRBG to an uninitialized state.

FIPS_drbg_get_app_data, FIPS_drbg_set_app_data

Page 86 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The two functions

void *FIPS_drbg_get_app_data(DRBG_CTX *ctx);
void FIPS_drbg_set_app_data(DRBG_CTX *ctx, void *app_data);

get and retrieve an application defined pointer value. The meaning of this pointer is application
defined and might for example contain a pointer to a handle representing the entropy source and the
get_entropy function could retrieve and make use of that pointer.

FIPS_drbg_get_blocklength

The function

size_t FIPS_drbg_get_blocklength(DRBG_CTX *dctx);

returns the block length of the DRBG.

FIPS_drbg_get_strength

The function

int FIPS_drbg_get_strength(DRBG_CTX *dctx);

returns the security strength of the DRBG in bits.

FIPS_drbg_set_reseed_interval

The function

void FIPS_drbg_set_reseed_interval(DRBG_CTX *dctx, int
interval);

modifies the reseed interval value. The default is 224 blocks for the Dual EC DRBG and 224
generate operations for all other types. These values are lower than the maximums specified in
SP800-90.

RAND interface

Cryptographic operations make use of the OpenSSL RAND PRNG API to request random data. A
brief description of this is given below:

int RAND_bytes(unsigned char *buf,int num);

Page 87 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Generate num random bytes and write to buf.

int RAND_pseudo_bytes(unsigned char *buf,int num);

Generate num random bytes and write to buf. The random data does not have to be
cryptographically strong.

void RAND_seed(const void *buf,int num);

This function is used at various points to add data which may be useful for adding entropy to the
PRNG. The buffer buf contains num bytes which can be used.

void RAND_add(const void *buf,int num,double entropy);

This is similar to RAND_seed() except that the data supplied has entropy "entropy".

Default DRBG

A special DRBG instance called the "default DRBG" is used to map the DRBG to the RAND
interface.

The function

int FIPS_drbg_set_rand_callbacks(DRBG_CTX *dctx,
size_t (*get_adin)(DRBG_CTX *ctx, unsigned char

**pout),
void (*cleanup_adin)(DRBG_CTX *ctx, unsigned char

*out, size_t olen),
int (*rand_seed_cb)(DRBG_CTX *ctx, const void *buf,

int num),
int (*rand_add_cb)(DRBG_CTX *ctx,

const void *buf, int num, double entropy)
);

defines various callbacks which control how RAND calls are mapped to DRBG calls.

The get_adin callback is used to retrieve optional additional data used whenever a request for
random data is made using RAND_bytes() or RAND_pseudo_bytes(). When this operation
is complete cleanup_adin is called to release the buffer.

Note that RAND_bytes() and RAND_pseudo_bytes() are equivalent operations for the

Page 88 of 222

User Guide - OpenSSL FIPS Object Module v2.0

RAND mapping to the DRBG; they both call FIPS_drbg_generate(). The
FIPS_drbg_generate() function can be called multiple times to satisfy a single request if
the num value exceeds the amount of data that can be handled in a single DRBG request.

The callbacks rand_seed_cb and rand_add_cb are called directly whenever RAND_seed()
or RAND_add() are called. These are entirely application defined and could be used for example
to add seed information to the entropy source.

The function

DRBG_CTX *FIPS_get_default_drbg(void);

retrieves the default DRBG context. This can then be manipulated using the standard DRBG
functions such as FIPS_drbg_init().

The function

int FIPS_rand_strength(void);

returns the security strength in bits of the default PRNG.

DRBG Health Checks

The function

int FIPS_drbg_health_check(DRBG_CTX *dctx);

initiates a health check on the DRBG. In addition health checks are also performed when a DRBG
is first initiated (using FIPS_drbg_new() or FIPS_drbg_set()) when a DRBG is reseeded
explicitly using FIPS_drbg_reseed() and every health_check_interval calls to the
generate function. This interval is by default 224 but can be modified by:

void FIPS_drbg_set_check_interval(DRBG_CTX *dctx, int
interval);

If any health check fails the DRBG is placed in an error state and no further operations can be
performed on the DRBG instance until it has been reinitialized (uninstanstiated and initialized).

Extended KAT of all DRBG Functions

The function fips_drbg_single_kat() performs an extended Known Answer Test (KAT) of
all functions:

Page 89 of 222

User Guide - OpenSSL FIPS Object Module v2.0

1. Instantiate DRBG with known data (entropy, nonce, personalization string).
2. Perform generate operation without prediction resistance and check output matches

expected value.
3. Reseed with known data (entropy, additional input).
4. Perform second generate operation without prediction resistance and check output matches

expected value.
5. Uninstantiate DRBG.
6. Instantiate DRBG in test mode with known data (entropy, nonce, personalization string).
7. Perform generate operation with prediction resistance and check output matches expected

value set known entropy and additional input during this step.
8. Perform second generate operation with prediction resistance and check output matches

expected value.
9. Uninstantiate DRBG.

It is asserted that checking the output of the generate function in steps 2, 4, 7 and 8 ensures the
previous operations completed successfully: i.e. set the DRBG internal state to the expected values.

Extended Error DRBG Checking

Extended error checking is performed by function fips_drbg_error_check():

Invalid parameters are fed into all DRBG functions in sequence as follows. Note that some tests
(e.g. entropy source failure) leave the test DRBG in an error state and it has to be uninstantiated and
instantiated again to clear the error condition.

1. Instantiate with invalid personalization string length.
2. Instantiate DRBG with entropy source failure (returning zero entropy).
3. Attempt to generate DRBG output from DRBG from step 2.
4. Instantiate DRBG with too short an entropy string.
5. Instantiate DRBG with too long an entropy string.
6. Instantiate DRBG with too small a nonce (if nonce used in mechanism).
7. Instantiate DRBG with too large nonce (if nonce used in mechanism).
8. Instantiate DRBG with good data and generate output, check calls succeed.
9. Attempt to generate too much output for a single request.
10. Attempt to generate with too large additional input.
11. Attempt to generate with prediction resistance and entropy source failure.
12. Set reseed counter to reseed interval, generate output and check reseed has been performed.
13. Test explicit reseed operation with too large additional input.
14. Test explicit reseed with entropy failure.
15. Test explicit reseed with too large entropy string.
16. Test explicit reseed with too small entropy string.
17. Uninstantiate DRBG: check internal state is zeroed.

Page 90 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Health Checking Performance

The health checks are performed:

1. When a DRBG is first initialized (i.e. before instantiation) a health check is performed on a test
instantiation using the same mechanism and parameters.

2. When a reseed operation is performed (other than for a prediction resistance request) a health
check is performed on a test instantiation. This effectively performs a superset of the requirements
for testing the reseed function i.e. it tests all functions including the reseed function.

3. An internal counter determines the number of generate operations since the last health check.
When this reaches a preset limit a health check is performed. This limit is set by default to 224
operations but it can be set to an alternative value by an application.

4. When an application explicitly requests a health check with the call
FIPS_drbg_health_check().

Abbreviated POST

During a Power On Self Test (POST) an abbreviated KAT only is performed for one instance of
each supported DRBG mechanism. This simply performs an instantiate and generate operation and
checks that the output matches an expected value.

6.2 Role Based Module Authentication

Summary

A role based authentication mechanism is implemented for the purpose of satisfying a U.S. Army
procurement policy. The implementation is transparent to end users if the relevant default build
options are left undisturbed, as should generally be the case.

IMPORTANT NOTE:
After the role based authentication mechanism described in this section was implemented, we
learned that the original Army policy that motivated this implementation is no longer in
effect, as confirmed in correspondence dated 2011-10-28 with CIO/G6 that yielded this
statement:

As a result of the Army's transition to the DoD Unified Capabilities
Approved Products List (UC APL), both the Army's IA Approved Products List
process and the May 21, 2009 "Letter to Industry were rescinded. (CIO/G­6
memorandum dated May 2011). The above referenced document in its
entirety, including paragraph 5a, no longer applies.

Page 91 of 222

User Guide - OpenSSL FIPS Object Module v2.0

For more details please send inquires to: ArmyIATools@conus.army.mil, 703­
545­1677 or 703­545­1672.

Background

The FIPS module is a software library so the concept of authentication to the module doesn't make
any sense. For a Level 1 validation the CMVP does not require any module authentication, and
there is no circumstance that we can envision for which such authentication would have any
practical value for vendors or users. A little thought shows that authentication of a general purpose
cryptographic library itself must necessarily be a pointless nuisance; consider for instance the
vendor of a Linux distribution (Ubuntu, Red Hat, etc.) that elected to utilize authentication with the
OpenSSL libraries. Such an OS distribution will typically default to dozens of individual
applications utilizing those libraries, with dozens to hundreds more available as optional packages.
Each and every one of those applications would have to contain the correct authentication
credentials at all times. Application vendors would either have to be informed of those credentials,
widely and publicly, or would be forced to ship their product with unauthenticated OpenSSL
libraries (or libraries authenticated with different known credentials) to avoid the failures that
would be caused by mismatched credentials. The result would be a mess that would provide more
opportunities than obstacles to Evil Hackers.

However, in 2009 the U.S. Army specified a set of acquisition requirements, in the form of a memo
with a subject line of "Letter to Industry Concerning the Approval and Acquisition of Information
Assurance (IA) Tools and Products in the United States Army" (see
https://chess.army.mil/ascp/commerce/scp/downloads/standardspolicy_files/letter_to_industry.pdf).
This mandate imposes additional requirements for FIPS 140-2 validated products, beyond those
mandated by the CMVP. In particular, for Level 1 validations such as ours, it requires:

5. Federal Information Processing Standards (FIPS):

a. FIPS 140-2, Level 1: This applies to cryptographic modules that are software only
solutions (the software cannot be bundled or sold as a hardware-software solution)
that are unable to achieve FIPS 140-2 Security Level 2. Overall FIPS 140-2 Level 1
solutions must incorporate the following Cryptographic Modules Specifications to a
higher security level: Roles, Services, and Authentication (Security Level 2) and
Design Assurance (Security Level 3).

The OpenSSL FIPS Object Module 2.0 validation cannot be at overall Level 2 because such a
validation would necessarily tie the module to specific hardware. This Army policy was evidently
directed at turnkey appliances (firewalls, mobile devices, etc.) and failed to consider the case of
general purpose cryptographic libraries.

The earlier v1.2.3 FIPS module (certificate #1051) predated the release of the Letter to Industry,
and since then we've heard from quite a few software vendors who have experienced difficulty in
selling to the Army because the v1.2.3 module didn't meet the 5a requirement. It turns out that

Page 92 of 222

https://chess.army.mil/ascp/commerce/scp/downloads/standardspolicy_files/letter_to_industry.pdf
mailto:ArmyIATools@conus.army.mil

User Guide - OpenSSL FIPS Object Module v2.0

satisfying this requirement is easily handled at modest cost as a pure documentation effort in some
contexts, such as when the test platforms have Common Criteria (CC) certified operating systems
or the module itself actually implements authentication.

However, the CMVP takes the not unreasonable position that validation at Roles, Services, and
Authentication at Level 2 is not appropriate unless authentication actually takes place (note that in
this context a non-CC certified operating system is considered to provide no authentication
services). CC certified platforms are few and far between, and it makes no sense to implement
authentication to a general purpose cryptographic library.

So, that left us with a bit of a dilemma. The CMVP and Army policies are in direct conflict, and if
we knew of any easy way to get two government bureaucracies to reconcile conflicting policies
we'd tackle some easier challenges like brokering a permanent peace in the Middle East.

After some deliberation and consultation with the test lab we concluded that the best resolution to
this dilemma was to implement role-based authentication in a way that would satisfy both the
CMVP and Army requirements without significantly impacting the end users. This goal was
accomplished by requiring role based authentication for use of the module in FIPS mode, and then
automatically and transparently performing that authentication in the "FIPS capable" OpenSSL.
The end result is that the FIPS module plus "FIPS capable" OpenSSL combination -- by far the
most common use of the FIPS module -- will behave for the calling application as if the role based
authentication were not required.

Note we already have a well established precedent for publishing secret credentials in the context of
an open source based validation. The integrity test mandated by FIPS 140-2, which is accorded
great significance, requires a HMAC-SHA1 digest of the module contents (object code, roughly
speaking). The HMAC digest is calculated from a secret HMAC key plus the data of interest, the
purpose being to allow both authentication and confirmation of data integrity (only the entity
knowing the secret key can generate the correct digest). For the very first validation we were faced
with the challenge of where to store the secret HMAC key, as in open source code there is no
suitable hiding place. After some deliberation the CMVP instructed us to just code the
HMAC-SHA1 digest as mandated and leave the secret key exposed in the source code. That same
"secret" key has been in every validation since and is published in the corresponding Security
Policy documents (Appendix B, it is 65 74 61 6f 6e 72 69 73 68 64 6c 63 75 70
66 6d, equivalent to the ASCII string "etaonrishdlcupfm").

Implementation

The FIPS_mode_set() function familiar to users of past versions of the OpenSSL FIPS Object
Module is now defined in the "FIPS capable" OpenSSL, i.e. externally to the FIPS module. The
corresponding function in the FIPS module that enables the FIPS mode of operation requires role
based authentication in the form of a password argument. Note that FIPS 140-2 requires at least
two roles; we defined two roles but both perform identically in all respects.

Page 93 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The build process for the FIPS module references three environment variables, with defaults if not
explicitly set:

FIPS_AUTH_KEY
FIPS_AUTH_CRYPTO_OFFICER
FIPS_AUTH_CRYPTO_USER

These environment variables define the HMAC key and the HMACs of the passwords respectively.
This are utilized during the standard:

./config
make

The FIPS_AUTH_KEY defines the HMAC key which defaults to "etaonrishdlcupfm".
The two passwords default to "Default FIPS Crypto Officer Password" and
"Default FIPS Crypto User Password" respectively and appear in
fips/fips_utl.h.

There are several ways to get the right format for the password HMACs, such as:

echo ­n <password> | openssl sha1 ­hmac <hmac_key>

At runtime the calling application invokes FIPS_module_mode_set(1, password).
Internally this function generates the digest HMAC(FIPS_AUTH_KEY, password)and checks
to see if that value matches either of FIPS_AUTH_CRYPTO_OFFICER or
FIPS_AUTH_CRYPTO_USER. If the password does not match the error is treated the same as a
fatal POST error.

Validation Testing

For use by the test lab in testing the role based authentication the following command line options
are defined for the fips_test_suite utility, to specify the password value to be passed to
FIPS_module_mode_set():

none Null password
bad Invalid password of sufficient length
user The FIPS_AUTH_CRYPTO_USER password
officer The FIPS_AUTH_CRYPTO_OFFICER password

If none of those command line options are given the FIPS_AUTH_CRYPTO_USER password is
used.

Page 94 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Support in the "FIPS capable" OpenSSL

A means is provided in the "FIPS capable" OpenSSL (which is just another application from the
perspective of the FIPS module) to specify non-default passwords:

./config <...options...> ­DFIPS_AUTH_USER_PASS="\"...password...\""

Please note this is not something likely to be of value in any real-world context, and a FIPS module
built with non-default passwords is a likely source of problems.

6.3 Self Tests
As required by FSIP 140-2 the FIPS module implements numerous self tests. Typically at least one
self test is required for each cryptographic algorithm.

Each test as it is performed can be examined through an optional callback:

int (*fips_post_cb)(int op, int id, int subid, void *ex);

Unless otherwise stated below the callback should always return 1. The "op" parameter indicates
the operation being performed and can be one of:

FIPS_POST_BEGIN: indicates that testing has begun but no tests have been performed
yet.

FIPS_POST_END: indicates all tests have been completed. The "id" parameter indicates
the overall status of tests. It is 1 if all tests completed successfully and 0 if at least one test
failed.

For the remaining "op" values the "id", "subid" and "exstr" parameters indicate details of the
specific test being performed. See complete descriptions of each test type for the meaning of these
parameters.

FIPS_POST_STARTED: indicates an individual test has started.
FIPS_POST_SUCCESS: individual self test was successful.
FIPS_POST_FAIL: individual self test failed.
FIPS_POST_CORRUPT: a query as to whether self test failure mode should be set.

If the callback returns 0 a failure is simulated for the referenced self test. The method used to
simulate failure is documented against each test.

Page 95 of 222

User Guide - OpenSSL FIPS Object Module v2.0

6.3.1 POST Tests

The tests performed during POST are described below, along with the corresponding
fips_test_suite option(s) to trigger the test (see Appendix B.5).

6.3.1.1 Integrity Test

The id field is set to FIPS_TEST_INTEGRITY. The remaining parameters are not used. This is
indicated while incore integrity testing of the module itself is being performed. This operation
performs an HMAC over sections of incore data and checks the value against an expected value set
when the application is compiled [see §2.2 for a more comprehensive description of this operation].

If failure is being simulated an additional byte is HMACed in addition to the incore data to produce
an HMAC value which will differ from the stored value.

Triggered by the integrity option to fips_test_suite.

6.3.1.2 DRBG Self Test

The id field is set to FIPS_TEST_DRBG. The subid field is set to the NID of the DRBG being
tested and the "exstr" field is of type (int *) which points to the DRBG flags being tested.

An abbreviated KAT only test (not a full health check) is performed on each supported DRBG
mechanism. Specifically, it is initialized in test mode, instantiated using known parameters, output
is generated and the result compared with known good values.

If failure is being simulated the "additional input" parameter to the generate operation is perturbed
by setting it to a shorter length than the KAT value. This will result in data being generated which
does not match the expected value.

Currently the following DRBG mechanisms and primitives are tested as part of the POST:

a) CTR DRBG using 256 bit AES and a derivation function.
b) CTR DRBG using 256 bit AES without a derivation function.
c) Hash DRBG using SHA256.
d) HMAC DRBG using SHA256.
e) Dual EC DRBG using P-256 and SHA-256.

Triggered by the drbg option to fips_test_suite.

6.3.1.3 X9.31 PRNG Self Test

Page 96 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The id field is set to FIPS_TEST_X931. The subid field is set to the key length of the PRNG
in bytes.

For the test the PRNG is set up in test mode. A known key, V (seed) and DT (date time vector) is
supplied and the generated output (R) compared to an expected value.

If failure is being simulated the known V value is corrupted by incrementing the first byte. This
will result in generated data which does not match the expected value.

Currently the POST tests the X9.31 PRNG using 128, 192 and 256 bit key lengths.

Triggered by the rng option to fips_test_suite.

6.3.1.4 Digest Test

The id field is set to FIPS_TEST_DIGEST. The subid field is set to the digest NID being
tested. The "ex" argument is not used. Currently only SHA1 is tested in this way. Known data is
digested and the resulting hash compared to a known good value.

If failure is being simulated an extra byte is digested in addition to the known data which will result
in a digest which does not match the expected value.

Triggered by the sha1 option to fips_test_suite.

6.3.1.5 HMAC Test

The id field is set to FIPS_TEST_HMAC. The subid field is set to the associate digest NID
being tested. The "ex" argument is not used.

Known data is HMACed and the resulting hash compared to a known good value.

If failure is being simulated an extra byte is HMACed in addition to the known data which will
result in an HMAC which does not match the expected value.

The digests SHA1, SHA224, SHA256, SHA384 and SHA512 are tested in this way.

Triggered by the hmac option to fips_test_suite.

6.3.1.6 CMAC Test

The id field is set to FIPS_TEST_CMAC. The subid field is set to the associated cipher NID
being tested. The "ex" argument is not used.

Page 97 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Known data is CMACed and the resulting CMAC compared to a known good value.

If failure is being simulated an extra byte is CMACed in addition to the known data which will
result in an HMAC which does not match the expected value.

The triple DES cipher and AES using 128, 192 and 256 bytes is tested for CMAC.

Triggered by the cmac option to fips_test_suite.

6.3.1.7 Cipher Self Tests

The id field is set to FIPS_TEST_CIPHER. The subid field is set to the NID of the cipher
being tested, "ex" is not used.

A known key, IV and plaintext is encrypted and the output ciphertext compared to a known good
value.

The ciphertext is then decrypted using the same key and IV and the result compared to the original
plaintext.

If a failure is being simulated the ciphertext is corrupted (first byte XORed with 0x1) before the
decryption test.

AES in ECB mode with a 128 bit key and triple DES in ECB mode are tested.

Triggered by the aes, des options to fips_test_suite.

6.3.1.8 GCM Self Test

The id is field is set to FIPS_TEST_GCM. The subid field is set to the NID of the cipher being
tested, "ex" is not used.

A known key, IV, AAD and plaintext is encrypted and the output ciphertext and tag compared to
known good values.

The ciphertext and take is then decrypted using the same key, IV, AAD and expected tag and the
result compared to the original plaintext.

If a failure is being simulated the tag is corrupted (first byte XORed with 0x1) before the
decryption test.

AES in GCM mode with a 256 key is tested.

Page 98 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Triggered by the aes­gcm option to fips_test_suite.

6.3.1.9 CCM Self Test

The id field is set to FIPS_TEST_CCM. The subid field is set to the NID of the cipher being
tested, "ex" is not used. The test is otherwise identical to the CCM test.

AES in CCM mode with a 192 bit key is tested.

Triggered by the aes­ccm option to fips_test_suite.

6.3.1.10 XTS Self Test

The id field is set to FIPS_TEST_XTS. The test is otherwise identical to the cipher tests.

AES in XTS mode with a 128 and a 256 bit key is tested.

Triggered by the aes­xts option to fips_test_suite.

6.3.1.11 Signature Algorithm Tests

The id field is set to FIPS_TEST_SIGNATURE. The subid field is set to the NID of the
associated digest. The "ex" field is set to the EVP_PKEY structure of the key being used in the
KAT. By examining exstr the type of key being tested can be determined.

A signature is calculated using a known private key and data to be signed.

For deterministic signature algorithms (i.e. RSA in some padding modes) the signature is compared
to a known good value.

The signature is then verified using the same data used to create the signature.

If failure is being simulated an extra byte is digested in addition to the known data for signature
creation only. This will result in a signature which does not match the expected value (if this test is
being performed) or the verification will fail.

The following algorithms are tested:

a) RSA using PSS padding and SHA256 with a 2048 bit key.
b) ECDSA using P-224 and SHA512.
c) ECDSA using K-233 and SHA512 if binary fields are supported.
d) DSA using SHA384 and a 2048 bit key.

Page 99 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Triggered by the dsa, ecdsa, rsa option to fips_test_suite.

6.3.12 ECDH Self Tests

The id field is set to FIPS_TEST_ECDH. The subid field is set to the NID of the curve used. The
"ex" field is not used.

Known private and public ECDH keys are used to compute a shared secret (Z) value. This is
compared to a known good value.

If failure is being simulated the computed shared secret is corrupted after generation. This will
result in a mismatch with the expected value.

Triggered by the ecdh option to fips_test_suite.

6.3.2 Conditional self tests.

6.3.2.1 Pairwise consistency Test

When an asymmetric signature key is generated a signature test identical to the POST signature
tests is performed on the generated key. The only difference is the id field is set to
FIPS_TEST_PAIRWISE.

In the case of RSA keys a consistency test is also performed using an RSA PKCS#1 padding
encryption and decryption operation: this operation is not registered with the callback. Specifically:
known data is encrypted, the ciphertext checked it does not match the plaintext and then decrypted.
The decrypted value is checked against the original plaintext.

For RSA keys the SHA256 digest is used and three tests performed PKCS#1, X931 and PSS
padding.

For DSA and ECDSA keys one test using SHA256 is performed.

Triggered by the dsakeygen and rsakeygen options to fips_test_suite.

6.3.2.2 Continuous PRNG Test

When not in test mode (i.e. an operational "live" PRNG) the output of the PRNG is put through the
continuous PRNG test for FIPS 140-2.

The callback is not used for this operation.

Page 100 of 222

User Guide - OpenSSL FIPS Object Module v2.0

If the function FIPS_x931_stick() is called then the X9.31 PRNG output is copied to the
stored last block to ensure the test will fail on the next generate operation.

If the function FIPS_drbg_stick() is called then the X9.31 PRNG output is copied to the
stored last block to ensure the test will fail on the next generate operation.

The continuous PRNG test for the PRNG itself is triggered by the drbgstick and rngstick
options to fips_test_suite. The continuous PRNG test for the entropy source is triggered by
the drbgentstick option to fips_test_suite.

6.4 ECDH

The CAVP defines a test for ECDH in the form of "ECC CDH Primitive" tests:

http://csrc.nist.gov/groups/STM/cavp/#09

When this ECDH testing was introduced for FIPS 140-2 we initially assumed that with the growing
use of ECDH in TLS the intent was to ensure that usage was covered by an approved algorithm.

That turns out not to be the case. The algorithm now available for testing is "cofactor ECDH"
(formally known as ECC CDH) which is NOT the same as regular ECDH (formally known as as
the ECKAS-DH1 scheme) used with TLS -- it is a variant of ECDH that is not the same as that
commonly used in actual applications.

The differences between the two algorithms are small but enough to make the two incompatible in
subtle ways.

For regular ECDH the shared secret Z is the x component of the value dQ where d is one sides
private key (an integer) and Q the other sides public key (an elliptic curve point).

For cofactor ECDH the shared secret Z is the x component of the value hdQ where the new value h
is something called the cofactor (another integer) which is a property of the curve. For most
primes48 curves h = 1 whereas for many binary curves h ≠ 1. So for many prime curves (but
not all) the two algorithms yield the same result. For binary curves they do not.

Note that the addition of a few lines to the ECDH algorithm implementation changes it to cofactor
ECDH at which point it passes the CAVP ECC CDH Primitive test. However, if we change our
ECDH implementation to unconditionally use cofactor ECDH then it will not be interoperable with
TLS using binary curves.

48The standard tested prime curves all use h = 1 excepting one non standard prime curve with h != 1; that is a 128 bit
curve and so forbidden in approved mode. Effectively this means that for an implementation only checking prime
curves (as many do) then the discrepancy would never be apparent. FIPS 140-2 does allow non-standard curves so two
"tested" algorithms could yield the different results.

Page 101 of 222

http://csrc.nist.gov/groups/STM/cavp/#09

User Guide - OpenSSL FIPS Object Module v2.0

Even though the use of cofactor ECDH is rare at present, there could conceivably be a need at some
point. In order to accommodate that possibility while preserving compatibility with existing
applications we added a flag to the EC_KEY structure to enable cofactor ECDH for use with the
FIPS 140-2 algorithm tests. This flag is set with the EC_KEY_set_flags() function:

EC_KEY_set_flags(key, EC_FLAG_COFACTOR_ECDH);

If this flag it is not explicitly set then the ECKAS-DH1 (TLS compatible) scheme is used.

6.5 ECC and the NSA Sublicense

Why are there two versions of the OpenSSL FIPS Object Module 2.0?

At least some implementations of Elliptic Curve Cryptography (ECC) are perceived to be
encumbered in the United States by a complex set of patents. Concern about the possible risks of
patent infringement have been a significant disincentive to more widespread use of ECC.

In order to counter such concerns for the ECC necessary to implement the Suite B algorithms, the
NSA established a process for sub-licensing the patents for that subset of ECC (see
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml). The OSF has obtained such a
sublicense (http://openssl.com/testing/docs/NSA-PLA.pdf).

However, that sublicense only covers the specific patents presumed relevant to the prime curve
ECC used for Suite B. It does not cover other possible types of ECC such as binary curves which
are implemented in OpenSSL.

Judging the risks of a patent infringement lawsuit is difficult, and not only because the patents
themselves are usually incomprehensible to the software developer. The mere threat of a patent
lawsuit can be crippling to even a medium sized enterprise, regardless of the legitimacy of the
accusation of infringement.

It is the belief of the OpenSSL team that the implementation of ECC in OpenSSL, both primary and
binary curve, does not infringe any patents49. However, we aren't lawyers and patent law is
notoriously perverse. Some potential users are still concerned about the risk of patent litigation,
understandably so given the extent to which such litigation has been used as an offensive
commercial tactic in recent years. For the OpenSSL software such users can use build-time options
to omit specific algorithms of concern from the resulting binary code.

However, the restrictions of FIPS 140-2 prevent the use of such build-time options or modification
of the source code. One of the validation sponsors was concerned about patent risks and so a

49Also note that the bulk of the binary curve ECC implementation to the OpenSSL project was contributed by a
corporation, the former Sun Microsystems, with the legal resources to analyze such risks.

Page 102 of 222

http://openssl.com/testing/docs/NSA-PLA.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

User Guide - OpenSSL FIPS Object Module v2.0

separate "patent troll" source distribution of the OpenSSL FIPS Object Module 2.0 was created
which entirely omits the binary curve ECC. That distribution, openssl­fips­ecp­2.0.tar.gz, is
functionally identical to the full distribution except for the omission of those algorithms, and all
discussion of the full distribution elsewhere in this document applies.

Note that when using the "ecp" distributions the corresponding "FIPS capable" OpenSSL must be
built with the no­ec2m option.

6.6 The "Secure Installation" Issue

This latest of the OpenSSL FIPS Object Module ("FIPS module") FIPS 140-2 validations saw the
introduction of a new requirement by the CMVP:

The distribution tar file, shall be verified using an independently acquired FIPS 140-2
validated cryptographic module...

We're told that this distribution tar file verification requirement comes directly from the assertions
AS10.03 and AS14.02 of the Derived Test Requirements document:

AS10.03: (Levels 1, 2, 3, and 4) Documentation shall specify the procedures for secure
installation, initialization, and startup of the cryptographic module.

AS14.02: (Levels 1, 2, 3, and 4) The cryptographic module security policy shall consist
of: a specification of the security rules, under which the cryptographic module shall
operate, including the security rules derived from the requirements of the standard and
the additional security rules imposed by the vendor.

Subsequent discussions mediated by the test lab elaborated this "secure installation" requirement to
mean that one of the following conditions must be true:

1) The distribution file is obtained via a "trusted path", which is one of:

a) Transfer via physical media (e.g. CD-ROM disk) sent by postal or delivery service
(USPS, UPS, FedEx);

b) Electronic transfer using cryptography (e.g. SSH, HTTPS, IPsec) implemented by FIPS
140-2 validated products. That requirement was further elaborated to state that those
products must themselves be a result of "secure installation".

2) The distribution file is verified (HMAC-SHA-1 digest checked) using a pre-existing FIPS
140-2 validated product that is itself the result of a "secure installation".

Note the recursive nature of the "secure installation" requirement represents a non-trivial challenge;
in order to transfer or verify a new validated product an existing securely installed validated
product must already be present. We're still struggling to understand the scope and implications of
this requirement. The FIPS 140-2 scripture (The FIPS 140-2 standard [Reference 1], the DTR
[Reference 4], and the IG [Reference 3] documents) doesn't shed a lot of light -- the term "trusted

Page 103 of 222

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-1/FIPS1401IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402DTR.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402DTR.pdf

User Guide - OpenSSL FIPS Object Module v2.0

path" for instance is only referenced in the context of Level 3 validations. Note those "secure
installation" and "trusted path" requirements as explained to us say that validated software cannot
be distributed by traditional methods, which leads to some interesting questions about the use of
other validated modules (puzzlement over why all other modules aren't similarly impacted is a large
part of our confusion). Those questions aside, prospective users of this FIPS module need to
determine at least one known valid way to satisfy the requirement for this specific validation -- a
way not at risk of being ruled invalid by the CMVP after software has been shipped or deployed.

So far the CMVP has declined to answer specific questions about options for satisfying this
requirement; they quote the formal documentation (as noted above) and refer us to the test labs. We
have actively discussed this issue with several accredited test labs and selected members of the
FIPS validation community. Unfortunately the test labs are not in close agreement. So far we have
collected a lot of opinions but not much certainty. If you have experience or insights directly
relevant to this issue we'd love to hear from you50.

Very Important Note:
The conclusions presented here are still tentative as they have neither been confirmed nor

refuted by the CMVP; they simply represent our best understanding of the situation at this
point in time. These conclusions could change dramatically based on relevant feedback from
the CMVP, or more slowly in response to an accumulated consensus of opinion from the test

labs and FIPS 140-2 community of interest.

6.6.1 What Won't Work
This new requirement doesn't sound so bad until you try to pin down exactly what steps need to be
taken to satisfy it. We're still working on figuring this out, but we can eliminate some options that
have been considered but which apparently are not allowed:

• No delegation: one entity (OSF for instance) can't perform the verification of the source
tarball and then post that verified tarball on a website for download by everyone else unless
the download qualifies as a "trusted path", which in practice will mean the user performing
the download will need to obtain and install FIPS 140-2 validated client software (also
through a trusted path ... which is a circular problem for many users).

• The new module itself (what is built from the source distribution) cannot be used to perform
the verification of the source distribution it was built from.

• Earlier FIPS modules (such as the 1.2.3 FIPS module, validation certificate number #1051)
apparently cannot be used to perform the verification. Apparently the new tarball
verification requirement will be retroactively applied to the older OpenSSL FIPS Object
Module validations. We do not know if that will mean that all deployed instances of these
older modules will be declared invalid (that would have a huge impact), but the consensus
of our discussions is that the older modules can't be leveraged to verify the new module.

• Use of an earlier binary module validation (certificate #1111) was suggested by the CMVP.
There are two problems with that suggestion; first, that particular validation took so long

50http://openssl.com/contact.html

Page 104 of 222

User Guide - OpenSSL FIPS Object Module v2.0

(with a 13 month wait for CMVP action) that it had no economic value by the time it was
finally completed, and as a result it was abandoned and we no longer have the
corresponding binary module; and second, per our understanding that binary module would
need to be executed on some very obsolete platforms (OpenSuSE 10.2, no longer
downloadable from the maintainer, or Microsoft Windows XP SP2, no longer sold by the
vendor). Also in many environments (such as DoD) use of such unsupported operating
systems is forbidden by security policy.

• One of our first thoughts was to create (by some means) an executable binary utility
program to perform the verification, that could be run on one or more common platforms
(e.g. Linux, Windows), and that we could provide publicly for everyone. However, it seems
we can't just post that utility for download on a typical web site as the downloaded file
would not have been obtained through a "trusted path". Our understanding is that a trusted
path over a network would require formally FIPS 140-2 validated software at both the client
and server which fails to address the issue of how to get validated cryptography in the first
place.

• Another clever idea that was suggested was for us to provide a utility based on a known
common commercial validated cryptographic implementation, such as CryptoAPI in
Microsoft Windows. The utility could be freely downloaded because it would not contain
the actual cryptography. However, many prospective users will have obtained that validated
cryptography (the Microsoft Windows OS itself) by non-trusted means (the MSDN
download of ISO images does not use FIPS validated cryptography, nor does the usual
Internet based update process). Likewise an NSS based utility for Red Hat Enterprise Linux
would have the same problem (non-trusted installation and update). Even if the initial OS
installation was done with a trusted path, the subsequent routine updates are not51; so one
would have to install the OS using a vendor supplied CD/DVD and then not subsequently
update it over the Internet.

Note this last point is downright mind-boggling: it amounts to an assertion that essentially
all installations of validated software modules are illegitimate.

Many other options have been considered as well, without a clear consensus from those in the test
labs and the community of interest who we have consulted.

6.6.2 What Might Work
The options that we are fairly confident will satisfy the new requirement are:

• Use of a commercial proprietary product using FIPS 140-2 validated cryptography, obtained
via a trusted path (e.g. snail-mailed CD or DVD), to display the HMAC-SHA-1 digest of the
source tarball. That product should be capable of performing the equivalent of:

openssl sha1 -hmac etaonrishdlcupfm openssl-fips-2.0.tar.gz

51We were able to connect to both Microsoft and Red Hat distribution servers with non-allowed cryptographic
algorithms (e.g. RC4); hence we can deduce that those servers are not utilizing FIPS 140-2 validated cryptography.

Page 105 of 222

User Guide - OpenSSL FIPS Object Module v2.0

As noted above, for reasons we don't understand the earlier OpenSSL FIPS Object Module
validations (e.g. #1051) are apparently not eligible for this role. At this point we are not
aware of any specific commercial products that perform this operation on a file, nor how
much they cost or how to purchase them. However, such products must exist. If you know
of or find a suitable product please let us know52 the details.

• Use of a source code distribution that can be obtained from OSF on physical media (a CD-
ROM disk) via snail-mail (USPS).

Note this option is specifically documented53 as acceptable in the Security Policy itself -- a
huge comfort factor for those concerned about the lack of clear guidance in this area. Also
note that some experienced and respected commentators in the FIPS 140-2 community of
interest that we consulted felt strongly that physical media should not constitute a trusted
path. However, a direct statement as placed in the Security Policy and approved by the
CMVP trumps any such concerns.

Until and if the postage costs get out of hand we will send those CDs on request at no cost.
Please send your request including a full postal address to verifycd@openssl.com. Note that
the files you will receive on these CDs will be identical in every respect (except for FIPS
140-2 compliance) with the files you can download from the openssl.org web site, so we ask
that you only request this CD if you plan to use it for generation of FIPS 140-2 validated
cryptography in a context that requires such compliance. The downloaded files are bit-for-
bit identical and for any other purposes will generate exactly the same results.

6.6.3 Still Confused?
Welcome to the club. As we learn more about specific options that will and won't satisfy the
requirement we will post that information on the OSF web site and in updates to this document. In
the meantime the only definitive answers will have to come from the CMVP itself, either directly or
indirectly. The best point of contact is the Director of NIST CMVP54. If you choose to contact the
CMVP then please:

• Keep all inquiries polite and respectful.

• Remember that the CMVP have a very different perspective on computers and software than
the average information technology practitioner. They do not have a software development
background.

• Note that they are not the enemy; if it was their intent to consciously block or sabotage the
OpenSSL FIPS Object Module validations they could have done so easily long ago using a
wide range of bureaucratic tactics.

52http://openssl.com/contact.html
53The discussions leading to this statement in the Security Policy were responsible for several weeks of delay in
obtaining the validation. We felt the issue of having one specific affirmatively approved process for satisfying this new
requirement was so critical as to warrant any necessary delay; placement of that statement in the Securitiy Policy itself
was essentially our only opportunity to obtain a definitive response on the topic from the CMVP.
54http://csrc.nist.gov/groups/STM/cmvp/contacts.html

Page 106 of 222

http://csrc.nist.gov/groups/STM/cmvp/contacts.html
mailto:verifycd@openssl.com
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm#1051

User Guide - OpenSSL FIPS Object Module v2.0

• Note that if you disagree with what you are told by the Director of NIST CMVP you have
no recourse to appeal to any higher authority; his word is definitive and final (technically
the CMVP is a joint U.S.-Canadian program with the CSE55 as the Canadian equivalent of
NIST, but for U.S. users at least the NIST CMVP opinion is what matters. Canadian users
may want to consult the CSE).

• If you learn anything of interest please share it with us56 and/or one of the OpenSSL mailing
lists57.

6.7 GMAC

The FIPS module was originally tested with, and awarded an algorithm validation for, AES GCM
including GMAC. The CAVP subsequently revised the algorithm and retroactively designated a
number of validations, including ours, as "GMAC not supported".

6.7.1 CAVP Action

We first heard of this in an E-mail forwarded by our test lab, at which time the CAVP and CMVP
web site listings had already been updated to show "GMAC not supported" for multiple validations.

The CAVP noted that our GCM implementation gave an incorrect answer when a zero length
plaintext is given with an AAD input length that is not a multiple of 128 bits. The original GMAC
test only checked input lengths that were a multiple of 128 bits.

Note this preemptive action appears to be a little unusual, typically the CAVP/CMPV will contact a
vendor to discuss problems before taking unilateral action.

6.7.2 Options for Addressing

The fix is a trivial one line code change, http://cvs.openssl.org/chngview?cn=22745, which has
been applied to the regular OpenSSL releases. However, changes to FIPS 140-2 validated software,
no matter how trivial, are not easily effected. In this case the CAVP insisted on retesting of all of
the 50 some previously tested platforms.

Retesting was not economically feasible due to multiple factors:

• Many test devices had already been returned to the platform sponsors. Some of those were
one-off prototype or evaluation units and arranging with the sponsors to re-ship that
equipment to the OSF test lab would have taken a substantial amount of time and effort.
Even shipping costs themselves were non-trivial, as OSF pays return shipping for customer

55http://www.cse-cst.gc.ca/index-eng.html
56http://openssl.com:/contact.html
57http://openssl.org/support/community.html

Page 107 of 222

http://cvs.openssl.org/chngview?cn=22745
http://www.cse-cst.gc.ca/index-eng.html

User Guide - OpenSSL FIPS Object Module v2.0

supplied equipment. Those costs alone were several thousand dollars for the initial 2.0 FIPS
module testing.

• Many man-weeks of effort would have been required to repeat the process of installing and
configuring each test device and then running the software build and execution process.

• We would have to pay the test lab for the testing, a very substantial cost. Even with
negotiations to take into account the fact that the testing process was already fully
documented and tested for each device, that cost would probably have been at least
US$50,000.

All told we estimated the cost of retesting every platform would exceed US$70,000 even with OSF
personnel working for minimum wage.

Fortunately the practical impact of removing GMAC from the 2.0 module validation appears to be
minimal, as discussed in the following section.

This incident does illustrate the risk of unpredictable and unilateral CAVP/CMVP action. Passing
all the formal testing and receiving a validation award is no guarantee that the validation will not
disappear overnight58. That perceived risk is a large part of the appeal of the "private label"
validations for risk-adverse clients.

6.7.3 Practical Impact

The AES-GCM algorithm is an authenticated encryption algorithm. It is in some ways equivalent to
the separate HMAC and encryption algorithms used in some ciphersuites. It is an attractive choice
because it does everything all in one go and thus is is considerably faster than the separate
encryption+MAC operation. The first widespread use of GCM is in TLS 1.2 in new ciphersuites.

AES-GCM as its input can take (among other things) some additional authenticated data (AAD)
and plaintext (in encrypt mode). Its output is ciphertext and a MAC.

The AAD is used as some additional data to throw into the MAC calculation but it does not appear
in the output. The ciphertext is the encrypted plaintext.

If there is any plaintext/ciphertext at all then the operation is called GCM, with or without AAD.

If there is no ciphertext/plaintext and only AAD then the operation is called GMAC. So GMAC is a
special case of GCM.

58That has happened before, for instance the earlier OpenSSL FIPS Object Module validation #733 which was
effectively revoked by the CMVP. See http://veridicalsystems.com/blog/index.html?p=55.html for a discussion of that
incident.

Page 108 of 222

http://veridicalsystems.com/blog/index.html?p=55.html

User Guide - OpenSSL FIPS Object Module v2.0

The bug in the FIPS module GCM implementation is triggered when GMAC is used, i.e. there is no
ciphertext/plaintext and only AAD. Also the bug is not manifested unless the AAD is not a multiple
of 16 bytes.

So if the AAD is a multiple of 16 bytes and/or there is any ciphertext/plaintext then the FIPS
module implementation works just fine.

During normal operation of the TLS protocol GMAC is not used because there is always some data
to encrypt or decrypt. The degenerate case of a zero length fragment we think could trigger this but
OpenSSL never produces such a thing and there is no reason for a non-OpenSSL TLS stack to do so
either. Further review may be needed to determine if a TLS 1.2 zero length fragment case is even
theoretically possible.

So to summarize: under any normal use cases the OpenSSL TLS implementation works in FIPS
mode just fine without GMAC.

6.8 DH
The version of DH used by TLS is a variant on PKCS#3 and not the X9.42 specification, and hence
is not compliant with SP800-56A. For example, the requirement:

Each private key shall be unpredictable and shall be generated in the range [1,
q-1] using an Approved random bit generator.

For TLS clients that requirement cannot be satisfied as stated because the parameter "q" is not sent
from server to client, only the parameter "p". Clients generate a private key in the range [1, p-1]
instead.

6.9 DSA
The DSA private key value is calculated as follows:

The function fips_check_dsa_prng()checks parameters and that the PRNG strength is
consistent with them when a private key is generated. The function fips_ffc_strength()
which takes the values directly from SP800-131A is used as well.

6.10 CCM
CCM is "Counter with Cipher Block Chaining-Message Authentication Code" per SP800-38C.

The openssl ciphers command does not show anything for CCM as that command only lists
the cipher suites for SSL/TLS. For OpenSSL 1.0.2 and earlier CCM mode is not supported for TLS
in OpenSSL: such support was not requested by any validation sponsors and it wasn't even a
finalised standard at the time. Newer versions of OpenSSL do support CCM but the cipher string is
AESCCM because CCM can apply to other ciphers.

Page 109 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Page 110 of 222

User Guide - OpenSSL FIPS Object Module v2.0

7. REFERENCES

1. OpenSSL FIPS 140-2 Security Policy, Version 2.0, Open Source Software Institute. This
document is available at http://csrc.nist.gov/groups/STM/cmvp/documents/140-
1/140sp/140sp NNNN .pdf and http://www.openssl.org/docs/fips/.

2. FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May 2001, National
Institute of Standards and Technology, available at
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

3. Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation
Program, National Institute of Standards and Technology, available at
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf.

4. Derived Test Requirements [DTR] for FIPS PUB 140-2, Security Requirements for
Cryptographic Modules, January 4, 2011, National Institute of Standards and Technology,
available at http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-
2/FIPS1402DTR.pdf.

5. Network Security with OpenSSL, John Viega et. al., 15 June 2002, O'Reilly & Associates

6. NSA Suite B Cryptography
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

7. The Transitioning of Cryptographic Algorithms and Key Sizes
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.p
df

8. DRAFT Recommendation for the Transitioning of Cryptographic Algorithms and Key Sizes
http://csrc.nist.gov/publications/drafts/800-131/draft-sp800-131_spd-june2010.pdf

9. FIPS 186-3, Digital Signature Standard (DSS)
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

10. SP 800-90, Recommendation for Random Number Generation Using Deterministic Random
Bit Generators (Revised),
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

11. SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography,
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

Page 111 of 222

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/drafts/800-131/draft-sp800-131_spd-june2010.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402DTR.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402DTR.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402DTR.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402DTR.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.openssl.org/docs/fips/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf

User Guide - OpenSSL FIPS Object Module v2.0

12. Suite B Implementer’s Guide to NIST SP 800-56A,
http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf

13. SP 800-56B, Recommendation for Pair-Wise Key Establishment Schemes Using Integer
Factorization Cryptography,
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf

14. SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions,
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

15. AES Key Wrap Specification
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/AES_key_wrap.pdf

16. May 21, 2009 Army "Letter to Industry",
https://chess.army.mil/ascp/commerce/scp/downloads/standardspolicy_files/letter_to_indust
ry.pdf

17. OpenSSL FIPS Object Module User's Guide, http://openssl.org/docs/fips/UserGuide.pdf

18. The OpenSSL license, http://openssl.org/source/license.html

19. Alice in Wonderland, Lewis Carroll, 1865, ISBN 978-0486275437,
https://www.gutenberg.org/files/11/11-pdf.pdf

Page 112 of 222

https://www.gutenberg.org/files/11/11-pdf.pdf
http://openssl.org/source/license.html
http://openssl.org/docs/fips/UserGuide.pdf
https://chess.army.mil/ascp/commerce/scp/downloads/standardspolicy_files/letter_to_industry.pdf
https://chess.army.mil/ascp/commerce/scp/downloads/standardspolicy_files/letter_to_industry.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/AES_key_wrap.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf
http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf

User Guide - OpenSSL FIPS Object Module v2.0

Appendix A OpenSSL Distribution Signing Keys

In order to be considered FIPS 140-2 validated the FIPS Object Module must be derived from an
OpenSSL distribution signed by one of these authorized keys, as shown by the value in the
Fingerprint row. These keys are subject to change and the list at https://openssl.org/about/ will
generally be more current.

The procedure for verifying that a source distribution was signed by one of these keys is described
in detail in §4.1.2.

Note the fingerprint formats are slightly different for the two different types of keys (RSA and
DSA).

OpenSSL Core Team PGP Keys
Key Id Team member

0E604491 Matt Caswell matt@openssl.org

fingerprint: 8657 ABB2 60F0 56B1 E519 0839 D9C4 D26D 0E60 4491

49A563D9 Mark J. Cox mark@openssl.org

fingerprint: 7B 79 19 FA 71 6B 87 25 0E 77 21 E5 52 D9 83 BF

Viktor Dukhovni viktor@openssl.org

FA40E9E2 Dr. Stephen Henson steve@openssl.org

fingerprint: 6260 5AA4 334A F9F0 DDE5 D349 D357 7507 FA40 E9E2

41FBF7DD Tim Hudson tjh@openssl.org

fingerprint: 60A6 0B21 E22D CEDD C50C 0773 06CC 497B 0EEA BFE4

BDD52F1C Lutz Jänicke jaenicke@openssl.org

fingerprint: 0A77 335A ADE7 4E6B B36C AD8A DFAB 592A BDD5 2F1C

Emilia Käsper emilia@openssl.org C

2118CF83 Ben Laurie ben@openssl.org

fingerprint: 7656 55DE 62E3 96FF 2587 EB6C 4F6D E156 2118 CF83

Page 113 of 222

mailto:ben@openssl.org
mailto:emilia@openssl.org
mailto:jaenicke@openssl.org
mailto:tjh@openssl.org
mailto:steve@openssl.org
mailto:viktor@openssl.org
mailto:mark@openssl.org
mailto:matt@openssl.org
https://openssl.org/about/

User Guide - OpenSSL FIPS Object Module v2.0

6D1892F5 Steve Marquess marquess@openssl.org

fingerprint: FEAB 1FB2 6537 1742 9B0B 894F 4317 11F7 6D18 92F5

7DF9EE8C Richard Levitte levitte@openssl.org S

fingerprint: 7953 AC1F BC3D C8B3 B292 393E D5E9 E43F 7DF9 EE8C

4A397EA2 Bodo Möller bodo@openssl.org

fingerprint: 3FD2 C7DB D3EA 28B7 B0C6 1B5D E9A7 C808 4A39 7EA2

1FE8E023 Andy Polyakov appro@openssl.org

fingerprint: B652 F27F 2B8D 1B8D A78D 7061 BA6C DA46 1FE8 E023

41C25E5D Kurt Roeckx kurt@openssl.org

fingerprint: E5E5 2560 DD91 C556 DDBD A5D0 2064 C536 41C2 5E5D

5C51B27C Rich Salz rsalz@openssl.org

fingerprint: D099 684D C7C2 1E02 E14A 8AFE F234 7945 5C51 B27C

E18C1C32 Geoff Thorpe geoff@openssl.org

fingerprint: 1B3D F808 C221 D2A5 ED74 172F 0833 F510 E18C 1C32

Page 114 of 222

mailto:geoff@openssl.org
mailto:rsalz@openssl.org
mailto:kurt@openssl.org
mailto:appro@openssl.org
mailto:bodo@openssl.org
mailto:levitte@openssl.org
mailto:marquess@openssl.org

User Guide - OpenSSL FIPS Object Module v2.0

Appendix B CMVP Test Procedure

Instructions for building OpenSSL and performing the FIPS 140-2 and related algorithm tests on
Linux®/Unix® Microsoft Windows® based platforms are given here. These instructions are
primarily of interest to the CMVP testing laboratory performing the validation testing, or anyone
wishing to verify that the executable library generates generates the same output for the algorithm
tests performed by the testing laboratory.

Note there is no requirement for end users or application developers to run these tests; this
discussion is included for reference purposes to illustrate the algorithm testing performed by the
CMVP test lab. Note this step requires a large directory tree of input test data files produced by the
testing lab using a NIST provided tool (CAVS); several sets of input and response values can be
found http://openssl.com/testing/validation-2.0/testvectors/. The file

http://openssl.com/testing/validation-2.0/testvectors/tv.tar.gz

contains a complete set of 259 test vector files with correct responses that can be used for a single
comprehensive test. Note the number and format of these test vector files changes over time, so this
set may not correspond exactly to what the CAVS tool currently produces.

B.1 Building the Software - Linux/Unix

1. Copy the OpenSSL distribution (openssl­fips­2.0.tar.gz) to a directory on the test
system. Approximately 80Mb free space is needed for this file and the resulting work area.

2. Perform the standard build. Use of a script file or comparable means of capturing the output
is highly recommended.

gunzip ­c openssl­fips­2.0.tar.gz | tar xf ­
cd openssl
./config [no­asm]
make

...where the no­asm option may or not be present depending on the platform.

3. Run

make build_tests

Page 115 of 222

http://openssl.com/testing/validation-2.0/testvectors/tv.tar.gz
http://openssl.com/testing/validation-2.0/testvectors/

User Guide - OpenSSL FIPS Object Module v2.0

to generate the standalone additional programs to support the testing process. To generate a
single program that contains the functionality of fips_test_suite and the individual standalone
algorithm test programs, run

make build_algvs

to build the fips_algvs program. This program is necessary for some platforms that do not
provide a suitable command shell and for which the execution of many separate programs is
awkward or difficult, and may be convenient in other circumstances.

The fips_algvs program can be used to execute specific tests, for instance

fips_algv fips_test_suite post
fips_algv fips_dssvs pqg "tv/req/PQGGen.req"

"tv/resp/PQGGen.rsp"

or if given no command line options it will process the subcommands in a minimal shell script
as generated by

perl fipsalgtest.pl ­­dir=<testvectors> ­­minimal­script
­­generate­script=fipstests.sh perl ­­tprefix=

which will produce a file fipstests.sh with the subcommands corresponding to each
request file, e.g.:

fips_dssvs pqg "tv/req/PQGGen.req" "tv/resp/PQGGen.rsp"

The fips_algvs program supports the following command line options:

­quiet suppress any progress output.
­verbose echo full command lines of executed commands

(default is to omit filenames)
­script <filename> script to use, default is fipstests.sh

In absence of any options it assumes a script file fipstests.sh should be read from the
current directory. If the first argument doesn't begin with a '-' it is taken as the name of a sub
program to run:

fips_aesavs
fips_algvs
fips_cmactest
fips_desmovs
fips_dhvs

Page 116 of 222

User Guide - OpenSSL FIPS Object Module v2.0

fips_drbgvs
fips_dsatest
fips_dssvs
fips_ecdhvs
fips_ecdsavs
fips_gcmtest
fips_hmactest
fips_randtest
fips_rngvs
fips_rsagtest
fips_rsastest
fips_rsavtest
fips_shatest
fips_test_suite

Note that for future validations the fips_algvs program will probably entirely replace the
separate fips_test_suite and algorithm test driver programs.

B.2 Algorithm Tests - Linux/Unix

4. Add the subtree of test data to the distribution work area:

cd fips
unzip <zipfile of test vectors>.zip ­d testvectors

5. Run the FIPS 140-2 algorithm tests:

perl fipsalgtest.pl ­­dir=testvectors

This step runs the algorithm tests specific to the FIPS mode. Again a large amount of output
will be generated. If an error occurs processing will be aborted. The output from the
cryptographic tests will be compared against the response files already present in the test data
and not permanently stored. This comparison automatically suppresses the whitespace and
comment line differences and ignores the seven test vector files that are always different59.

59Due to the nature of the cryptographic operations involved the following responses files will always be different:
KeyPair.rsp DSA
PQGGen.rsp DSA
SigGen.rsp DSA
SigGen15.rsp RSA
SigGenPSS.rsp RSA
SigGenRSA.rsp RSA
SigGenPSS.rsp RSA

The special case cryptographic operations are listed in the associative array %verify_specials tin the fipsalgvs.pl
perl script.

Page 117 of 222

User Guide - OpenSSL FIPS Object Module v2.0

6. To generate and preserve new response files use the ­­generate option:

perl fipsalgtest.pl ­­dir=testvectors ­­generate

Many (approximately 259) generated *.rsp files will be found in the ./testvectors/
directory tree under ./fips/:

find testvectors/ ­name '*.rsp'

7. The tree of *.rsp files can also be extracted for comparison with another tree:

find testvectors ­name '*.rsp' | cpio ­oc > rsp1.cpio
.
.
.

cd /tmp
mkdir rsp1 rsp2
cd rsp1; cpio ­ic < rsp1.cpio
cd ../rsp2; cpio ­ic < rsp2.cpio
diff ­r . ../rsp1

If the only other differences are the commented date-time labels then the trees match:

diff ­r ./testvectors/aes/resp/CBCGFSbox128.rsp \
../rsp1/testvectors/aes/resp/CBCGFSbox128.rsp

6c6
< # Thu Mar 4 11:05:36 2004
­­­
> # Fri Feb 20 12:21:24 2004
diff ­r ./testvectors/aes/resp/CBCGFSbox192.rsp \

../rsp1/testvectors/aes/resp/CBCGFSbox192.rsp
6c6
< # Thu Mar 4 11:05:36 2004
­­­
> # Fri Feb 20 12:21:24 2004

.

.

.

B.3 Building the Software - Windows

Page 118 of 222

User Guide - OpenSSL FIPS Object Module v2.0

1. Copy the OpenSSL distribution (openssl­fips­2.0.tar.gz) to a directory on the test
system. Approximately 80Mb free space is needed.

2. Perform the standard build.

cd openssl
ms\do_fips [no­asm]
out32dll\fips_test_suite

...where the no­asm option may or not be present depending on the platform.

B.4 Algorithm Tests - Windows

3. This procedure is similar to that for Linux/Unix:

cd fips
unzip <zipfile of test vectors>.zip ­d testvectors
perl fipsalgtest.pl ­­win32 ­­dir=testvectors
.\fipstests.bat

There is no bundled zip/unzip command for most versions of Microsoft Windows, but many third
party implementations are available, such as http://gnuwin32.sourceforge.net/packages/unzip.htm.

B.5 FIPS 140-2 Test - All Platforms

A test driver program has been provided to demonstrate both successful and failed power-up self-
tests and the invocation of some basic cryptographic operations. This program was developed
during the course of the FIPS 140-2 validation as a aid to the test lab evaluators. This test program,
fips_test_suite, can be found in the ./test/ subdirectory. This program behaves the
same for Linux/Unix and Windows; for Windows invoke as .\fips_test_suite instead of
./fips_test_suite as shown in this example.

1. When executed with no argument output similar to the full suite of algorithm tests is performed,
producing the following output:

$ FIPS­mode test application
FIPS 2.0­dev unvalidated test module xx XXX xxxx

DRBG AES­256­CTR DF test started
DRBG AES­256­CTR DF test OK

1. Non­Approved cryptographic operation test...
a. Included algorithm (D­H)......successful
POST started

Integrity test started

Page 119 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Integrity test OK
DRBG AES­256­CTR DF test started
DRBG AES­256­CTR DF test OK
DRBG AES­256­CTR test started
DRBG AES­256­CTR test OK
DRBG SHA256 test started
DRBG SHA256 test OK
DRBG HMAC­SHA256 test started
DRBG HMAC­SHA256 test OK
DRBG P­256 SHA256 test started
DRBG P­256 SHA256 test OK
X9.31 PRNG keylen=16 test started
X9.31 PRNG keylen=16 test OK
X9.31 PRNG keylen=24 test started
X9.31 PRNG keylen=24 test OK
X9.31 PRNG keylen=32 test started
X9.31 PRNG keylen=32 test OK
Digest SHA1 test started
Digest SHA1 test OK
Digest SHA1 test started
Digest SHA1 test OK
Digest SHA1 test started
Digest SHA1 test OK
HMAC SHA1 test started
HMAC SHA1 test OK
HMAC SHA224 test started
HMAC SHA224 test OK
HMAC SHA256 test started
HMAC SHA256 test OK
HMAC SHA384 test started
HMAC SHA384 test OK
HMAC SHA512 test started
HMAC SHA512 test OK
CMAC AES­128­CBC test started
CMAC AES­128­CBC test OK
CMAC AES­192­CBC test started
CMAC AES­192­CBC test OK
CMAC AES­256­CBC test started
CMAC AES­256­CBC test OK
CMAC DES­EDE3­CBC test started
CMAC DES­EDE3­CBC test OK
Cipher AES­128­ECB test started
Cipher AES­128­ECB test OK
CCM test started
CCM test OK
GCM test started
GCM test OK
XTS AES­128­XTS test started
XTS AES­128­XTS test OK
XTS AES­256­XTS test started

Page 120 of 222

User Guide - OpenSSL FIPS Object Module v2.0

XTS AES­256­XTS test OK
Cipher DES­EDE3­ECB test started
Cipher DES­EDE3­ECB test OK
Cipher DES­EDE3­ECB test started
Cipher DES­EDE3­ECB test OK
Signature RSA test started
Signature RSA test OK
Signature ECDSA P­224 test started
Signature ECDSA P­224 test OK
Signature ECDSA K­233 test started
Signature ECDSA K­233 test OK
Signature DSA test started
Signature DSA test OK
ECDH P­224 test started
ECDH P­224 test OK

POST Success
2. Automatic power­up self test...successful
3a. AES encryption/decryption...successful
3b. AES­GCM encryption/decryption...successful

Pairwise Consistency RSA test started
Pairwise Consistency RSA test OK
Pairwise Consistency RSA test started
Pairwise Consistency RSA test OK
Pairwise Consistency RSA test started
Pairwise Consistency RSA test OK

4. RSA key generation and encryption/decryption...successful
5. DES­ECB encryption/decryption...successful

Pairwise Consistency DSA test started
Pairwise Consistency DSA test OK

6. DSA key generation and signature validation...successful
7a. SHA­1 hash...successful
7b. SHA­256 hash...successful
7c. SHA­512 hash...successful
7d. HMAC­SHA­1 hash...successful
7e. HMAC­SHA­224 hash...successful
7f. HMAC­SHA­256 hash...successful
7g. HMAC­SHA­384 hash...successful
7h. HMAC­SHA­512 hash...successful
8a. CMAC­AES­128 hash...successful
8b. CMAC­AES­192 hash...successful
8c. CMAC­AES­256 hash...successful
8e. CMAC­TDEA­3 hash...successful
9. Non­Approved cryptographic operation test...

a. Included algorithm (D­H)...successful as expected
Pairwise Consistency RSA test started
Pairwise Consistency RSA test OK
Pairwise Consistency RSA test started
Pairwise Consistency RSA test OK
Pairwise Consistency RSA test started
Pairwise Consistency RSA test OK

Page 121 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 Generated 128 byte RSA private key
BN key before overwriting:

400e460169e1e37d8f415fe50c40fab493185c17e99b76e123bc0f3d7d0c8b1f42881ff7396b
3ee388c3b973cece2d7d231109a7202016daf1e26caca9e704b9bffd9bd6151d61ab3050a82e
78510abf2e450a6c57e9fb7db8a837f81fc93db0c6c95d090ac6752b8ac4ee51623ffcbd270b
0ed281ebbe2e6a3a9d0a4012a991 BN key after overwriting:
668d6314da4f25ca496a6f98e2f6986437be60f2d34880e8d08060263dd10a3bde7345ef99ed
00e2edeedf43a1bda7053c58b6474051bbaf9c9e5bf70a488a7b94d88c67fc9e16fc9e4bb231
8836dc47282c8e41d3c35bc400949cd2d2b5e0ee0bd84ce8dffdb02dfc6c9528d0be43b0d95f
ce6e979c561070e6da5a05b9e53e char buffer key before overwriting:

4850f0a33aedd3af6e477f8302b10968
char buffer key after overwriting:

788fadb58c8163405e883a63550fd732
10. Zero­ization...

successful as expected
11. Complete DRBG health check...

DRBG AES­128­CTR DF test started
DRBG AES­128­CTR DF test OK
DRBG AES­192­CTR DF test started
DRBG AES­192­CTR DF test OK

.

.

.
(very long list of DRBG tests)

.

.

.
DRBG P­521 SHA384 test started
DRBG P­521 SHA384 test OK
DRBG P­521 SHA512 test started
DRBG P­521 SHA512 test OK

successful as expected
12. DRBG generation check...

DRBG SHA1 test started
DRBG SHA1 test OK
DRBG SHA1 test started
DRBG SHA1 test OK

.

.

.
(very long list of DRBG tests)

.

.
DRBG P­521 SHA512 test OK
DRBG P­521 SHA512 test started
DRBG P­521 SHA512 test OK

successful as expected

All tests completed with 0 errors

Page 122 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The nodh option skips the glacial and largely pointless DH test.

The nodrbg option skips the slow full DRBG test

The fullpost option gives a complete POST listing instead of induced failure and
unexpected errors. The output is then much more verbose as it contains every successful test
too.

The fullerr option is useful for code tracing. Normally during the induced failure test
library errors are not printed out. With this option the error codes corresponding to each
operation are displayed showing the exact line and error code output.

2. When executed with the post command line option only module initialization will be
performed:

$ test/fips_test_suite post
FIPS­mode test application
FIPS 2.0­dev unvalidated test module xx XXX xxxx

DRBG AES­256­CTR DF test started
DRBG AES­256­CTR DF test OK

POST started
Integrity test started
Integrity test OK
DRBG AES­256­CTR DF test started
DRBG AES­256­CTR DF test OK
DRBG AES­256­CTR test started
DRBG AES­256­CTR test OK
DRBG SHA256 test started
DRBG SHA256 test OK
DRBG HMAC­SHA256 test started
DRBG HMAC­SHA256 test OK
DRBG P­256 SHA256 test started
DRBG P­256 SHA256 test OK
X9.31 PRNG keylen=16 test started
X9.31 PRNG keylen=16 test OK
X9.31 PRNG keylen=24 test started
X9.31 PRNG keylen=24 test OK
X9.31 PRNG keylen=32 test started
X9.31 PRNG keylen=32 test OK
Digest SHA1 test started
Digest SHA1 test OK
Digest SHA1 test started
Digest SHA1 test OK
Digest SHA1 test started
Digest SHA1 test OK
HMAC SHA1 test started
HMAC SHA1 test OK

Page 123 of 222

User Guide - OpenSSL FIPS Object Module v2.0

HMAC SHA224 test started
HMAC SHA224 test OK
HMAC SHA256 test started
HMAC SHA256 test OK
HMAC SHA384 test started
HMAC SHA384 test OK
HMAC SHA512 test started
HMAC SHA512 test OK
CMAC AES­128­CBC test started
CMAC AES­128­CBC test OK
CMAC AES­192­CBC test started
CMAC AES­192­CBC test OK
CMAC AES­256­CBC test started
CMAC AES­256­CBC test OK
CMAC DES­EDE3­CBC test started
CMAC DES­EDE3­CBC test OK
Cipher AES­128­ECB test started
Cipher AES­128­ECB test OK
CCM test started
CCM test OK
GCM test started
GCM test OK
XTS AES­128­XTS test started
XTS AES­128­XTS test OK
XTS AES­256­XTS test started
XTS AES­256­XTS test OK
Cipher DES­EDE3­ECB test started
Cipher DES­EDE3­ECB test OK
Cipher DES­EDE3­ECB test started
Cipher DES­EDE3­ECB test OK
Signature RSA test started
Signature RSA test OK
Signature ECDSA P­224 test started
Signature ECDSA P­224 test OK
Signature ECDSA K­233 test started
Signature ECDSA K­233 test OK
Signature DSA test started
Signature DSA test OK
ECDH P­224 test started
ECDH P­224 test OK

POST Success
Power­up self test successful
$

Note this invocation is useful for a quick estimation of the performance impact of module
initialization.

3. To demonstrate the correct functioning of the integrity and KAT test failures a set of corruption
tests are run automatically when the unqualified fips_test_suite option is specified. In

Page 124 of 222

User Guide - OpenSSL FIPS Object Module v2.0

the implementation of the fips_algvs utility these tests are specified in the
fail_list_flist structure and a series of in-line tests which are traversed by the static
function do_fail_all() at the point where the line

13. Induced test failure check...

is printed. Each specific test is preceded by one of the lines

Testing induced failure of XXXX
Testing operation failure with XXXX

and the conclusion of all the corruption tests should end with the lines

 Induced failure test completed with 0 errors
 successful as expected

Note the use of three static variables by the function do_fail_all() to specify the specific
corruption tests to be performed.

The individual tests in the order performed are:

Integrity
AES
DES3
AES­GCM
AES­CCM
AES­XTS
Digest
HMAC
CMAC
DRBG
X9.31 PRNG
RSA
DSA
ECDSA
ECDH
RSA keygen
DSA keygen
ECDSA keygen
DRBG CPRNG
DRBG entropy CPRNG
X9.31 CPRNG

Page 125 of 222

User Guide - OpenSSL FIPS Object Module v2.0

DRBG entropy failure

This full set of corruption tests should appear as follows:

 13. Induced test failure check...
 Testing induced failure of Integrity test
 POST started
 Integrity test failure induced
 Integrity test failed as expected
 POST Failed
 Testing induced failure of AES test
 POST started
 Cipher AES­128­ECB test failure induced
 Cipher AES­128­ECB test failed as expected
 POST Failed
 Testing induced failure of DES3 test
 POST started
 Cipher DES­EDE3­ECB test failure induced
 Cipher DES­EDE3­ECB test failed as expected
 POST Failed
 Testing induced failure of AES­GCM test
 POST started
 GCM test failure induced
 GCM test failed as expected
 POST Failed
 Testing induced failure of AES­CCM test
 POST started
 CCM test failure induced
 CCM test failed as expected
 POST Failed
 Testing induced failure of AES­XTS test
 POST started
 XTS AES­128­XTS test failure induced
 XTS AES­128­XTS test failed as expected
 XTS AES­256­XTS test failure induced
 XTS AES­256­XTS test failed as expected
 POST Failed
 Testing induced failure of Digest test
 POST started
 Digest SHA1 test failure induced
 Digest SHA1 test failed as expected
 Digest SHA1 test failure induced

Page 126 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 Digest SHA1 test failed as expected
 Digest SHA1 test failure induced
 Digest SHA1 test failed as expected
 POST Failed
 Testing induced failure of HMAC test
 POST started
 HMAC SHA1 test failure induced
 HMAC SHA1 test failed as expected
 HMAC SHA224 test failure induced
 HMAC SHA224 test failed as expected
 HMAC SHA256 test failure induced
 HMAC SHA256 test failed as expected
 HMAC SHA384 test failure induced
 HMAC SHA384 test failed as expected
 HMAC SHA512 test failure induced
 HMAC SHA512 test failed as expected
 POST Failed
 Testing induced failure of CMAC test
 POST started
 CMAC AES­128­CBC test failure induced
 CMAC AES­128­CBC test failed as expected
 CMAC AES­192­CBC test failure induced
 CMAC AES­192­CBC test failed as expected
 CMAC AES­256­CBC test failure induced
 CMAC AES­256­CBC test failed as expected
 CMAC DES­EDE3­CBC test failure induced
 CMAC DES­EDE3­CBC test failed as expected
 POST Failed
 Testing induced failure of DRBG test
 POST started
 DRBG AES­256­CTR test failure induced
 DRBG AES­256­CTR DF test failed as expected
 DRBG AES­256­CTR test failure induced
 DRBG AES­256­CTR test failed as expected
 DRBG SHA256 test failure induced
 DRBG SHA256 test failed as expected
 DRBG HMAC­SHA256 test failure induced
 DRBG HMAC­SHA256 test failed as expected
 DRBG P­256 SHA256 test failure induced
 DRBG P­256 SHA256 test failed as expected
 POST Failed
 Testing induced failure of X9.31 PRNG test

Page 127 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 POST started
 X9.31 PRNG keylen=16 test failure induced
 X9.31 PRNG keylen=16 test failed as expected
 X9.31 PRNG keylen=24 test failure induced
 X9.31 PRNG keylen=24 test failed as expected
 X9.31 PRNG keylen=32 test failure induced
 X9.31 PRNG keylen=32 test failed as expected
 POST Failed
 Testing induced failure of RSA test
 POST started
 Signature RSA test failure induced
 Signature RSA test failed as expected
 POST Failed
 Testing induced failure of DSA test
 POST started
 Signature DSA test failure induced
 Signature DSA test failed as expected
 POST Failed
 Testing induced failure of ECDSA test
 POST started
 Signature ECDSA P­224 test failure induced
 Signature ECDSA P­224 test failed as expected
 POST Failed
 Testing induced failure of ECDH test
 POST started
 ECDH P­224 test failure induced
 ECDH P­224 test failed as expected
 POST Failed
 Testing induced failure of RSA keygen test
 POST started
 POST Success
 Pairwise Consistency RSA test failure induced
 Pairwise Consistency RSA test failed as expected
 RSA key generation failed as expected.
 Testing induced failure of DSA keygen test
 POST started
 POST Success
 Pairwise Consistency DSA test failure induced
 Pairwise Consistency DSA test failed as expected
 DSA key generation failed as expected.
 POST started
 POST Success

Page 128 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 Testing induced failure of ECDSA keygen test
 Pairwise Consistency ECDSA test failure induced
 Pairwise Consistency ECDSA test failed as expected
 ECDSA key generation failed as expected.
 POST started
 POST Success
 Testing induced failure of DRBG CPRNG test
 DRBG continuous PRNG failed as expected
 POST started
 POST Success
 Testing induced failure of DRBG entropy CPRNG test
 DRBG continuous PRNG entropy failed as expected
 POST started
 POST Success
 POST started
 POST Success
 Testing induced failure of X9.31 CPRNG test
 X9.31 continuous PRNG failed as expected
 POST started
 POST Success
 Testing operation failure with DRBG entropy failure
 DSA key generated OK as expected.
 DRBG entropy fail failed as expected
 DSA signing failed as expected
 ECDSA key generation failed as expected.
 Induced failure test completed with 0 errors
 successful as expected

So, the presence of the line

Induced failure test completed with 0 errors

for the block of tests beginning with the line

13. Induced test failure check...

is a readily observed indication that all corruption tests performed as expected.

4. To demonstrate the module authentication one of four command line options may be given to
specify the password value to be passed to FIPS_module_mode_set():

nopass Null password

Page 129 of 222

User Guide - OpenSSL FIPS Object Module v2.0

badpass Invalid password of sufficient length
user The FIPS_AUTH_CRYPTO_USER password
officer The FIPS_AUTH_CRYPTO_OFFICER password

If none of those command line options are given the FIPS_AUTH_CRYPTO_USER password
is used. Invocation with none or badpass will fail:

$ test/fips_test_suite badpass
FIPS­mode test application
FIPS 2.0­dev unvalidated test module xx XXX xxxx

DRBG AES­256­CTR DF test started
DRBG AES­256­CTR DF test OK

ERROR:2D078097:lib=45,func=120,reason=151:file=fips.c:line=
300
Power­up self test failed
$

and invocation with user or officer will successfully perform the POST test.

B.6 Testvector Data Files and the fipsalgtest.pl Utility

The FIPS 140-2 test labs use CAVP provided Windows based software known as the “CAVS tool”
to generate the test vector data files used for the algorithm tests. The algorithms desired are
typically specified using forms proprietary to the specific test lab performing the testing. Non-
proprietary facsimiles of those forms specifying the algorithms tests foe the 2.0 module validation
can be found at http://openssl.com/testing/validation-2.0/forms/.

The test lab uses the CAVS tools to generate a set of "request" files for which corresponding
"response" files must be generated by the module (the IUT or Implementation Under test). The set
of request files is typically delivered in a single zip or tar file containing a directory tree with
arbitrary pathnames. The only constant is the names of the actual *.rsp response files of input
data. Since matching filenames up by hand quickly becomes tedious we have developed a utility,
fipsalgtest.pl, that will search through a directory hierarchy and identify the relevant test
vector files.

For the initial validation there were 257 unique file names with 2 duplicate names, for a total of 259
files:

Algorithm Number of *.req files

AES 108

Page 130 of 222

http://openssl.com/testing/validation-2.0/forms/

User Guide - OpenSSL FIPS Object Module v2.0

Algorithm Number of *.req files

AES_GCM 6

CCM 15

CMAC 8

DES 0

DRBG 4

DSA 5

DSA2 5

ECDSA 4

ECDSA2 4

HMAC 1

KAS 1

RNG 6

RSA 9

SHA 15

TDES 66

XTS 2

Total ** Expression is faulty **

In order to facilitate the processing of test vector data a series of utilities were developed,
culminating in the fipsalgtest.pl program. This program searches a target directory for the
known *.rsp files and generates a script referencing the actual pathnames for those files. That
script can then be executed to perform the algorithm tests that generate the *.rsp result files. The
fipsalgtest.pl program reports unrecognized duplicate *.rsp files and any files that were
expected but not found.

Testvector data sets are generally received as *.zip files, more rarely as *.tgz. A typical
pathname structure (for this validation) is as follows:

./OSF_2464_Template

./OSF_2464_Template/AES

./OSF_2464_Template/AES/resp

./OSF_2464_Template/AES/req

./OSF_2464_Template/AES/req/CBCGFSbox128.req

./OSF_2464_Template/AES/req/CFB128MMT192.req

./OSF_2464_Template/AES/req/CBCVarKey192.req

./OSF_2464_Template/AES/req/CFB1VarTxt256.req

./OSF_2464_Template/AES/req/CBCMMT128.req

./OSF_2464_Template/AES/req/CBCKeySbox256.req

./OSF_2464_Template/AES/req/ECBVarTxt192.req

./OSF_2464_Template/AES/req/CFB128VarKey256.req

./OSF_2464_Template/AES/req/OFBVarTxt128.req

./OSF_2464_Template/AES/req/CFB1MCT192.req

Page 131 of 222

User Guide - OpenSSL FIPS Object Module v2.0

./OSF_2464_Template/AES/req/CBCVarKey128.req

./OSF_2464_Template/AES/req/CFB8VarTxt128.req

./OSF_2464_Template/AES/req/ECBMMT128.req

./OSF_2464_Template/AES/req/CBCGFSbox192.req

./OSF_2464_Template/AES/req/CFB128MCT192.req

./OSF_2464_Template/AES/req/OFBMCT128.req

./OSF_2464_Template/AES/req/CFB1GFSbox256.req
.
.
.

Note directory names may contain embedded spaces. The data files will generally (though not
necessarily) be carriage return-line feed delimited.

If multiple platforms are involved in a validation the test vector files for several platforms may be
interspersed in the same directory tree. We have also received test vector files for a single platform
in multiple different *.zip files, so the fipsalgtest.pl program must be able to filter the
relevant *.rsp files out of multiple subdirectories.

The following fipsalgtest.pl options can be used to accommodate various representations of
test vector files:

fipsalgtest.pl: generate run CAVP algorithm tests
­­debug Enable debug output
­­dir=<dirname> Optional root for *.req file search
­­filter=<regexp> Regex for input files of interest
­­onedir <dirname> Assume all components in current directory
­­rspdir=<dirname> Name of subdirectories containing *.rsp

files, default "resp"
­­tprefix=<prefix> Pathname prefix for directory containing test

programs
­­ignore­bogus Ignore duplicate or bogus files
­­ignore­missing Ignore missing test files
­­quiet Shhh....
­­quiet­bogus Skip unrecognized file warnings
­­quiet­missing Skip missing request file warnings
­­generate Generate algorithm test output
­­generate­script=<filename> Generate script to call algorithm programs
­­minimal­script Simplest possible output for

­­generate­script
­­win32 Win32 environment
­­compare­all Verify unconditionally for all tests
­­list­tests Show individual tests
­­mkdir=<cmd> Specify "mkdir" command
­­notest Exit before running tests
­­rm=<cmd> Specify "rm" command
­­script­tprefix Pathname prefix for ­­generate­script output
­­enable­<alg> Enable algorithm set <alg>.
­­disable­<alg> Disable algorithm set <alg>.
Where <alg> can be one of:

aes­ccm (disabled by default)
rand­aes (enabled by default)
ecdsa (disabled by default)

Page 132 of 222

User Guide - OpenSSL FIPS Object Module v2.0

hmac (enabled by default)
dh (disabled by default)
aes­cfb1 (disabled by default)
ecdh (disabled by default)
des3­cfb1 (disabled by default)
drbg (disabled by default)
des3 (enabled by default)
dsa (enabled by default)
dsa­pqgver (disabled by default)
rsa­pss0 (disabled by default)
sha (enabled by default)
aes (enabled by default)
dsa2 (disabled by default)
aes­gcm (disabled by default)
rsa­pss62 (enabled by default)
cmac (disabled by default)
aes­xts (disabled by default)
rsa (enabled by default)
v2 (enabled by default)
rand­des2 (disabled by default)

Simply run

perl fipsalgtest.pl ­­dir=testvectors ­­generate

to generate the *.rsp files for submission to the test lab.

Subsequently running fipsalgtest.pl without the --generate option will compare the
generated output with the previously existing *.rsp files, and thus provides a comprehensive
(though unofficial) check of the algorithm tests.

Individual algorithm tests can be selectively specified with options of the form --enable­xxx or
­­disable­xxx where xxx is one of the <alg> algorithm specifications

The ­­ignore­bogus and ­­ignore­missing options suppress the error exit if the target
test vector directory contains more or fewer *.rsp files than expected (a not uncommon
occurrence in validation testing.

For target platforms that do not support a perl interpreter, but which do provide a basic command
line shell, a simple shell script can be generated, for instance:

perl ./fips/fipsalgtest.pl ­­generate­script=fipstest.sh ­­tprefix=./test/

will create a file fipstest.sh script file that successively invokes each of the algorithm test driver
programs with the appropriate input and output file names:

#!/bin/sh

Page 133 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Test vector run script
Auto generated by fipsalgtest.pl script
Do not edit

echo Running Algorithm Tests

RM="rm ­rf";
MKDIR="mkdir";
TPREFIX=./test/

echo "Running DSA tests"
$RM "./testvectors/tv/OSF_2464_Template/DSA/resp"
$MKDIR "./testvectors/tv/OSF_2464_Template/DSA/resp"

echo " running PQGGen test"
${TPREFIX}fips_dssvs pqg
"./testvectors/tv/OSF_2464_Template/DSA/req/PQGGen.req"
"./testvectors/tv/OSF_2464_Template/DSA/resp/PQGGen.rsp"
echo " running KeyPair test"
${TPREFIX}fips_dssvs keypair
"./testvectors/tv/OSF_2464_Template/DSA/req/KeyPair.req"
"./testvectors/tv/OSF_2464_Template/DSA/resp/KeyPair.rsp"
echo " running SigGen test"
${TPREFIX}fips_dssvs siggen
"./testvectors/tv/OSF_2464_Template/DSA/req/SigGen.req"
"./testvectors/tv/OSF_2464_Template/DSA/resp/SigGen.rsp"
echo " running SigVer test"
${TPREFIX}fips_dssvs sigver
"./testvectors/tv/OSF_2464_Template/DSA/req/SigVer.req"
"./testvectors/tv/OSF_2464_Template/DSA/resp/SigVer.rsp"
echo " running PQGVer test"
${TPREFIX}fips_dssvs pqgver
"./testvectors/tv/OSF_2464_Template/DSA/req/PQGVer.req"
"./testvectors/tv/OSF_2464_Template/DSA/resp/PQGVer.rsp"

.

.

.

For very simple shells the -­minimal­script option will omit use of the rm and mkdir
commands to manage the output directories, in which case the empty req subdirectories will need
to be created beforehand.

To process only a subset of the test vectors file, use the ­­filter=XXX option to recognize only
certain pathnames and the ­­disable­all ­­enable­xxx options to enable processing of
only the algorithm(s) in that selected set for files. For instance:

perl ./fips/fipsalgtest.pl ­­generate­script=fipstestsha.sh ­­tprefix=./test/

­­disable­all ­­enable­sha ­­dir=testvectors ­­filter=SHA

Page 134 of 222

User Guide - OpenSSL FIPS Object Module v2.0

B.6 Documentation

This section discussed the major components of the documentation set for a FIPS 140-2 validation.

Finite State Model

FIPS 140-2 validation requires a Finite State Module (FSM), something that doesn't make much
sense for a general purpose cryptographic library. This cosmetic requirement is satisfied by an
arbitrary generic diagram and possibly an associated listing or spreadsheet of the states and
transitions. Each test lab will typically have a generic template or sample that can be used. The
FSM used for this validation can be found in the two files:

http://openssl.com/testing/validation-2.0/docs/FSM.pdf
http://openssl.com/testing/validation-2.0/docs/FSM_main.pdf

The FSM does not contain any information of actual technical value.

Vendor Evidence Document

The test lab must answer the assertions in the Derived Test Requirements (DTR) document
(Reference 4). Some labs chose to do so by directly listing all of the assertions with corresponding
responses in the order those assertions appear in the DTR. Others respond to the assertions in
analysis document structured along more functional lines with many of the redundant an
overlapping assertions grouped together with a consolidated response. As with the formal test
report (see following section) the test lab will typically want to claim this document as proprietary.
The relevant content of the analysis document for this validation has been extracted as Appendix E.

Formal Test Report

The test lab submits a formal test report document to the CMVP. Test labs are uniformly adverse to
releasing this document but can usually be persuaded to do so under a non-disclosure agreement
(such release should be negotiated prior to executing a contract). OSF has seen some test reports
but cannot publish them due to the non-disclosure restrictions. Note that those test reports would be
of limited value as different test labs can take significantly different approaches to presenting the
same module to the CMVP. FIPS 140-2 validation is a highly subjective process and each test lab,
and even different reviewers at the CMVP, have distinctive styles. Mixing components from
multiple submissions, even of exactly the same software, would result in significant discrepancies
and conflicts.

Page 135 of 222

http://openssl.com/testing/validation-2.0/docs/FSM_main.pdf
http://openssl.com/testing/validation-2.0/docs/FSM.pdf

User Guide - OpenSSL FIPS Object Module v2.0

Appendix C Example OpenSSL Based Application

This example shows a simple application using OpenSSL cryptography which will qualify as FIPS
140-2 validated when built and installed in accordance with the procedures in §5. In this
application all cryptography is provided through the FIPS Object Module and the FIPS mode
initialization is performed via the FIPS_mode_set() call. The command generates a HMAC-
SHA-1 digest of an input stream or a file, using the same arbitrary key as the OpenSSL FIPS
Module file integrity check:

$./fips_hmac ­v fips_hmac.c
FIPS mode enabled
8f2c8e4f60607613471c11287423f8429b068eb2
$
$./hmac < hmac.c
8f2c8e4f60607613471c11287423f8429b068eb2
$

Note this sample command is functionally equivalent to:

env OPENSSL_FIPS=1 openssl ­hmac etaonrishdlcupfm hmac.c
or

openssl dgst ­fips­fingerprint filename.tar.gz

for an openssl command built from a FIPS capable OpenSSL distribution. The OPENSSL_FIPS=1
environment variable enables FIPS mode for a openssl command generated from a FIPS capable
OpenSSL distribution.

C.1 Native Compilation of Statically Linked Program

Makefile

CC = gcc
OPENSSLDIR = /usr/local/ssl
LIBCRYPTO = $(OPENSSLDIR)/lib/libcrypto.a
INCLUDES = ­I$(OPENSSLDIR)/include
CMD = fips_hmac
OBJS = $(CMD).o

$(CMD): $(OBJS)
 FIPSLD_CC=$(CC) $(OPENSSLDIR)/bin/fipsld ­o $(CMD) $(OBJS) \

$(LIBCRYPTO)

$(OBJS): $(CMD).c
 $(CC) ­c $(CMD).c $(INCLUDES)

Page 136 of 222

User Guide - OpenSSL FIPS Object Module v2.0

clean:
rm $(OBJS)

Note the line

 $(OPENSSLDIR)/fips/fipsld ­o $(CMD) $(OBJS) ...

uses the fipsld command from the distribution source tree to perform the function of verifying
the fipscanister.o digest and generating the new embedded digest in the application
executable object.

Source File

/*
 Sample application using FIPS mode OpenSSL.

 This application will qualify as FIPS 140­2 validated when built,
 installed, and utilized as described in the "OpenSSL FIPS 140­2
 Security Policy" manual.

 This command calculates a HMAC­SHA­1 digest of a file or input data
 stream using the same arbitrary hard­coded key as the FIPS 140­2
 source file build­time integrity checks and runtime executable
 file integrity check.
*/

#include <stdio.h>
#include <string.h>
#include <openssl/hmac.h>

static char label[] = "@(#)FIPS approved SHA1 HMAC";

static void dofile(FILE *fp)
 {
 HMAC_CTX ctx;
 unsigned char hmac_value[EVP_MAX_MD_SIZE];
 int hmac_len, i;
 char key[] = "etaonrishdlcupfm";
 char buf[256];

 /* Initialise context */
 HMAC_CTX_init(&ctx);
 /* Set digest type and key in context */
 HMAC_Init_ex(&ctx, key, strlen(key), EVP_sha1(), NULL);
 /* Process input stream */
 while(i = fread(buf,sizeof(char),sizeof(buf),fp)) {
 if(!HMAC_Update(&ctx, buf, i)) exit(3);
 }

Page 137 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 /* Generate digest */
 if(!HMAC_Final(&ctx, hmac_value, &hmac_len)) exit(4);
 HMAC_CTX_cleanup(&ctx);

 /* Display digest in hex */
 for(i = 0; i < hmac_len; i++) printf("%02x", hmac_value[i]);
 printf("\n");
 return;
}

main(int argc, char *argv[])
 {
 char *opt = NULL;
 int verbose = 0;
 int fipsmode = 1;
 FILE *fp = stdin;
 int i;

 /* Process command line arguments */
 i = 0;
 while(++i < argc) {
 opt = argv[i];
 if (!strcmp(opt,"­v")) verbose = 1;
 else if (!strcmp(opt,"­c")) fipsmode = 0;
 else if ('­' == opt[0]) {
 printf("Usage: %s <filename>\n", argv[0]);
 puts("Options:");
 puts("\t­c\tUse non­FIPS mode");
 puts("\t­v\tVerbose output");
 exit(1);
 }
 else break;
 }

 /* Enter FIPS mode by default */
 if (fipsmode) {
 if(FIPS_mode_set(1)) {
 verbose && fputs("FIPS mode enabled\n",stderr);
 }
 else {
 ERR_load_crypto_strings();
 ERR_print_errors_fp(stderr);
 exit(1);
 }
 }

 if (i >= argc) {
 dofile(fp);
 }
 else {

Page 138 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 while(i < argc) {
 opt = argv[i];
 if ((fp = fopen(opt,"rb")) == NULL) {
 fprintf(stderr,"Unable to open file \"%s\"\n", opt);
 exit(1);
 }
 dofile(fp);
 fclose(fp);
 i++;
 }
 }

 exit(0);
}

C.2 Cross-compilation of "FIPS capable" Shared OpenSSL Libraries

Here is an example of building and executing the same example program on an Android 4.0 device
using a shared libcrypto library. The NDK and SDK are from the files

android­sdk_r18­linux.tgz
android­ndk­r7c­linux­x86.zip

downloaded from http://developer.android.com/sdk/index.html.

Establish the cross­compilation environment
export ANDROID_NDK=$PWD/android­ndk­r7c
export FIPS_SIG=$PWD/openssl­fips­2.0/util/incore
PATH=$ANDROID_NDK/toolchains/arm­linux­androideabi­4.4.3/prebuilt/linux­
x86/bin:$PATH
export PATH
export MACHINE=armv7l
export RELEASE=2.6.39
export SYSTEM=android
export ARCH=arm
export CROSS_COMPILE="arm­linux­androideabi­"
export ANDROID_DEV="$ANDROID_NDK/platforms/android­14/arch­arm/usr"
export HOSTCC=gcc

Build the FIPS module
gunzip ­c openssl­fips­2.0.tar.gz | tar xf ­
cd openssl­fips­2.0/
./config
make
make install INSTALLTOP=$PWD/../fips
cd ..

Page 139 of 222

http://developer.android.com/sdk/index.html

User Guide - OpenSSL FIPS Object Module v2.0

Build the "FIPS capable" OpenSSL
gunzip ­c openssl­1.0.1c.tar.gz | tar xf ­
cd openssl­1.0.1c/
./config fips shared ­­with­fipsdir=$PWD/../fips
make depend
make

Build the example program
arm­linux­androideabi­gcc ­o fips_hmac fips_hmac.c \
 ­Iopenssl­1.0.1c/include/ ­Lopenssl­1.0.1c/ ­lcrypto ­Iopenssl­1.0.1c \
 ­Iandroid­ndk­r7c/platforms/android­14/arch­arm/usr/include \
 ­Bandroid­ndk­r7c/platforms/android­14/arch­arm/usr/lib

Copy the program and shared library to the Android device
./android­sdk­linux/platform­tools/adb push fips_hmac /data/local/tmp/
./android­sdk­linux/platform­tools/adb push openssl­
1.0.1c/libcrypto.so.1.0.0 /data/local/tmp/

Execute the program on the Android device
./android­sdk­linux/platform­tools/adb push fips_hmac shell
cd /data/local/tmp
LD_LIBRARY_PATH=openssl­1.0.1c ./fips_hmac ­v fips_hmac.c

Page 140 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Appendix D FIPS API Documentation

D.1 FIPS Mode

NAME

FIPS mode - NIST FIPS 140-2 Approved mode of operation

DESCRIPTION

When built with the fips config option in accordance with some additional
procedural requirements the OpenSSL FIPS Object Module can be used to satisfy
requirements for FIPS 140-2 validated cryptography.

OVERVIEW

The OpenSSL FIPS Object Module must be built with the fips config option. The
application must call FIPS_mode_set() to enable FIPS mode. When in FIPS mode only
the FIPS approved encryption algorithms
are usable:

+RSA

+DSA

+3DES in CBC, (CFB1), CFB8, CFB64, ECB, OFB modes

+DH

+AES in CBC, (CFB1), CFB8, CFB128, ECB, OFB modes with 128/192/256 bit keys

+SHA-1, SHA-2

+HMAC

Other non-FIPS approved algorithms such a Blowfish, MD5, IDEA, RC4, etc. are
disabled in FIPS mode.

To determine the mode of operation in a running program, an application can call
FIPS_mode(3). A non-zero return indicates FIPS mode; a 0 indicates non-FIPS mode.

If the FIPS power-up self-test fails subsequent cryptographic operations are disabled
and the application will have to exit.

To be considered FIPS 140-2 validated the OpenSSL FIPS Object Module must use the
validated version of the FIPS specific OpenSSL source code.

While most platforms and applications can use the OpenSSL FIPS Object Module to
satisfy NIST requirements for FIPS 140-2 validated cryptography there are additional
additional requirements beyond the call to FIPS_mode_set(). A more complete discussion
of the OpenSSL FIPS mode can be found in the OpenSSL FIPS 140-2 Security Policy which
can be found at http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1747.pdf.

Information about FIPS 140 can be found at http://csrc.nist.gov/groups/STM/cmvp/.

NOTES

Page 141 of 222

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1747.pdf

User Guide - OpenSSL FIPS Object Module v2.0

3DES is also known as TDEA, or Triple Data Encryption Algorithm.
The power-up self-test can take a significant amount of time on slower systems.

HISTORY

FIPS mode support was introduced in version 0.9 of OpenSSL.

SEE ALSO

FIPS_mode_set(3), FIPS_mode(3)

D.2 FIPS_mode_set(), FIPS_selftest()

NAME

FIPS_mode_set, FIPS_selftest - perform FIPS power-up self-test

SYNOPSIS

#include <openssl/crypto.h>

int FIPS_mode_set(int ONOFF)

int FIPS_selftest(void)

DESCRIPTION

FIPS_mode_set() enables the FIPS mode of operation for applications
that have complied with all the provisions of the OpenSSL FIPS 140-2 Security
Policy. Successful execution of this function call with non-zero ONOFF is the
only way to enable FIPS mode. After verifying the integrity of the executable
object code using the stored digest FIPS_mode_set() performs the power-up self-test.

When invoked with ONOFF of zero FIPS_mode_set() exits FIPS mode.

To determine the mode of operation in a running program, an application can call
FIPS_mode(3). A non-zero return indicates FIPS mode; a 0 indicates non-FIPS mode.

FIPS_selftest() can be called at any time to perform the FIPS power-up self-test.

If the power-up self-test fails subsequent cryptographic operations
are disabled. The only possible recovery is a successful re-invocation of
FIPS_mode_set() which is unlikely to work unless the original path was incorrect.

RETURN VALUES

A return value of 1 indicates success, 0 failure.

SEE ALSO

FIPS_mode(3), ERR_get_error(3)

NOTES

FIPS_mode_set() and FIPS_selftest() were formerly included with <openssl/fips/fips.h>.

HISTORY

FIPS support was introduced in version 0.9 of OpenSSL.

Page 142 of 222

User Guide - OpenSSL FIPS Object Module v2.0

D.3 FIPS_mode()

NAME

FIPS_mode – returns the current FIPS mode of operation.

SYNOPSIS

#include <openssl/crypto.h>

int FIPS_mode()

DESCRIPTION

FIPS_mode() is used to determine the FIPS mode of operation of the running program.

FIPS_mode() currently returns 1 to indicate FIPS mode. Future return values might include 2
to indicate exclusive use of the NSA's Suite B algorithms.

RETURN VALUES

A return code of non-zero indicates FIPS mode, 0 indicates non-FIPS mode.

SEE ALSO

FIPS_mode_set(3)

NOTES

FIPS_mode() was formerly included with <openssl/fips/fips.h>.

HISTORY

FIPS support was introduced in version 0.9 of OpenSSL.

D.4 Error Codes

In order to minimize the size of the FIPS module only numeric error codes are returned. When
used in conjunction with a FIPS capable OpenSSL distribution these numeric codes will
automatically be converted to the usual text format for display, but the FIPS specific standalone
utilities print out numerical error codes. These can be interpreted with the openssl errstr
command or by checking the source file at the referenced location:

$../util/shlib_wrap.sh ./fips_shatest
ERROR:2d06c071:lib=45,func=108,reason=113:file=fips.c:line=274:1,129d0
$
$ openssl errstr 2d06c071
error:2D06C071:FIPS routines:FIPS_mode_set:unsupported platform
$

These error codes are defined in the include file fips_err.h.

Page 143 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The FIPS_mode_set()call or other function calls in FIPS mode can return any of the following
errors:

Return Code Meaning and Comment

CRYPTO_R_FIPS_MODE_NOT_SUPPORTED “fips mode not supported”
You likely linked against a non-FIPS Capable library. Ensure
`config fips <options>` was executed when configuring.

FIPS_R_CANNOT_READ_EXE "cannot read exe"

FIPS_R_CANNOT_READ_EXE_DIGEST "cannot read exe digest"

FIPS_R_CONTRADICTING_EVIDENCE "contradicting evidence"

FIPS_R_EXE_DIGEST_DOES_NOT_MATCH "exe digest does not match"

FIPS_R_FINGERPRINT_DOES_NOT_MATCH "fingerprint does not match”
The integrity test has failed.

FIPS_R_FINGERPRINT_DOES_NOT_MATCH_-
NONPIC_RELOCATED

"fingerprint does not match nonpic relocated"
This Microsoft Windows specific error indicates that there
might be a DLL address conflict which needs to be addressed
by re-basing the offending DLL.

FIPS_R_FINGERPRINT_DOES_NOT_MATCH_-
SEGMENT_ALIASING

“fingerprint does not match segment aliasing"
This error is returned when a defective compiler has merged
.rodata (read-only) and .data (writable) segments. This
situation effectively degrades the read-only status of constant
tables and leaves them without hardware protection, thus
jeopardizing the FIPS mode of operation.

FIPS_R_FIPS_MODE_ALREADY_SET "fips mode already set"

FIPS_R_INVALID_KEY_LENGTH "invalid key length"

FIPS_R_KEY_TOO_SHORT "key too short"

FIPS_R_NON_FIPS_METHOD "non fips method”
Attempted non FIPS-compliant DSA usage.

FIPS_R_PAIRWISE_TEST_FAILED "pairwise test failed"
One or more of the algorithm pairwise consistency tests has
failed.

FIPS_R_RSA_DECRYPT_ERROR "rsa decrypt error"

FIPS_R_RSA_ENCRYPT_ERROR "rsa encrypt error"

FIPS_R_SELFTEST_FAILED "selftest failed"
One or more of the algorithm known answer tests has failed.

FIPS_R_TEST_FAILURE "test failure"

FIPS_R_UNSUPPORTED_PLATFORM "unsupported platform"
Indicates the validity of the digest test is unknown for the
current platform.

Page 144 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Appendix E Platform Specific Notes
Note: the material present in this appendix for earlier versions of this document has been removed
and relocated to http://www.openssl.com/fips/tech/.

E.1 Apple OS X Support

<TBD>

Page 145 of 222

http://www.openssl.com/fips/tech/

User Guide - OpenSSL FIPS Object Module v2.0

E.2 Apple iOS Support

OpenSSL fully supports building the FIPS Object Module
and FIPS Capable library for iOS devices. There are five
logical steps to build the OpenSSL FIPS Object Module
and FIPS Capable Library for use in an Xcode/iOS project .
The steps are outlined below:

1. Acquire the required files

2. Build the Incore utility

3. Build the FIPS Object Module

4. Build the FIPS Capable Library

5. Create an Xcode Project

The procedures for each logical step are detailed below. The
sample Xcode project is offered at the end of the chapter.

Acquire Required Files

First, obtain the base files from
http://www.openssl.org/source/:

• openssl­1.0.1c.tar.gz

• openssl­fips­2.0.1.tar.gz

Next, acquire the auxiliary files, which can be obtained from
http://openssl.com/fips/2.0/platforms/ios/:

• setenv­reset.sh

• setenv­darwin­i386.sh

• setenv­ios­11.sh

• ios­incore­2.0.1.tar.gz

In addition to the required core files listed above, http://openssl.com/fips/2.0/platforms/ios/
includes a sample program:

• fips­pi.tar.gz

openssl­fips­2.0.1.tar.gz includes the FIPS Object Module.

Page 146 of 222

Illustration 1: OpenSSL FIPS
Sample Program

http://openssl.com/fips/2.0/platforms/ios/
http://openssl.com/fips/2.0/platforms/ios/
http://www.openssl.org/source/

User Guide - OpenSSL FIPS Object Module v2.0

openssl­1.0.1c.tar.gz has the FIPS Capable OpenSSL library.

ios­incore­2.0.1.tar.gz contains OS X and iOS specific Incore utility to determine the
object code digest.

setenv­darwin­i386.sh and setenv­ios­11.sh are used to set the proper
environments for the task at hand, while setenv­reset.sh is used to reset the environment.

Note: as of this writing (January, 2013), the scripts have a PWD dependency and do not
alert the user of failures such as missing or errant paths. I was not able to get
hardened/updated scripts placed on web for download. Please accept my sincerest
apologies (JW).

After collecting the required files, your working directory will look similar to below.

Illustration 2: Working Directory under Finder

After acquiring the files, perform the following in the working directory to remove quarantine bit
and ensure the execute bit is set:

$ xattr ­r ­d "com.apple.quarantine" *.tar.gz *.sh
$ chmod +x *.sh

Build the Incore Utility

Page 147 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The Incore utility is a native application used to embed the FIPS Object Module's fingerprint in the
ARM library. Building Incore is a two step process – first, build a native version of
libcrypto.a, and then build Incore using the previously built native libcrypto.a.

To compile the incore_macho utility for the native platform, perform the following steps:

$ rm ­rf openssl­fips­2.0.1/ (delete old artifacts)

$ tar xzf openssl­fips­2.0.1.tar.gz (unpack fresh files)
$ tar xzf ios­incore­2.0.1.tar.gz

$. ./setenv­reset.sh (note the leading dot ".")
$. ./setenv­darwin­i386.sh (note the leading dot ".")

$ cd openssl­fips­2.0.1/ (perform `cd` after setenv)

$./config (several screens of output)
$ make (build libcrypto.a, lots of output)

$ cd iOS/ (switch to incore's subdirectory)
$ make (build incore_macho, lots of output)

Note: as of this writing (January, 2013), setenv­darwin­i386.sh could silently fail due to
PWD dependencies. Please execute the `env` command and verify the paths placed in the
environment by the script.

Confirm the utility works:

$./incore_macho
usage:
 ./incore_macho [­­debug] [­exe|­dso] executable

If the utility does not work, delete the openssl­fips­2.0.1/ directory and start over.

Once the utility has been verified on the native platform, install the incore_macho utility in a
location on path, such as /usr/local/bin. The instructions below offer a second choice, and
place incore_macho in your home directory.

$ mkdir "$HOME/bin"
$ cp incore_macho "$HOME/bin"
$ PATH="$HOME/bin":$PATH

Page 148 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Finally, delete the openssl­fips­2.0.1/ directory in preparation for the ARM build of the
FIPS Capable library. This is done to keep cross contamination to a minimum since openssl­
fips­2.0.1/ is essentially reused.

$ cd ..
$ rm ­rf openssl­fip­2.0.1/

This instructions from this point assume the build environment has been prepared, including the
creation of the incore_macho utility, as documented in the previous section, and that
incore_macho is on path.

Build the FIPS Object Module

This section of the document will guide you through the creation of the FIPS Object Module. The
Module is governed by the FIPS 140-2 program requirements and you cannot deviate from the
Security Policy during any stage during handling, from acquisition, through building, to
installation. In case of a discrepancy between this document and the Security Policy, the Security
Policy will prevail.

While these commands look similar to those recently executed for the generation of the
incore_macho utility, there are subtle differences. This time you are cross-compiling for the an
iOS device.

While it is not readily apparent, the iOS tools used via IOS_TOOLS environmental variable are
available from ios­incore­2.0.1.tar.gz, so you must unpack it again. The tools unpack
into openssl­fips­2.0.1/.

$ rm ­rf openssl­fips­2.0.1/ (delete old artifacts)
$ tar xzf openssl­fips­2.0.1.tar.gz (unpack fresh files)
$ tar xzf ios­incore­2.0.1.tar.gz (unpack fresh files)

$ cd openssl­fips­2.0.1/ (perform `cd` first)

$. ../setenv­reset.sh (note the leading dot ".")
$. ../setenv­ios­11.sh (note the leading dot ".")

$ llvm­gcc ­v (verify expected compiler)
Using built­in specs.
Target: i686­apple­darwin10
Configured with:/private/var/tmp/llvmgcc42_Embedded/
llvmgcc42_Embedded­2377~4/src/configure
...

Page 149 of 222

User Guide - OpenSSL FIPS Object Module v2.0

gcc version 4.2.1 (Based on Apple Inc. build 5658)
(LLVM build 2377.00)

Note: as of this writing (January, 2013), setenv­ios­11.sh could silently fail due to
PWD dependencies. Please execute the `env` command and verify the paths placed in
the environment by the script.

The output of interest from llvm­gcc ­v are (1) llvm­gcc is on path; (2) gcc version 4.2.1;
and (3) the compiler is for an embedded platform.

At this point you are ready to commence the standard FIPS canister build for the target platform.
Note that “fips canister” is implied, so there is no need for either ./config
fipscanisterbuild or ./config fips (nor is it allowed by the Security Policy).

$./config (several screens of output)
$ make (lots of output)

Confirm the binaries are for the iOS target device:

$ lipo ­info ./fips/fipscanister.o
Non­fat file: ./fips/fipscanister.o is architecture: armv7

After confirming the target architecture, complete the installation procedure by performing an
install:

$ sudo make install

The default installation directory is /usr/local/ssl/Release­iphoneos/.

After installation, delete the openssl­fips­2.0.1/ directory since its no longer needed:

$ rm ­rf openssl­fips­2.0.1/

Recall from Section 2.4.2 Object Module (Link Time) Integrity that applications link against
libcrypto.a, and not directly to fipscanister.o. You will build libcrypto.a and
libssl.a next in Build the FIPS Capable Library60.

Build the FIPS Capable Library
This section of the document will guide you through the creation of the The FIPS Capable Library.
The capable library is a standard OpenSSL distribution that is “FIPS Aware”. The “aware” library
handles all the details of operation while in FIPS mode after you successfully call
FIPS_mode_set() (see D.2 FIPS_mode_set(), FIPS_selftest()). If you don't call

60There is some hand waiving here, but the details are not important at the moment for these procedures.

Page 150 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_mode_set(), the library will still operate as expected; but it will not be using validated
cryptography.

Recall the FIPS Object Module is governed by the FIPS 140-2 program requirements, and you
could not deviate from the Security Policy. The FIPS Capable Library does not endure the same
requirements, and you are free to modify the environment and sources within reason.

To build the FIPS Capable library, you must issue ./config fips, but other options are up to
you. Some suggested options for configure include:

Option Comment

--openssldir Base of the OpenSSL installation. Default value is
--openssldir=/usr/local/ssl/Release-iphoneos

--with-fipsdir Location of fipscanister.o, if not located at /usr/local/ssl/Release-
iphoneos/lib.

-no-sslv2 Disable SSLv2. SSLv2 is defective61

-no-sslv3 Disable SSLv3. SSLv3 is defective62

-no-comp Disable compression independent of zlib. Compression is known to leak session
information via CRIME attacks63

-no-shared Disable shared library output. Apple only allows static linking, and dynamic
linking is not supported on iOS.

-no-dso Disable the OpenSSL DSO API (the library offers a shared object abstraction
layer). iOS only uses static linking.

-no-hw Disable hardware support.

-no-engines Disable engine support.

To begin, clean old artifacts and set the environment for cross compilation.

$ rm ­rf openssl­1.0.1c/ (delete old artifacts)
$ tar xzf openssl­1.0.1c.tar.gz (unpack fresh files)

$ cd openssl­fips­1.0.1c/ (perform `cd` first)

$. ../setenv­reset.sh (note the leading dot ".")
$. ../setenv­ios­11.sh (note the leading dot ".")

61Bruce Schneier and David Wagner, Analysis of the SSL 3.0 Protocol, www.schneier.com/paper-ssl-revised.pdf
62Loren Weith, Differences Between SSLv2, SSLv3, and TLS, http://www.yaksman.org/~lweith/ssl.pdf
63 Mozilla's NSS accidentally disabled compression long before CRIME attacks due to compile/link conflicts
(https://bugzilla.mozilla.org/show_bug.cgi?id=580679). Mozilla's Firefox did not support compression on clients. Many other
browsers, such as Android (com.android.browser), did not support compression.

Page 151 of 222

https://bugzilla.mozilla.org/show_bug.cgi?id=580679
http://www.yaksman.org/~lweith/ssl.pdf
http://www.schneier.com/paper-ssl-revised.pdf

User Guide - OpenSSL FIPS Object Module v2.0

Next, configure and make the FIPS Capable library, where you pick your favorite options. No
options are also acceptable:

$./config fips <options> (several screens of output)
$ make <options> (lots of output)

Confirm the binaries are for the iOS target device:

$ lipo ­info ./libcrypto.a ./libssl.a
Non­fat file: ./libcrypto.a is architecture: armv7
Non­fat file: ./libssl.a is architecture: armv7

After confirming the target architecture, complete the installation procedure by performing an
install:

$ sudo make install

The default installation directory is /usr/local/ssl/Release­iphoneos/.

After installation, delete the openssl­fips­2.0.1/ directory since its no longer needed:

$ rm ­rf openssl­fips­1.0.1c/

You might encounter issues due to the configuration options. The issues have been cleared in the
version control system, but the tarballs maybe dated. If so, the issues and the fixes are listed below.
Recall you have latitude in changing source files because the OpenSSL FIPS Capable Library is
outside the Cryptographic Module (CM) boundary.

Issue Remedy

Built-in tools not on path Open setenv­ios­11.sh, and change the
CROSS_COMPILE variable to
CROSS_COMPILE="$CROSS_CHAIN"

No valid iOS SDK Open the setenv­ios­11.sh, and change
the for loop to include 6.2, 6.1, and 6.0

makedepend: warning: cannot open
"armv7"

makedepend: error: ...

Open the Makefile, and change
MAKEDEPPROG=makedepend to
MAKEDEPPROG=$(CC) ­M

Undefined symbols for architecture
armv7: "_ERR_load_COMP_strings"

Open err_all.c, and delete all declarations
of ERR_load_COMP_strings()

Page 152 of 222

User Guide - OpenSSL FIPS Object Module v2.0

OpenSSL Xcode Application

OpenSSL offers a sample Xcode project to test your installation. The minimal project demonstrates
linking against the FIPS Capable Library, enabling FIPS Mode, disabling FIPS mode, displaying
the embedded and calculated fingerprint, and displaying critical values from fips_premain.c.
A screen capture from the device is shown in Illustration 1: OpenSSL FIPS Sample Program.

The essence of the sample code is shown in the listing below. The code toggles FIPS mode by way
of FIPS_mode() and FIPS_mode_set(); and retrieves error information via ERR_get error().
The functions are available from <openssl/crypto.h> and <openssl/err.h> respectively. In
the case of an error, error values were discussed in Appendix D FIPS API Documentation.

int mode = FIPS_mode(), ret = 0;
unsigned long err = 0;

if(mode == 0)
{
 ret = FIPS_mode_set(1 /*on*/);
 err = ERR_get_error();
}
else
{
 ret = FIPS_mode_set(0 /*off*/);
 err = ERR_get_error();
}

if(1 != ret)
 DisplayError("FIPS_mode_set failed", err);

...

After creating an Xcode project, you must add fips_premain.c to the project. Copy
fips_premain.c from its location at /usr/local/ssl/Release­iphoneos/lib/ into
your project’s working directory. Since the file is outside the Cryptographic Module (CM)
boundary, you can check it in to revision control and even modify it if desired (within reason).

Page 153 of 222

User Guide - OpenSSL FIPS Object Module v2.0

The Xcode Build Settings to compile an OpenSSL dependent program are discussed below. The
Build Setting should be set on the Project, and not the Target (all targets inherit from the project).
The sample project has screen captures of the relevant changes under Xcode in the top level
settings/ directory.

Build Setting Value

Architectures
(ARCHS)

armv7 (remove armv6 and/or armv7s, unless you built
for the architecture).

Always Search User Paths
(ALWAYS_SEARCH_USER_PATHS)

Yes (due to #include <openssl/crypto.h> in non-
standard location)

User header Search Paths
(USER_HEADER_SEARCH_PATHS)

/usr/local/ssl/Release-iphoneos/include/

Other Linker Flags
(OTHER_LDFLAGS)

/usr/local/ssl/Release-iphoneos/libcrypto.a (use the
fully specified pathname, without ­l or ­L)

Build Setting Value

Valid Architectures
(VALID_ARCHS)

armv7 (remove armv6 and/or armv7s, unless you built
for the architecture).

Always Search User Paths
(ALWAYS_SEARCH_USER_PATHS)

Yes (due to #include <openssl/crypto.h> in non-
standard location)

User header Search Paths
(USER_HEADER_SEARCH_PATHS)

/usr/local/ssl/Release-iphoneos/include/

Other Linker Flags
(OTHER_LDFLAGS)

/usr/local/ssl/Release-iphoneos/libcrypto.a (use the
fully specified filename, without ­l or ­L)

Page 154 of 222

Illustration 3: fips_premain.c

User Guide - OpenSSL FIPS Object Module v2.0

The final modification is a Build Phase Script on the Target (not the Project) to embed the
Module's expected signature using incore_macho. The full command to embed the signature is
/usr/local/bin/incore_macho ­exe "$CONFIGURATION_BUILD_DIR/$EXECUTABLE_PATH".

E.3 Windows CE Support
NOTE: This section is incomplete

The Microsoft Windows mobile operating systems are among the most challenging platform for the
FIPS Object Module, due to the wide variation among individual system configurations.
Representative Build

These instructions are necessarily only representative of one specific configuration and may require
substantial modification for specific Windows CE or EC platforms.

Typically a version of Visual Studio will be used. In this representative example the following
environment variables are defined in a .BAT file, setenv-wince6.bat:

@rem
@rem setenv_wince.cmd
@rem
@rem Paths for Visual Studio 2008 on command line (on­64­bit­
host)

Page 155 of 222

Illustration 4: Xcode Build Phase and Incore

User Guide - OpenSSL FIPS Object Module v2.0

@call "c:\Program Files\Microsoft Visual Studio
9.0\VC\"vcvarsall.bat

@set OSVERSION=WCE600
@set PLATFORM=MACKEREL
@set TARGETCPU=ARMV4I

@set WCECOMPAT=C:\wcecompat
@SET MACKERELSDK=C:\Program Files\Windows CE
Tools\wce600\Mackerel SDK

@set PATH=%VSINSTALLDIR%\Common7\IDE;%VCINSTALLDIR
%\ce\bin\x86_arm;%VCINSTALLDIR%\bin;%NASMINSTALLDIR%;%PATH%
@set INCLUDE=%MACKERELSDK%\Include\Armv4i;%VCINSTALLDIR
%\ce\include;%INCLUDE%
@set LIB=%MACKERELSDK%\Lib\ARMV4I;%VCINSTALLDIR
%\ce\lib\armv4i;%LIB%
@set LIBPATH=%MACKERELSDK%\Lib\ARMV4I;%VCINSTALLDIR
%\ce\lib\armv4i;%LIBPATH%

@set FIPS_SHA1_PATH=perl /openssl­fips­
2.0/util/fips_standalone_sha1
@set FIPS_SIG=perl /openssl­fips­2.0/util/msincore

On the Windows build system, invoke a DOS Command Prompt and in that shell enter the
following:

X:\>setenv­wince6
X:\>cl
Microsoft (R) C/C++ Optimizing Compiler Version 15.00.20720
for ARM
Copyright (C) Microsoft Corporation. All rights reserved.

usage: cl [option...] filename... [/link linkoption...]

X:\>
X:\>cd openssl­fips­2.0
X:\openssl­fips­2.0>ms\do_fips
X:\openssl­fips­2.0>nmake ­f ms\cedll.mak build_algvs

In either case a "Press any key to continue . . . " prompt will be seen.

At this point the FIPS Object Module and fips_algvs utility program have been created.

Page 156 of 222

User Guide - OpenSSL FIPS Object Module v2.0

General Considerations

DLLs present on CE versions prior to 6.0 take away a portion of precious 32MB address space
from all processes64. This means that unlike "normal" Windows, where DLL load address
availability is a per-process attribute, it's a per-system attribute for CE pre-6.0. In more practical
terms the determination of the load address can be dependent on the order in which processes are
started. In general the static link method is preferred on CE, unless the DLL is ROM-based, and use
of ce[dll].mak instead of nt[dll].mak.

Note that the two-step link is not necessary for Windows, as use of the msincore utility after a
conventional link is sufficient. For the runtime integrity test (fingerprint verification) to succeed a
binary module, either .exe or .dll, must be loaded at a predefined address or not contain any
relocations. As there is virtually no control over the load address for CE, fingerprint verification in
a DLL will fail. The only solution is to statically link the FIPS Object Module into an .exe
executable and not as a DLL.

The build for the formally tested Win CE 5 platform used a ROM-based DLL and some flags set in
Platform Builder. A normal DLL would not work as it ignored the load address and setting /FIXED
stopped it loading altogether.

Note the fipslink.pl utility can handle even statically linked applications.

Note that Windows and Linux cannot be compared in this context, because Linux can generate
position-independent code which means we avoid any difficulties with base addresses, relocations,
etc. For Windows a consistent load address is needed for the DLL. If that DLL isn't ROM-based
then things like the load order can result in different addresses which will result in an invalid
signature.

So one (messy) solution is to set up platform builder to get that consistent load address: as long as
it doesn't change it doesn't matter what it is. The process viewer tool can be used to check the load
address. Then once a fixed address has been established it can be used to build the FIPS capable
OpenSSL to embed the signature; this is the ­­with­baseaddr=<address> option to
Configure.

64CE DLLs steal memory from all processes, so if only one application needs to operate in validated mode then a
statically linked module is preferable.

Page 157 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Appendix F Restrictions on the Export of Cryptography

Government restrictions and regulations on the use, acquisition, and distribution of cryptographic
products are a matter of concern for some potential users.

F.1 Open Source Software

In the United States the current export regulations appear to more or less leave open source
software in source code format alone, except for a reporting requirement to the Bureau of Industry
and Security (BIS) of the U.S. Department of Commerce; see
http://bxa.doc.gov/Encryption/pubavailencsourcecodenofify.html.

When in doubt consultation with legal experts would be appropriate. An example of an E-mail
message sent to comply with this reporting requirement is:

To: crypt@bis.doc.gov, enc@nsa.gov, web_site@bis.doc.gov
Subject: TSU NOTIFICATION

SUBMISSION TYPE: TSU

SUBMITTED BY: Steve Marquess
SUBMITTED FOR: OpenSSL Software Foundation, Inc.
POINT OF CONTACT: Steve Marquess
PHONE and/or FAX: 877­673­6775
MANUFACTURER: N/A
PRODUCT NAME/MODEL #: OpenSSL
ECCN: 5D002

NOTIFICATION: http://cvs.openssl.org/dir

Employee(s), subcontractor(s), and/or agent(s) of the OpenSSL Software
Foundation, Inc. (OSF) are participating in the development of the freely
available open source OpenSSL product by providing feedback on new
releases, by requesting new features, by correspondence either to the
developer and user mailing lists or directly with the product developers,
and by subcontracting software development services to one or more of
the OpenSSL developers. This correspondence may include suggested
source code fragments or patches. All versions of any such contributions
incorporated, or software implemented, in any of the OpenSSL software
will be publicly accessible at http://cvs.openssl.org/dir.

­­
Steve Marquess
OpenSSL Software Foundation, Inc.
1829 Mount Ephraim Road
Adamstown, MD 21710
USA
+1 877­673­6775

Page 158 of 222

http://cvs.openssl.org/dir
http://cvs.openssl.org/dir
http://bxa.doc.gov/Encryption/pubavailencsourcecodenofify.html

User Guide - OpenSSL FIPS Object Module v2.0

marquess@ marquess@openssl.com

No response was received (or expected).

Other links of interest:

http://bxa.doc.gov/Encryption/ChecklistInstr.htm

F.2 “Export Jobs, Not Crypto”

For software exported in binary form the situation is far less certain. As incredible and
unbelievably opposed to common sense as it seems, current U.S. export controls appear to restrict
the export from the U.S. of software products that use the OpenSSL product, even if OpensSSL is
used exclusively for all cryptographic functionality.

From what has been relayed from several vendors affected by these export restrictions, export
approval for software utilizing OpenSSL is contingent on a number of factors including the type of
linking (static build-time linking or dynamic run-time linking). Static linking is more desirable,
apparently something to do with the concept of an “open cryptographic interface”. Evidently a
product where the end user can easily substitute a new cryptographic library (a newer version of
OpenSSL, say) is not permissible.

Needless to say the written regulations and expert commentary are varied, so advice of legal
counsel is recommended. The only other safe course of action would be to pay non-U.S. citizens to
develop the cryptographic software overseas and import it into the U.S., as imports are not
restricted. Foreigners who benefit financially from this situation refer to the U.S. “export jobs, not
crypto” policy.

Links of interest:

http://www.axsmith.com/Encryption_Law.htm
http://library.findlaw.com/2000/Jan/1/128443.html
http://cryptome.org/bxa-bernstein.htm

Page 159 of 222

http://cryptome.org/bxa-bernstein.htm
http://library.findlaw.com/2000/Jan/1/128443.html
http://www.axsmith.com/Encryption_Law.htm
http://bxa.doc.gov/Encryption/ChecklistInstr.htm
mailto:marquess@openssl.com
mailto:marquess@opensslfoundation.com

User Guide - OpenSSL FIPS Object Module v2.0

APPENDIX G Security Policy Errata

The formal Security Policy
(http://csrc.nist.gov/groups/STM/cmvp/documents/140 - 1/140sp/140sp1747.pdf is a controlled
document and so, as with the validated software proper, cannot readily be changed. This section
lists known errors in that document.

• Table 2: The operating system for platform 9 is listed as "Android 2.2". That device was the
Motorola Xoom running Android 3.0, the earliest version of Android that device shipped
with. During the period the validation was in process that version of Android on that device
was superseded by Android 4.0 which was tested as platform 39, so platform 9 is of
academic interest only (note platform essentially 9 duplicates platform 2). The error was
reported to the test lab even prior to the formal validation award, but since correction of
errors in completed validations is difficult we elected not to press the issue.

Page 160 of 222

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1747.pdf

User Guide - OpenSSL FIPS Object Module v2.0

Appendix H DTR Analysis
[TBD]

Page 161 of 222

User Guide - OpenSSL FIPS Object Module v2.0

Appendix I API Entry Points by Source File

The API entry points in the Module are listed here, organized by source file.

FIPS 140-2 requires that logical interfaces have to be identified as one of "data input", "data
output", "control input", or "status output". Functions with multiple arguments and the C language
argument passing mechanism do not naturally match these categories, especially where pointers to
structures are used. This table designates each function as primarily serving one of the four
purposes, with the individual arguments also designated as input, output, or both.

The function names are in bold. Input arguments are highlighted in Grey and listed with a right
pointing arrow (->). Output arguments are listed with a left pointing arrow (<-). Pointer arguments
referencing structures containing both input and output data elements are listed with a double arrow
(<->). The function return value is denoted in the list of arguments as "Return".

Note that many of these Module API functions calls are rarely if ever referenced directly by
applications, instead they are referenced from the separate OpenSSL product by a non-
cryptographic abstraction layer such as the EVP interface (see Reference 11). Some external
symbols defined in the Module but not intended for reference by calling applications are omitted.
Also note that the API as documented below may vary slightly by platform due to the use of
assembly language optimizations.

Some general notes:

The POST code is contained in the ./fips/ subdirectory, beginning with the
FIPS_module_mode_set() function in ./fips/fips.c and leading directly functions defined in
./fips/fips_post.c.

The best way to trace each of the algorithm implementations is from the respective algorithm test
drivers, as they start with the CAVS test vector request file data and make the appropriate API calls
to perform the algorithm processing. Those are found in the ./fips/XXX/ directories, for "XXX" the
algorithm, and are also symlinked from the ./test/ subdirectory:

 test/fips_aesavs.c -> ../fips/aes/fips_aesavs.c
 test/fips_cmactest.c -> ../fips/cmac/fips_cmactest.c
 test/fips_desmovs.c -> ../fips/des/fips_desmovs.c
 test/fips_dhvs.c -> ../fips/dh/fips_dhvs.c
 test/fips_drbgvs.c -> ../fips/rand/fips_drbgvs.c
 test/fips_dsatest.c -> ../fips/dsa/fips_dsatest.c
 test/fips_dssvs.c -> ../fips/dsa/fips_dssvs.c
 test/fips_ecdhvs.c -> ../fips/ecdh/fips_ecdhvs.c
 test/fips_ecdsavs.c -> ../fips/ecdsa/fips_ecdsavs.c

Page 162 of 222

User Guide - OpenSSL FIPS Object Module v2.0

 test/fips_gcmtest.c -> ../fips/aes/fips_gcmtest.c
 test/fips_hmactest.c -> ../fips/hmac/fips_hmactest.c
 test/fips_randtest.c -> ../fips/rand/fips_randtest.c
 test/fips_rngvs.c -> ../fips/rand/fips_rngvs.c
 test/fips_rsagtest.c -> ../fips/rsa/fips_rsagtest.c
 test/fips_rsastest.c -> ../fips/rsa/fips_rsastest.c
 test/fips_rsavtest.c -> ../fips/rsa/fips_rsavtest.c
 test/fips_shatest.c -> ../fips/sha/fips_shatest.c

Note the algorithm test drivers themselves are not part of the FIPS module.

Symbol renaming: Some symbol names as defined in the source code are dynamically redefined at
build time. This API documentation shows both the original (source code) and build time (object
code) symbol names, for instance:

FIPS_bn_bn2bin (renames BN_bn2bin) in file
./crypto/bn/bn_lib.[o|c]

which indicates that the FIPS_bn_bn2bin() function as seen in the compiled code
(./crypto/bn/bn_lib.o) is found in the source code as function BN_bn2bin() in source file
./crypto/bn/bn_lib.c.

Some functions are not renamed, for instance:

FIPS_module_mode_set in file ./fips/fips.[o|c]

indicates that FIPS_module_mode_set() is defined in ./fips/fips.c and ./fips/fips.o with the same
symbol name. Likewise,

FIPS_add_lock (reimplements CRYPTO_add_lock) in file
./fips/utl/fips_lck.[o|c]

indicates that FIPS_add_lock() is defined by that name in both ./fips/utl/fips_lck.o and
./fips/utl/fips_lck.c; the "reimplements" notation refers to the redefinition of this FIPS module
specific function to replace a similar known function from the original OpenSSL distribution from
which the FIPS module was derived.

This list was produced by the api_list.pl tool in the ./fips/tools/ subdirectory of the source
code distribution, using supporting files also in that directory:

api_fns.pm a perl module that for api_list.pl
declarations.dat a file of information about public fips symbols

Page 163 of 222

User Guide - OpenSSL FIPS Object Module v2.0

This utility attempts to "direction of use" for each function parameter, i.e. whether that parameter is
referenced as input, as output, or both. That determination is far from clear in some cases, as for
some types of parameters there is no clear answer -- consider for instance a pointer to a structure
containing a callback to a function that is only called as an exception. In any event that information
is stored in the file declarations.dat and can be manually corrected by replacing the value
for the key 'direction' where the value contains a question mark. Those values can be changed as
appropriate, to one of:

 <­ output
 ­> input
 <­> both

and the manually changed values will be preserved in the declarations.dat file. The
api_list.pl utility has no command line options and is invoked from the root of the source
code work area:

perl fips/tools/api_list.pl > <outfile>

The HTML formatted contents of the output file can be lightly edited for inclusion in documents
such as this one.

This following list shows the functions in alphabetical order by the runtime symbol name.

FIPS_add_error_data (reimplements ERR_add_error_data) in file ./fips/utl/fips_err.[o|c]

void FIPS_add_error_data(int num, ...)
-> num
-> ...

FIPS_add_lock (reimplements CRYPTO_add_lock) in file ./fips/utl/fips_lck.[o|c]

int FIPS_add_lock(int *pointer, int amount, int type, const char *file, int line)
<- pointer
-> amount
-> type
-> file
-> line
<- Return

Page 164 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_bn_bin2bn (renames BN_bin2bn) in file ./crypto/bn/bn_lib.[o|c]

BIGNUM *FIPS_bn_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
-> s
-> len
<-> ret
<- Return

FIPS_bn_bn2bin (renames BN_bn2bin) in file ./crypto/bn/bn_lib.[o|c]

int FIPS_bn_bn2bin(const BIGNUM *a, unsigned char *to)
-> a
<- to
<- Return

FIPS_bn_clear (renames BN_clear) in file ./crypto/bn/bn_lib.[o|c]

void FIPS_bn_clear(BIGNUM *a)
<-> a

FIPS_bn_clear_free (renames BN_clear_free) in file ./crypto/bn/bn_lib.[o|c]

void FIPS_bn_clear_free(BIGNUM *a)
<-> a

FIPS_bn_free (renames BN_free) in file ./crypto/bn/bn_lib.[o|c]

void FIPS_bn_free(BIGNUM *a)
<-> a

FIPS_bn_generate_prime_ex (renames BN_generate_prime_ex) in file ./crypto/bn/bn_prime.[o|c]

int FIPS_bn_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const
BIGNUM *rem, BN_GENCB *cb)
<-> ret
-> bits
-> safe
-> add

Page 165 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> rem
<-> cb
<- Return

FIPS_bn_get_word (renames BN_get_word) in file ./crypto/bn/bn_lib.[o|c]

BN_ULONG FIPS_bn_get_word(const BIGNUM *a)
-> a
<- Return

FIPS_bn_is_bit_set (renames BN_is_bit_set) in file ./crypto/bn/bn_lib.[o|c]

int FIPS_bn_is_bit_set(const BIGNUM *a, int n)
-> a
-> n
<- Return

FIPS_bn_is_prime_ex (renames BN_is_prime_ex) in file ./crypto/bn/bn_prime.[o|c]

int FIPS_bn_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb)
-> p
-> nchecks
<- ctx
<-> cb
<- Return

FIPS_bn_is_prime_fasttest_ex (renames BN_is_prime_fasttest_ex) in file ./crypto/bn/bn_prime.[o|
c]

int FIPS_bn_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, int
do_trial_division, BN_GENCB *cb)
-> p
-> nchecks
<- ctx
-> do_trial_division
<-> cb
<- Return

Page 166 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_bn_new (renames BN_new) in file ./crypto/bn/bn_lib.[o|c]

BIGNUM *FIPS_bn_new()
<- Return

FIPS_bn_num_bits (renames BN_num_bits) in file ./crypto/bn/bn_lib.[o|c]

int FIPS_bn_num_bits(const BIGNUM *a)
-> a
<- Return

FIPS_bn_num_bits_word (renames BN_num_bits_word) in file ./crypto/bn/bn_lib.[o|c]

int FIPS_bn_num_bits_word(BN_ULONG l)
-> l
<- Return

FIPS_bn_pseudo_rand (renames BN_pseudo_rand) in file ./crypto/bn/bn_rand.[o|c]

int FIPS_bn_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom)
<-> rnd
-> bits
-> top
-> bottom
<- Return

FIPS_bn_pseudo_rand_range (renames BN_pseudo_rand_range) in file ./crypto/bn/bn_rand.[o|c]

int FIPS_bn_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range)
<-> rnd
-> range
<- Return

FIPS_bn_rand (renames BN_rand) in file ./crypto/bn/bn_rand.[o|c]

int FIPS_bn_rand(BIGNUM *rnd, int bits, int top, int bottom)
<-> rnd
-> bits

Page 167 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> top
-> bottom
<- Return

FIPS_bn_rand_range (renames BN_rand_range) in file ./crypto/bn/bn_rand.[o|c]

int FIPS_bn_rand_range(BIGNUM *rnd, const BIGNUM *range)
<-> rnd
-> range
<- Return

FIPS_bn_set_bit (renames BN_set_bit) in file ./crypto/bn/bn_lib.[o|c]

int FIPS_bn_set_bit(BIGNUM *a, int n)
<-> a
-> n
<- Return

FIPS_bn_x931_derive_prime_ex (renames BN_X931_derive_prime_ex) in file
./crypto/bn/bn_x931p.[o|c]

int FIPS_bn_x931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const
BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
<-> p
<-> p1
<-> p2
-> Xp
-> Xp1
-> Xp2
-> e
<- ctx
<-> cb
<- Return

FIPS_bn_x931_generate_prime_ex (renames BN_X931_generate_prime_ex) in file
./crypto/bn/bn_x931p.[o|c]

int FIPS_bn_x931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM

Page 168 of 222

User Guide - OpenSSL FIPS Object Module v2.0

*Xp1, BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB
*cb)
<-> p
<-> p1
<-> p2
<-> Xp1
<-> Xp2
-> Xp
-> e
<- ctx
<-> cb
<- Return

FIPS_bn_x931_generate_xpq (renames BN_X931_generate_Xpq) in file ./crypto/bn/bn_x931p.[o|
c]

int FIPS_bn_x931_generate_xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
<-> Xp
<-> Xq
-> nbits
<- ctx
<- Return

FIPS_check_incore_fingerprint in file ./fips/fips.[o|c]

int FIPS_check_incore_fingerprint()
<- Return

FIPS_cipher (reimplements EVP_Cipher) in file ./fips/utl/fips_enc.[o|c]

__owur int FIPS_cipher(EVP_CIPHER_CTX *c, unsigned char *out, const unsigned char *in,
unsigned int inl)
<- c
<- out
-> in
-> inl
<- Return

Page 169 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_cipher_ctx_cleanup (reimplements EVP_CIPHER_CTX_cleanup) in file ./fips/utl/fips_enc.
[o|c]

int FIPS_cipher_ctx_cleanup(EVP_CIPHER_CTX *a)
<- a
<- Return

FIPS_cipher_ctx_copy (reimplements EVP_CIPHER_CTX_copy) in file ./fips/utl/fips_enc.[o|c]

int FIPS_cipher_ctx_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in)
<- out
-> in
<- Return

FIPS_cipher_ctx_ctrl (reimplements EVP_CIPHER_CTX_ctrl) in file ./fips/utl/fips_enc.[o|c]

int FIPS_cipher_ctx_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
<- ctx
-> type
-> arg
<-> ptr
<- Return

FIPS_cipher_ctx_free (reimplements EVP_CIPHER_CTX_free) in file ./fips/utl/fips_enc.[o|c]

void FIPS_cipher_ctx_free(EVP_CIPHER_CTX *a)
<- a

FIPS_cipher_ctx_init (reimplements EVP_CIPHER_CTX_init) in file ./fips/utl/fips_enc.[o|c]

void FIPS_cipher_ctx_init(EVP_CIPHER_CTX *a)
<- a

FIPS_cipher_ctx_new (reimplements EVP_CIPHER_CTX_new) in file ./fips/utl/fips_enc.[o|c]

EVP_CIPHER_CTX *FIPS_cipher_ctx_new()
<- Return

Page 170 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_cipher_ctx_set_key_length (reimplements EVP_CIPHER_CTX_set_key_length) in file
./fips/utl/fips_enc.[o|c]

int FIPS_cipher_ctx_set_key_length(EVP_CIPHER_CTX *x, int keylen)
<- x
-> keylen
<- Return

FIPS_cipherinit (reimplements EVP_CipherInit) in file ./fips/utl/fips_enc.[o|c]

__owur int FIPS_cipherinit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const
unsigned char *key, const unsigned char *iv, int enc)
<- ctx
-> cipher
-> key
-> iv
-> enc
<- Return

FIPS_cmac_ctx_cleanup (renames CMAC_CTX_cleanup) in file ./crypto/cmac/cmac.[o|c]

void FIPS_cmac_ctx_cleanup(CMAC_CTX *ctx)
<- ctx

FIPS_cmac_ctx_copy (renames CMAC_CTX_copy) in file ./crypto/cmac/cmac.[o|c]

int FIPS_cmac_ctx_copy(CMAC_CTX *out, const CMAC_CTX *in)
<- out
-> in
<- Return

FIPS_cmac_ctx_free (renames CMAC_CTX_free) in file ./crypto/cmac/cmac.[o|c]

void FIPS_cmac_ctx_free(CMAC_CTX *ctx)
<- ctx

FIPS_cmac_ctx_get0_cipher_ctx (renames CMAC_CTX_get0_cipher_ctx) in file
./crypto/cmac/cmac.[o|c]

Page 171 of 222

User Guide - OpenSSL FIPS Object Module v2.0

EVP_CIPHER_CTX *FIPS_cmac_ctx_get0_cipher_ctx(CMAC_CTX *ctx)
<- ctx
<- Return

FIPS_cmac_ctx_new (renames CMAC_CTX_new) in file ./crypto/cmac/cmac.[o|c]

CMAC_CTX *FIPS_cmac_ctx_new()
<- Return

FIPS_cmac_final (renames CMAC_Final) in file ./crypto/cmac/cmac.[o|c]

int FIPS_cmac_final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen)
<- ctx
<- out
<- poutlen
<- Return

FIPS_cmac_init (renames CMAC_Init) in file ./crypto/cmac/cmac.[o|c]

int FIPS_cmac_init(CMAC_CTX *ctx, const void *key, size_t keylen, const EVP_CIPHER
*cipher, ENGINE *impl)
<- ctx
-> key
-> keylen
-> cipher
<-> impl
<- Return

FIPS_cmac_resume (renames CMAC_resume) in file ./crypto/cmac/cmac.[o|c]

int FIPS_cmac_resume(CMAC_CTX *ctx)
<- ctx
<- Return

FIPS_cmac_update (renames CMAC_Update) in file ./crypto/cmac/cmac.[o|c]

int FIPS_cmac_update(CMAC_CTX *ctx, const void *data, size_t dlen)

Page 172 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<- ctx
-> data
-> dlen
<- Return

FIPS_crypto_get_id_callback (renames CRYPTO_get_id_callback) in file ./crypto/thr_id.[o|c]

unsigned long (*FIPS_crypto_get_id_callback())(void)
<- Return

FIPS_crypto_set_id_callback (renames CRYPTO_set_id_callback) in file ./crypto/thr_id.[o|c]

void FIPS_crypto_set_id_callback(unsigned long (*func)(void))
<-> func

FIPS_crypto_thread_id (renames CRYPTO_thread_id) in file ./crypto/thr_id.[o|c]

unsigned long FIPS_crypto_thread_id()
<- Return

FIPS_crypto_threadid_get_callback (renames CRYPTO_THREADID_get_callback) in file
./crypto/thr_id.[o|c]

void (*FIPS_crypto_threadid_get_callback())(CRYPTO_THREADID *)
<- Return

FIPS_crypto_threadid_hash (renames CRYPTO_THREADID_hash) in file ./crypto/thr_id.[o|c]

unsigned long FIPS_crypto_threadid_hash(const CRYPTO_THREADID *id)
-> id
<- Return

FIPS_crypto_threadid_set_callback (renames CRYPTO_THREADID_set_callback) in file
./crypto/thr_id.[o|c]

int FIPS_crypto_threadid_set_callback(void (*threadid_func)(CRYPTO_THREADID *))

Page 173 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<-> threadid_func
<- Return

FIPS_crypto_threadid_set_numeric (renames CRYPTO_THREADID_set_numeric) in file
./crypto/thr_id.[o|c]

void FIPS_crypto_threadid_set_numeric(CRYPTO_THREADID *id, unsigned long val)
<-> id
-> val

FIPS_crypto_threadid_set_pointer (renames CRYPTO_THREADID_set_pointer) in file
./crypto/thr_id.[o|c]

void FIPS_crypto_threadid_set_pointer(CRYPTO_THREADID *id, void *ptr)
<-> id
<-> ptr

FIPS_des_check_key_parity (renames DES_check_key_parity) in file ./crypto/des/set_key.[o|c]

int FIPS_des_check_key_parity(const_DES_cblock *key)
-> key
<- Return

FIPS_dh_check (renames DH_check) in file ./crypto/dh/dh_check.[o|c]

int FIPS_dh_check(const DH *dh, int *codes)
-> dh
<- codes
<- Return

FIPS_dh_check_pub_key (renames DH_check_pub_key) in file ./crypto/dh/dh_check.[o|c]

int FIPS_dh_check_pub_key(const DH *dh, const BIGNUM *pub_key, int *codes)
-> dh
-> pub_key
<- codes
<- Return

Page 174 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_dh_compute_key (renames DH_compute_key) in file ./crypto/dh/dh_key.[o|c]

int FIPS_dh_compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh)
<- key
-> pub_key
<-> dh
<- Return

FIPS_dh_compute_key_padded (renames DH_compute_key_padded) in file ./crypto/dh/dh_key.[o|
c]

int FIPS_dh_compute_key_padded(unsigned char *key, const BIGNUM *pub_key, DH *dh)
<- key
-> pub_key
<-> dh
<- Return

FIPS_dh_free in file ./fips/dh/fips_dh_lib.[o|c]

void FIPS_dh_free(DH *dh)
<-> dh

FIPS_dh_generate_key (renames DH_generate_key) in file ./crypto/dh/dh_key.[o|c]

int FIPS_dh_generate_key(DH *dh)
<-> dh
<- Return

FIPS_dh_generate_parameters_ex (renames DH_generate_parameters_ex) in file
./crypto/dh/dh_gen.[o|c]

int FIPS_dh_generate_parameters_ex(DH *dh, int prime_len, int generator, BN_GENCB *cb)
<-> dh
-> prime_len
-> generator
<-> cb
<- Return

Page 175 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_dh_new in file ./fips/dh/fips_dh_lib.[o|c]

DH * FIPS_dh_new()
<- Return

FIPS_dh_openssl (renames DH_OpenSSL) in file ./crypto/dh/dh_key.[o|c]

const DH_METHOD *FIPS_dh_openssl()
<- Return

FIPS_digest (reimplements EVP_Digest) in file ./fips/utl/fips_md.[o|c]

__owur int FIPS_digest(const void *data, size_t count, unsigned char *md, unsigned int *size,
const EVP_MD *type, ENGINE *impl)
-> data
-> count
<- md
<- size
-> type
<-> impl
<- Return

FIPS_digestfinal (reimplements EVP_DigestFinal_ex) in file ./fips/utl/fips_md.[o|c]

__owur int FIPS_digestfinal(EVP_MD_CTX *ctx, unsigned char *md, unsigned int *s)
<- ctx
<- md
<- s
<- Return

FIPS_digestinit (reimplements EVP_DigestInit) in file ./fips/utl/fips_md.[o|c]

__owur int FIPS_digestinit(EVP_MD_CTX *ctx, const EVP_MD *type)
<- ctx
-> type
<- Return

Page 176 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_digestupdate (reimplements EVP_DigestUpdate) in file ./fips/utl/fips_md.[o|c]

__owur int FIPS_digestupdate(EVP_MD_CTX *ctx, const void *d, size_t cnt)
<- ctx
-> d
-> cnt
<- Return

FIPS_drbg_free in file ./fips/rand/fips_drbg_lib.[o|c]

void FIPS_drbg_free(DRBG_CTX *dctx)
<- dctx

FIPS_drbg_generate in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_generate(DRBG_CTX *dctx, unsigned char *out, size_t outlen, int
prediction_resistance, const unsigned char *adin, size_t adinlen)
<- dctx
<- out
-> outlen
-> prediction_resistance
-> adin
-> adinlen
<- Return

FIPS_drbg_get_app_data in file ./fips/rand/fips_drbg_lib.[o|c]

void *FIPS_drbg_get_app_data(DRBG_CTX *ctx)
<- ctx
<- Return

FIPS_drbg_get_blocklength in file ./fips/rand/fips_drbg_lib.[o|c]

size_t FIPS_drbg_get_blocklength(DRBG_CTX *dctx)
<- dctx
<- Return

Page 177 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_drbg_get_strength in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_get_strength(DRBG_CTX *dctx)
<- dctx
<- Return

FIPS_drbg_health_check in file ./fips/rand/fips_drbg_selftest.[o|c]

int FIPS_drbg_health_check(DRBG_CTX *dctx)
<- dctx
<- Return

FIPS_drbg_init in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_init(DRBG_CTX *dctx, int type, unsigned int flags)
<- dctx
-> type
-> flags
<- Return

FIPS_drbg_instantiate in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_instantiate(DRBG_CTX *dctx, const unsigned char *pers, size_t perslen)
<- dctx
-> pers
-> perslen
<- Return

FIPS_drbg_method in file ./fips/rand/fips_drbg_rand.[o|c]

const RAND_METHOD *FIPS_drbg_method()
<- Return

FIPS_drbg_new in file ./fips/rand/fips_drbg_lib.[o|c]

DRBG_CTX *FIPS_drbg_new(int type, unsigned int flags)
-> type

Page 178 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> flags
<- Return

FIPS_drbg_reseed in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_reseed(DRBG_CTX *dctx, const unsigned char *adin, size_t adinlen)
<- dctx
-> adin
-> adinlen
<- Return

FIPS_drbg_set_app_data in file ./fips/rand/fips_drbg_lib.[o|c]

void FIPS_drbg_set_app_data(DRBG_CTX *ctx, void *app_data)
<- ctx
<-> app_data

FIPS_drbg_set_callbacks in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_set_callbacks(DRBG_CTX *dctx, size_t (*get_entropy)(DRBG_CTX *ctx,
unsigned char **pout, int entropy, size_t min_len, size_t max_len), void (*cleanup_entropy)
(DRBG_CTX *ctx, unsigned char *out, size_t olen), size_t entropy_blocklen, size_t (*get_nonce)
(DRBG_CTX *ctx, unsigned char **pout, int entropy, size_t min_len, size_t max_len), void
(*cleanup_nonce)(DRBG_CTX *ctx, unsigned char *out, size_t olen))
<- dctx
<- get_entropy
<- cleanup_entropy
-> entropy_blocklen
<- get_nonce
<- cleanup_nonce
<- Return

FIPS_drbg_set_check_interval in file ./fips/rand/fips_drbg_lib.[o|c]

void FIPS_drbg_set_check_interval(DRBG_CTX *dctx, int interval)
<- dctx
-> interval

Page 179 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_drbg_set_rand_callbacks in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_set_rand_callbacks(DRBG_CTX *dctx, size_t (*get_adin)(DRBG_CTX *ctx,
unsigned char **pout), void (*cleanup_adin)(DRBG_CTX *ctx, unsigned char *out, size_t olen),
int (*rand_seed_cb)(DRBG_CTX *ctx, const void *buf, int num), int (*rand_add_cb)(DRBG_CTX
*ctx, const void *buf, int num, double entropy))
<- dctx
<- get_adin
<- cleanup_adin
-> rand_seed_cb
-> rand_add_cb
<- Return

FIPS_drbg_set_reseed_interval in file ./fips/rand/fips_drbg_lib.[o|c]

void FIPS_drbg_set_reseed_interval(DRBG_CTX *dctx, int interval)
<- dctx
-> interval

FIPS_drbg_stick in file ./fips/rand/fips_drbg_lib.[o|c]

void FIPS_drbg_stick(int onoff)
-> onoff

FIPS_drbg_uninstantiate in file ./fips/rand/fips_drbg_lib.[o|c]

int FIPS_drbg_uninstantiate(DRBG_CTX *dctx)
<- dctx
<- Return

FIPS_dsa_free in file ./fips/dsa/fips_dsa_lib.[o|c]

void FIPS_dsa_free(DSA *r)
<-> r

FIPS_dsa_generate_key (renames DSA_generate_key) in file ./crypto/dsa/dsa_key.[o|c]

int FIPS_dsa_generate_key(DSA *a)

Page 180 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<-> a
<- Return

FIPS_dsa_generate_parameters_ex (renames DSA_generate_parameters_ex) in file
./crypto/dsa/dsa_gen.[o|c]

int FIPS_dsa_generate_parameters_ex(DSA *dsa, int bits, const unsigned char *seed, int
seed_len, int *counter_ret, unsigned long *h_ret, BN_GENCB *cb)
<-> dsa
-> bits
-> seed
-> seed_len
<- counter_ret
<-> h_ret
<-> cb
<- Return

FIPS_dsa_new in file ./fips/dsa/fips_dsa_lib.[o|c]

DSA * FIPS_dsa_new()
<- Return

FIPS_dsa_openssl (renames DSA_OpenSSL) in file ./crypto/dsa/dsa_ossl.[o|c]

const DSA_METHOD *FIPS_dsa_openssl()
<- Return

FIPS_dsa_sig_free (reimplements DSA_SIG_free) in file ./fips/dsa/fips_dsa_lib.[o|c]

void FIPS_dsa_sig_free(DSA_SIG *a)
<-> a

FIPS_dsa_sig_new (reimplements DSA_SIG_new) in file ./fips/dsa/fips_dsa_lib.[o|c]

DSA_SIG * FIPS_dsa_sig_new()
<- Return

Page 181 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_dsa_sign in file ./fips/dsa/fips_dsa_sign.[o|c]

DSA_SIG * FIPS_dsa_sign(DSA *dsa, const unsigned char *msg, size_t msglen, const EVP_MD
*mhash)
<-> dsa
-> msg
-> msglen
-> mhash
<- Return

FIPS_dsa_sign_ctx in file ./fips/dsa/fips_dsa_sign.[o|c]

DSA_SIG * FIPS_dsa_sign_ctx(DSA *dsa, EVP_MD_CTX *ctx)
<-> dsa
<- ctx
<- Return

FIPS_dsa_sign_digest in file ./fips/dsa/fips_dsa_sign.[o|c]

DSA_SIG * FIPS_dsa_sign_digest(DSA *dsa, const unsigned char *dig, int dlen)
<-> dsa
-> dig
-> dlen
<- Return

FIPS_dsa_verify in file ./fips/dsa/fips_dsa_sign.[o|c]

int FIPS_dsa_verify(DSA *dsa, const unsigned char *msg, size_t msglen, const EVP_MD
*mhash, DSA_SIG *s)
<-> dsa
-> msg
-> msglen
-> mhash
<-> s
<- Return

FIPS_dsa_verify_ctx in file ./fips/dsa/fips_dsa_sign.[o|c]

int FIPS_dsa_verify_ctx(DSA *dsa, EVP_MD_CTX *ctx, DSA_SIG *s)

Page 182 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<-> dsa
<- ctx
<-> s
<- Return

FIPS_dsa_verify_digest in file ./fips/dsa/fips_dsa_sign.[o|c]

int FIPS_dsa_verify_digest(DSA *dsa, const unsigned char *dig, int dlen, DSA_SIG *s)
<-> dsa
-> dig
-> dlen
<-> s
<- Return

FIPS_ec_get_builtin_curves (renames EC_get_builtin_curves) in file ./crypto/ec/ec_curve.[o|c]

size_t FIPS_ec_get_builtin_curves(EC_builtin_curve *r, size_t nitems)
<-> r
-> nitems
<- Return

FIPS_ec_group_clear_free (renames EC_GROUP_clear_free) in file ./crypto/ec/ec_lib.[o|c]

void FIPS_ec_group_clear_free(EC_GROUP *group)
<-> group

FIPS_ec_group_get0_generator (renames EC_GROUP_get0_generator) in file ./crypto/ec/ec_lib.[o|
c]

const EC_POINT *FIPS_ec_group_get0_generator(const EC_GROUP *group)
-> group
<- Return

FIPS_ec_group_get0_seed (renames EC_GROUP_get0_seed) in file ./crypto/ec/ec_lib.[o|c]

unsigned char *FIPS_ec_group_get0_seed(const EC_GROUP *x)
-> x
<- Return

Page 183 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_group_get_asn1_flag (renames EC_GROUP_get_asn1_flag) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_get_asn1_flag(const EC_GROUP *group)
-> group
<- Return

FIPS_ec_group_get_cofactor (renames EC_GROUP_get_cofactor) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx)
-> group
<-> cofactor
<- ctx
<- Return

FIPS_ec_group_get_curve_gf2m (renames EC_GROUP_get_curve_GF2m) in file
./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_get_curve_gf2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
BIGNUM *b, BN_CTX *ctx)
-> group
<-> p
<-> a
<-> b
<- ctx
<- Return

FIPS_ec_group_get_curve_gfp (renames EC_GROUP_get_curve_GFp) in file ./crypto/ec/ec_lib.[o|
c]

int FIPS_ec_group_get_curve_gfp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
BIGNUM *b, BN_CTX *ctx)
-> group
<-> p
<-> a
<-> b
<- ctx
<- Return

Page 184 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_group_get_curve_name (renames EC_GROUP_get_curve_name) in file
./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_get_curve_name(const EC_GROUP *group)
-> group
<- Return

FIPS_ec_group_get_degree (renames EC_GROUP_get_degree) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_get_degree(const EC_GROUP *group)
-> group
<- Return

FIPS_ec_group_get_order (renames EC_GROUP_get_order) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx)
-> group
<-> order
<- ctx
<- Return

FIPS_ec_group_method_of (renames EC_GROUP_method_of) in file ./crypto/ec/ec_lib.[o|c]

const EC_METHOD *FIPS_ec_group_method_of(const EC_GROUP *group)
-> group
<- Return

FIPS_ec_group_new (renames EC_GROUP_new) in file ./crypto/ec/ec_lib.[o|c]

EC_GROUP *FIPS_ec_group_new(const EC_METHOD *meth)
-> meth
<- Return

FIPS_ec_group_new_by_curve_name (renames EC_GROUP_new_by_curve_name) in file
./crypto/ec/ec_curve.[o|c]

EC_GROUP *FIPS_ec_group_new_by_curve_name(int nid)

Page 185 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> nid
<- Return

FIPS_ec_group_new_curve_gf2m (renames EC_GROUP_new_curve_GF2m) in file
./crypto/ec/ec_cvt.[o|c]

EC_GROUP *FIPS_ec_group_new_curve_gf2m(const BIGNUM *p, const BIGNUM *a, const
BIGNUM *b, BN_CTX *ctx)
-> p
-> a
-> b
<- ctx
<- Return

FIPS_ec_group_new_curve_gfp (renames EC_GROUP_new_curve_GFp) in file ./crypto/ec/ec_cvt.
[o|c]

EC_GROUP *FIPS_ec_group_new_curve_gfp(const BIGNUM *p, const BIGNUM *a, const
BIGNUM *b, BN_CTX *ctx)
-> p
-> a
-> b
<- ctx
<- Return

FIPS_ec_group_precompute_mult (renames EC_GROUP_precompute_mult) in file
./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
<-> group
<- ctx
<- Return

FIPS_ec_group_set_asn1_flag (renames EC_GROUP_set_asn1_flag) in file ./crypto/ec/ec_lib.[o|c]

void FIPS_ec_group_set_asn1_flag(EC_GROUP *group, int flag)
<-> group
-> flag

Page 186 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_group_set_curve_gf2m (renames EC_GROUP_set_curve_GF2m) in file
./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_set_curve_gf2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM
*a, const BIGNUM *b, BN_CTX *ctx)
<-> group
-> p
-> a
-> b
<- ctx
<- Return

FIPS_ec_group_set_curve_gfp (renames EC_GROUP_set_curve_GFp) in file ./crypto/ec/ec_lib.[o|
c]

int FIPS_ec_group_set_curve_gfp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
<-> group
-> p
-> a
-> b
<- ctx
<- Return

FIPS_ec_group_set_curve_name (renames EC_GROUP_set_curve_name) in file ./crypto/ec/ec_lib.
[o|c]

void FIPS_ec_group_set_curve_name(EC_GROUP *group, int nid)
<-> group
-> nid

FIPS_ec_group_set_generator (renames EC_GROUP_set_generator) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_group_set_generator(EC_GROUP *group, const EC_POINT *generator, const
BIGNUM *order, const BIGNUM *cofactor)
<-> group
-> generator
-> order
-> cofactor
<- Return

Page 187 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_group_set_point_conversion_form (renames EC_GROUP_set_point_conversion_form) in
file ./crypto/ec/ec_lib.[o|c]

void FIPS_ec_group_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t
form)
<-> group
-> form

FIPS_ec_key_check_key (renames EC_KEY_check_key) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_check_key(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_clear_flags (renames EC_KEY_clear_flags) in file ./crypto/ec/ec_key.[o|c]

void FIPS_ec_key_clear_flags(EC_KEY *key, int flags)
<-> key
-> flags

FIPS_ec_key_copy (renames EC_KEY_copy) in file ./crypto/ec/ec_key.[o|c]

EC_KEY *FIPS_ec_key_copy(EC_KEY *dst, const EC_KEY *src)
<-> dst
-> src
<- Return

FIPS_ec_key_dup (renames EC_KEY_dup) in file ./crypto/ec/ec_key.[o|c]

EC_KEY *FIPS_ec_key_dup(const EC_KEY *src)
-> src
<- Return

FIPS_ec_key_free (renames EC_KEY_free) in file ./crypto/ec/ec_key.[o|c]

Page 188 of 222

User Guide - OpenSSL FIPS Object Module v2.0

void FIPS_ec_key_free(EC_KEY *key)
<-> key

FIPS_ec_key_generate_key (renames EC_KEY_generate_key) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_generate_key(EC_KEY *key)
<-> key
<- Return

FIPS_ec_key_get0_group (renames EC_KEY_get0_group) in file ./crypto/ec/ec_key.[o|c]

const EC_GROUP *FIPS_ec_key_get0_group(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_get0_private_key (renames EC_KEY_get0_private_key) in file ./crypto/ec/ec_key.[o|
c]

const BIGNUM *FIPS_ec_key_get0_private_key(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_get0_public_key (renames EC_KEY_get0_public_key) in file ./crypto/ec/ec_key.[o|
c]

const EC_POINT *FIPS_ec_key_get0_public_key(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_get_conv_form (renames EC_KEY_get_conv_form) in file ./crypto/ec/ec_key.[o|c]

point_conversion_form_t FIPS_ec_key_get_conv_form(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_get_enc_flags (renames EC_KEY_get_enc_flags) in file ./crypto/ec/ec_key.[o|c]

Page 189 of 222

User Guide - OpenSSL FIPS Object Module v2.0

unsigned FIPS_ec_key_get_enc_flags(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_get_flags (renames EC_KEY_get_flags) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_get_flags(const EC_KEY *key)
-> key
<- Return

FIPS_ec_key_get_key_method_data (renames EC_KEY_get_key_method_data) in file
./crypto/ec/ec_key.[o|c]

void *FIPS_ec_key_get_key_method_data(EC_KEY *key, void *(*dup_func)(void *), void
(*free_func)(void *), void (*clear_free_func)(void *))
<-> key
<-> dup_func
<-> free_func
<-> clear_free_func
<- Return

FIPS_ec_key_insert_key_method_data (renames EC_KEY_insert_key_method_data) in file
./crypto/ec/ec_key.[o|c]

void FIPS_ec_key_insert_key_method_data(EC_KEY *key, void *data, void *(*dup_func)(void
*), void (*free_func)(void *), void (*clear_free_func)(void *))
<-> key
<-> data
<-> dup_func
<-> free_func
<-> clear_free_func

FIPS_ec_key_new (renames EC_KEY_new) in file ./crypto/ec/ec_key.[o|c]

EC_KEY *FIPS_ec_key_new()
<- Return

Page 190 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_key_new_by_curve_name (renames EC_KEY_new_by_curve_name) in file
./crypto/ec/ec_key.[o|c]

EC_KEY *FIPS_ec_key_new_by_curve_name(int nid)
-> nid
<- Return

FIPS_ec_key_precompute_mult (renames EC_KEY_precompute_mult) in file ./crypto/ec/ec_key.
[o|c]

int FIPS_ec_key_precompute_mult(EC_KEY *key, BN_CTX *ctx)
<-> key
<- ctx
<- Return

FIPS_ec_key_set_asn1_flag (renames EC_KEY_set_asn1_flag) in file ./crypto/ec/ec_key.[o|c]

void FIPS_ec_key_set_asn1_flag(EC_KEY *eckey, int asn1_flag)
<-> eckey
-> asn1_flag

FIPS_ec_key_set_conv_form (renames EC_KEY_set_conv_form) in file ./crypto/ec/ec_key.[o|c]

void FIPS_ec_key_set_conv_form(EC_KEY *eckey, point_conversion_form_t cform)
<-> eckey
-> cform

FIPS_ec_key_set_enc_flags (renames EC_KEY_set_enc_flags) in file ./crypto/ec/ec_key.[o|c]

void FIPS_ec_key_set_enc_flags(EC_KEY *eckey, unsigned int flags)
<-> eckey
-> flags

FIPS_ec_key_set_flags (renames EC_KEY_set_flags) in file ./crypto/ec/ec_key.[o|c]

void FIPS_ec_key_set_flags(EC_KEY *key, int flags)
<-> key
-> flags

Page 191 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_key_set_group (renames EC_KEY_set_group) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_set_group(EC_KEY *key, const EC_GROUP *group)
<-> key
-> group
<- Return

FIPS_ec_key_set_private_key (renames EC_KEY_set_private_key) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_set_private_key(EC_KEY *key, const BIGNUM *prv)
<-> key
-> prv
<- Return

FIPS_ec_key_set_public_key (renames EC_KEY_set_public_key) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_set_public_key(EC_KEY *key, const EC_POINT *pub)
<-> key
-> pub
<- Return

FIPS_ec_key_set_public_key_affine_coordinates (renames
EC_KEY_set_public_key_affine_coordinates) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, BIGNUM
*y)
<-> key
<-> x
<-> y
<- Return

FIPS_ec_key_up_ref (renames EC_KEY_up_ref) in file ./crypto/ec/ec_key.[o|c]

int FIPS_ec_key_up_ref(EC_KEY *key)
<-> key
<- Return

Page 192 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_method_get_field_type (renames EC_METHOD_get_field_type) in file
./crypto/ec/ec_lib.[o|c]

int FIPS_ec_method_get_field_type(const EC_METHOD *meth)
-> meth
<- Return

FIPS_ec_point_clear_free (renames EC_POINT_clear_free) in file ./crypto/ec/ec_lib.[o|c]

void FIPS_ec_point_clear_free(EC_POINT *point)
<-> point

FIPS_ec_point_free (renames EC_POINT_free) in file ./crypto/ec/ec_lib.[o|c]

void FIPS_ec_point_free(EC_POINT *point)
<-> point

FIPS_ec_point_get_affine_coordinates_gf2m (renames
EC_POINT_get_affine_coordinates_GF2m) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_get_affine_coordinates_gf2m(const EC_GROUP *group, const EC_POINT
*p, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
-> group
-> p
<-> x
<-> y
<- ctx
<- Return

FIPS_ec_point_get_affine_coordinates_gfp (renames EC_POINT_get_affine_coordinates_GFp) in
file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_get_affine_coordinates_gfp(const EC_GROUP *group, const EC_POINT *p,
BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
-> group
-> p
<-> x
<-> y

Page 193 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<- ctx
<- Return

FIPS_ec_point_get_jprojective_coordinates_gfp (renames
EC_POINT_get_Jprojective_coordinates_GFp) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_get_jprojective_coordinates_gfp(const EC_GROUP *group, const
EC_POINT *p, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
-> group
-> p
<-> x
<-> y
<-> z
<- ctx
<- Return

FIPS_ec_point_is_at_infinity (renames EC_POINT_is_at_infinity) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_is_at_infinity(const EC_GROUP *group, const EC_POINT *p)
-> group
-> p
<- Return

FIPS_ec_point_is_on_curve (renames EC_POINT_is_on_curve) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX
*ctx)
-> group
-> point
<- ctx
<- Return

FIPS_ec_point_make_affine (renames EC_POINT_make_affine) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
-> group
<-> point
<- ctx
<- Return

Page 194 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_ec_point_method_of (renames EC_POINT_method_of) in file ./crypto/ec/ec_lib.[o|c]

const EC_METHOD *FIPS_ec_point_method_of(const EC_POINT *point)
-> point
<- Return

FIPS_ec_point_mul (renames EC_POINT_mul) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, const
EC_POINT *q, const BIGNUM *m, BN_CTX *ctx)
-> group
<-> r
-> n
-> q
-> m
<- ctx
<- Return

FIPS_ec_point_new (renames EC_POINT_new) in file ./crypto/ec/ec_lib.[o|c]

EC_POINT *FIPS_ec_point_new(const EC_GROUP *group)
-> group
<- Return

FIPS_ec_point_set_to_infinity (renames EC_POINT_set_to_infinity) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
-> group
<-> point
<- Return

FIPS_ec_points_make_affine (renames EC_POINTs_make_affine) in file ./crypto/ec/ec_lib.[o|c]

int FIPS_ec_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points,
BN_CTX *ctx)
-> group
-> num

Page 195 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<-> points
<- ctx
<- Return

FIPS_ecdh_compute_key (renames ECDH_compute_key) in file ./crypto/ecdh/ech_key.[o|c]

int FIPS_ecdh_compute_key(void *out, size_t outlen, const EC_POINT *pub_key, EC_KEY
*ecdh, void *(*KDF)(const void *in, size_t inlen, void *out, size_t *outlen))
<-> out
-> outlen
-> pub_key
<-> ecdh
-> KDF
<- Return

FIPS_ecdh_openssl (renames ECDH_OpenSSL) in file ./crypto/ecdh/ech_ossl.[o|c]

const ECDH_METHOD *FIPS_ecdh_openssl()
<- Return

FIPS_ecdsa_openssl (renames ECDSA_OpenSSL) in file ./crypto/ecdsa/ecs_ossl.[o|c]

const ECDSA_METHOD *FIPS_ecdsa_openssl()
<- Return

FIPS_ecdsa_sig_free (reimplements ECDSA_SIG_free) in file ./fips/ecdsa/fips_ecdsa_lib.[o|c]

void FIPS_ecdsa_sig_free(ECDSA_SIG *sig)
<-> sig

FIPS_ecdsa_sig_new (reimplements ECDSA_SIG_new) in file ./fips/ecdsa/fips_ecdsa_lib.[o|c]

ECDSA_SIG *FIPS_ecdsa_sig_new()
<- Return

FIPS_ecdsa_sign in file ./fips/ecdsa/fips_ecdsa_sign.[o|c]

Page 196 of 222

User Guide - OpenSSL FIPS Object Module v2.0

ECDSA_SIG * FIPS_ecdsa_sign(EC_KEY *key, const unsigned char *msg, size_t msglen, const
EVP_MD *mhash)
<-> key
-> msg
-> msglen
-> mhash
<- Return

FIPS_ecdsa_sign_ctx in file ./fips/ecdsa/fips_ecdsa_sign.[o|c]

ECDSA_SIG * FIPS_ecdsa_sign_ctx(EC_KEY *key, EVP_MD_CTX *ctx)
<-> key
<- ctx
<- Return

FIPS_ecdsa_sign_digest in file ./crypto/ecdsa/ecs_ossl.[o|c]

ECDSA_SIG * FIPS_ecdsa_sign_digest(EC_KEY *key, const unsigned char *dig, int dlen)
<-> key
-> dig
-> dlen
<- Return

FIPS_ecdsa_verify in file ./fips/ecdsa/fips_ecdsa_sign.[o|c]

int FIPS_ecdsa_verify(EC_KEY *key, const unsigned char *msg, size_t msglen, const EVP_MD
*mhash, ECDSA_SIG *s)
<-> key
-> msg
-> msglen
-> mhash
<-> s
<- Return

FIPS_ecdsa_verify_ctx in file ./fips/ecdsa/fips_ecdsa_sign.[o|c]

int FIPS_ecdsa_verify_ctx(EC_KEY *key, EVP_MD_CTX *ctx, ECDSA_SIG *s)
<-> key
<- ctx

Page 197 of 222

User Guide - OpenSSL FIPS Object Module v2.0

<-> s
<- Return

FIPS_ecdsa_verify_digest in file ./crypto/ecdsa/ecs_ossl.[o|c]

int FIPS_ecdsa_verify_digest(EC_KEY *key, const unsigned char *dig, int dlen, ECDSA_SIG
*s)
<-> key
-> dig
-> dlen
<-> s
<- Return

FIPS_evp_aes_128_cbc (renames EVP_aes_128_cbc) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_cbc()
<- Return

FIPS_evp_aes_128_ccm (renames EVP_aes_128_ccm) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_ccm()
<- Return

FIPS_evp_aes_128_cfb1 (renames EVP_aes_128_cfb1) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_cfb1()
<- Return

FIPS_evp_aes_128_cfb128 (renames EVP_aes_128_cfb128) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_cfb128()
<- Return

FIPS_evp_aes_128_cfb8 (renames EVP_aes_128_cfb8) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_cfb8()
<- Return

Page 198 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_aes_128_ctr (renames EVP_aes_128_ctr) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_ctr()
<- Return

FIPS_evp_aes_128_ecb (renames EVP_aes_128_ecb) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_ecb()
<- Return

FIPS_evp_aes_128_gcm (renames EVP_aes_128_gcm) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_gcm()
<- Return

FIPS_evp_aes_128_ofb (renames EVP_aes_128_ofb) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_ofb()
<- Return

FIPS_evp_aes_128_xts (renames EVP_aes_128_xts) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_128_xts()
<- Return

FIPS_evp_aes_192_cbc (renames EVP_aes_192_cbc) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_cbc()
<- Return

FIPS_evp_aes_192_ccm (renames EVP_aes_192_ccm) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_ccm()
<- Return

Page 199 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_aes_192_cfb1 (renames EVP_aes_192_cfb1) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_cfb1()
<- Return

FIPS_evp_aes_192_cfb128 (renames EVP_aes_192_cfb128) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_cfb128()
<- Return

FIPS_evp_aes_192_cfb8 (renames EVP_aes_192_cfb8) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_cfb8()
<- Return

FIPS_evp_aes_192_ctr (renames EVP_aes_192_ctr) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_ctr()
<- Return

FIPS_evp_aes_192_ecb (renames EVP_aes_192_ecb) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_ecb()
<- Return

FIPS_evp_aes_192_gcm (renames EVP_aes_192_gcm) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_gcm()
<- Return

FIPS_evp_aes_192_ofb (renames EVP_aes_192_ofb) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_192_ofb()
<- Return

Page 200 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_aes_256_cbc (renames EVP_aes_256_cbc) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_cbc()
<- Return

FIPS_evp_aes_256_ccm (renames EVP_aes_256_ccm) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_ccm()
<- Return

FIPS_evp_aes_256_cfb1 (renames EVP_aes_256_cfb1) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_cfb1()
<- Return

FIPS_evp_aes_256_cfb128 (renames EVP_aes_256_cfb128) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_cfb128()
<- Return

FIPS_evp_aes_256_cfb8 (renames EVP_aes_256_cfb8) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_cfb8()
<- Return

FIPS_evp_aes_256_ctr (renames EVP_aes_256_ctr) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_ctr()
<- Return

FIPS_evp_aes_256_ecb (renames EVP_aes_256_ecb) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_ecb()
<- Return

Page 201 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_aes_256_gcm (renames EVP_aes_256_gcm) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_gcm()
<- Return

FIPS_evp_aes_256_ofb (renames EVP_aes_256_ofb) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_ofb()
<- Return

FIPS_evp_aes_256_xts (renames EVP_aes_256_xts) in file ./crypto/evp/e_aes.[o|c]

const EVP_CIPHER *FIPS_evp_aes_256_xts()
<- Return

FIPS_evp_des_ede (renames EVP_des_ede) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede()
<- Return

FIPS_evp_des_ede3 (renames EVP_des_ede3) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3()
<- Return

FIPS_evp_des_ede3_cbc (renames EVP_des_ede3_cbc) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3_cbc()
<- Return

FIPS_evp_des_ede3_cfb1 (renames EVP_des_ede3_cfb1) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3_cfb1()
<- Return

Page 202 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_des_ede3_cfb64 (renames EVP_des_ede3_cfb64) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3_cfb64()
<- Return

FIPS_evp_des_ede3_cfb8 (renames EVP_des_ede3_cfb8) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3_cfb8()
<- Return

FIPS_evp_des_ede3_ecb (renames EVP_des_ede3_ecb) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3_ecb()
<- Return

FIPS_evp_des_ede3_ofb (renames EVP_des_ede3_ofb) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede3_ofb()
<- Return

FIPS_evp_des_ede_cbc (renames EVP_des_ede_cbc) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede_cbc()
<- Return

FIPS_evp_des_ede_cfb64 (renames EVP_des_ede_cfb64) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede_cfb64()
<- Return

FIPS_evp_des_ede_ecb (renames EVP_des_ede_ecb) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede_ecb()
<- Return

Page 203 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_des_ede_ofb (renames EVP_des_ede_ofb) in file ./crypto/evp/e_des3.[o|c]

const EVP_CIPHER *FIPS_evp_des_ede_ofb()
<- Return

FIPS_evp_dss (renames EVP_dss) in file ./crypto/evp/m_dss.[o|c]

const EVP_MD *FIPS_evp_dss()
<- Return

FIPS_evp_dss1 (renames EVP_dss1) in file ./crypto/evp/m_dss1.[o|c]

const EVP_MD *FIPS_evp_dss1()
<- Return

FIPS_evp_ecdsa (renames EVP_ecdsa) in file ./crypto/evp/m_ecdsa.[o|c]

const EVP_MD *FIPS_evp_ecdsa()
<- Return

FIPS_evp_enc_null (renames EVP_enc_null) in file ./crypto/evp/e_null.[o|c]

const EVP_CIPHER *FIPS_evp_enc_null()
<- Return

FIPS_evp_sha1 (renames EVP_sha1) in file ./crypto/evp/m_sha1.[o|c]

const EVP_MD *FIPS_evp_sha1()
<- Return

FIPS_evp_sha224 (renames EVP_sha224) in file ./crypto/evp/m_sha1.[o|c]

const EVP_MD *FIPS_evp_sha224()
<- Return

Page 204 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_evp_sha256 (renames EVP_sha256) in file ./crypto/evp/m_sha1.[o|c]

const EVP_MD *FIPS_evp_sha256()
<- Return

FIPS_evp_sha384 (renames EVP_sha384) in file ./crypto/evp/m_sha1.[o|c]

const EVP_MD *FIPS_evp_sha384()
<- Return

FIPS_evp_sha512 (renames EVP_sha512) in file ./crypto/evp/m_sha1.[o|c]

const EVP_MD *FIPS_evp_sha512()
<- Return

FIPS_free (reimplements CRYPTO_free) in file ./fips/utl/fips_mem.[o|c]

void FIPS_free(void *ptr)
<-> ptr

FIPS_get_cipherbynid in file ./fips/utl/fips_enc.[o|c]

const struct evp_cipher_st *FIPS_get_cipherbynid(int nid)
-> nid
<- Return

FIPS_get_default_drbg in file ./fips/rand/fips_drbg_rand.[o|c]

DRBG_CTX *FIPS_get_default_drbg()
<- Return

FIPS_get_digestbynid in file ./fips/utl/fips_md.[o|c]

const struct env_md_st *FIPS_get_digestbynid(int nid)
-> nid
<- Return

Page 205 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_get_timevec in file ./fips/rand/fips_rand.[o|c]

void FIPS_get_timevec(unsigned char *buf, unsigned long *pctr)
<- buf
<-> pctr

FIPS_hmac (renames HMAC) in file ./crypto/hmac/hmac.[o|c]

unsigned char *FIPS_hmac(const EVP_MD *evp_md, const void *key, int key_len, const
unsigned char *d, size_t n, unsigned char *md, unsigned int *md_len)
-> evp_md
-> key
-> key_len
-> d
-> n
<- md
<- md_len
<- Return

FIPS_hmac_ctx_cleanup (renames HMAC_CTX_cleanup) in file ./crypto/hmac/hmac.[o|c]

void FIPS_hmac_ctx_cleanup(HMAC_CTX *ctx)
<- ctx

FIPS_hmac_ctx_copy (renames HMAC_CTX_copy) in file ./crypto/hmac/hmac.[o|c]

__owur int FIPS_hmac_ctx_copy(HMAC_CTX *dctx, HMAC_CTX *sctx)
<- dctx
<- sctx
<- Return

FIPS_hmac_ctx_init (renames HMAC_CTX_init) in file ./crypto/hmac/hmac.[o|c]

void FIPS_hmac_ctx_init(HMAC_CTX *ctx)
<- ctx

FIPS_hmac_ctx_set_flags (renames HMAC_CTX_set_flags) in file ./crypto/hmac/hmac.[o|c]

Page 206 of 222

User Guide - OpenSSL FIPS Object Module v2.0

void FIPS_hmac_ctx_set_flags(HMAC_CTX *ctx, unsigned long flags)
<- ctx
-> flags

FIPS_hmac_final (renames HMAC_Final) in file ./crypto/hmac/hmac.[o|c]

__owur int FIPS_hmac_final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len)
<- ctx
<- md
<- len
<- Return

FIPS_hmac_init (renames HMAC_Init) in file ./crypto/hmac/hmac.[o|c]

__owur int FIPS_hmac_init(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md)
<- ctx
-> key
-> len
-> md
<- Return

FIPS_hmac_init_ex (renames HMAC_Init_ex) in file ./crypto/hmac/hmac.[o|c]

__owur int FIPS_hmac_init_ex(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md,
ENGINE *impl)
<- ctx
-> key
-> len
-> md
<-> impl
<- Return

FIPS_hmac_update (renames HMAC_Update) in file ./crypto/hmac/hmac.[o|c]

__owur int FIPS_hmac_update(HMAC_CTX *ctx, const unsigned char *data, size_t len)
<- ctx
-> data
-> len
<- Return

Page 207 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_incore_fingerprint in file ./fips/fips.[o|c]

unsigned int FIPS_incore_fingerprint(unsigned char *sig, unsigned int len)
<- sig
-> len
<- Return

FIPS_lock (reimplements CRYPTO_lock) in file ./fips/utl/fips_lck.[o|c]

void FIPS_lock(int mode, int type, const char *file, int line)
-> mode
-> type
-> file
-> line

FIPS_malloc (reimplements CRYPTO_malloc) in file ./fips/utl/fips_mem.[o|c]

void *FIPS_malloc(int num, const char *file, int line)
-> num
-> file
-> line
<- Return

FIPS_md_ctx_cleanup (reimplements EVP_MD_CTX_cleanup) in file ./fips/utl/fips_md.[o|c]

int FIPS_md_ctx_cleanup(EVP_MD_CTX *ctx)
<- ctx
<- Return

FIPS_md_ctx_copy (reimplements EVP_MD_CTX_copy_ex) in file ./fips/utl/fips_md.[o|c]

__owur int FIPS_md_ctx_copy(EVP_MD_CTX *out, const EVP_MD_CTX *in)
<- out
-> in
<- Return

Page 208 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_md_ctx_create (reimplements EVP_MD_CTX_create) in file ./fips/utl/fips_md.[o|c]

EVP_MD_CTX *FIPS_md_ctx_create()
<- Return

FIPS_md_ctx_destroy (reimplements EVP_MD_CTX_destroy) in file ./fips/utl/fips_md.[o|c]

void FIPS_md_ctx_destroy(EVP_MD_CTX *ctx)
<- ctx

FIPS_md_ctx_init (reimplements EVP_MD_CTX_init) in file ./fips/utl/fips_md.[o|c]

void FIPS_md_ctx_init(EVP_MD_CTX *ctx)
<- ctx

FIPS_module_mode in file ./fips/fips.[o|c]

int FIPS_module_mode()
<- Return

FIPS_module_mode_set in file ./fips/fips.[o|c]

int FIPS_module_mode_set(int onoff, const char *auth)
-> onoff
-> auth
<- Return

FIPS_module_version in file ./fips/fips.[o|c]

unsigned long FIPS_module_version()
<- Return

FIPS_module_version_text in file ./fips/fips.[o|c]

const char *FIPS_module_version_text()
<- Return

Page 209 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_openssl_cleanse (renames OPENSSL_cleanse) in file ./crypto/x86cpuid.[o|c]

void FIPS_openssl_cleanse(void *ptr, size_t len)
<-> ptr
-> len

FIPS_openssl_showfatal (renames OPENSSL_showfatal) in file ./crypto/cryptlib.[o|c]

void FIPS_openssl_showfatal(const char *fmta, ...)
-> fmta
-> ...

FIPS_openssldie (renames OpenSSLDie) in file ./crypto/cryptlib.[o|c]

void FIPS_openssldie(const char *file, int line, const char *assertion)
-> file
-> line
-> assertion

FIPS_post_set_callback in file ./fips/fips_post.[o|c]

void FIPS_post_set_callback(int (*post_cb)(int op, int id, int subid, void *ex))
<- post_cb

FIPS_put_error (reimplements ERR_put_error) in file ./fips/utl/fips_err.[o|c]

void FIPS_put_error(int lib, int func, int reason, const char *file, int line)
-> lib
-> func
-> reason
-> file
-> line

FIPS_rand_add (reimplements RAND_add) in file ./fips/rand/fips_rand_lib.[o|c]

void FIPS_rand_add(const void *buf, int num, double entropy)
-> buf

Page 210 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> num
-> entropy

FIPS_rand_bytes (reimplements RAND_bytes) in file ./fips/rand/fips_rand_lib.[o|c]

int FIPS_rand_bytes(unsigned char *buf, int num)
<- buf
-> num
<- Return

FIPS_rand_get_method in file ./fips/rand/fips_rand_lib.[o|c]

const RAND_METHOD *FIPS_rand_get_method()
<- Return

FIPS_rand_pseudo_bytes (reimplements RAND_pseudo_bytes) in file ./fips/rand/fips_rand_lib.[o|
c]

int FIPS_rand_pseudo_bytes(unsigned char *buf, int num)
<- buf
-> num
<- Return

FIPS_rand_seed (reimplements RAND_seed) in file ./fips/rand/fips_rand_lib.[o|c]

void FIPS_rand_seed(const void *buf, int num)
-> buf
-> num

FIPS_rand_set_bits in file ./fips/rand/fips_rand_lib.[o|c]

void FIPS_rand_set_bits(int nbits)
-> nbits

FIPS_rand_set_method in file ./fips/rand/fips_rand_lib.[o|c]

int FIPS_rand_set_method(const RAND_METHOD *meth)

Page 211 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> meth
<- Return

FIPS_rand_status (reimplements RAND_status) in file ./fips/rand/fips_rand_lib.[o|c]

int FIPS_rand_status()
<- Return

FIPS_rand_strength in file ./fips/rand/fips_rand_lib.[o|c]

int FIPS_rand_strength()
<- Return

FIPS_rsa_blinding_off (renames RSA_blinding_off) in file ./crypto/rsa/rsa_crpt.[o|c]

void FIPS_rsa_blinding_off(RSA *rsa)
<-> rsa

FIPS_rsa_blinding_on (renames RSA_blinding_on) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_blinding_on(RSA *rsa, BN_CTX *ctx)
<-> rsa
<- ctx
<- Return

FIPS_rsa_flags (renames RSA_flags) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_flags(const RSA *r)
-> r
<- Return

FIPS_rsa_free in file ./fips/rsa/fips_rsa_lib.[o|c]

void FIPS_rsa_free(struct rsa_st *r)
<-> r

Page 212 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_rsa_generate_key_ex (renames RSA_generate_key_ex) in file ./crypto/rsa/rsa_gen.[o|c]

int FIPS_rsa_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb)
<-> rsa
-> bits
<-> e
<-> cb
<- Return

FIPS_rsa_new in file ./fips/rsa/fips_rsa_lib.[o|c]

struct rsa_st *FIPS_rsa_new()
<- Return

FIPS_rsa_pkcs1_ssleay (renames RSA_PKCS1_SSLeay) in file ./crypto/rsa/rsa_eay.[o|c]

const RSA_METHOD *FIPS_rsa_pkcs1_ssleay()
<- Return

FIPS_rsa_private_decrypt (renames RSA_private_decrypt) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_private_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,
int padding)
-> flen
-> from
<- to
<-> rsa
-> padding
<- Return

FIPS_rsa_private_encrypt (renames RSA_private_encrypt) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_private_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,
int padding)
-> flen
-> from
<- to
<-> rsa

Page 213 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> padding
<- Return

FIPS_rsa_public_decrypt (renames RSA_public_decrypt) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_public_decrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,
int padding)
-> flen
-> from
<- to
<-> rsa
-> padding
<- Return

FIPS_rsa_public_encrypt (renames RSA_public_encrypt) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_public_encrypt(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,
int padding)
-> flen
-> from
<- to
<-> rsa
-> padding
<- Return

FIPS_rsa_sign in file ./fips/rsa/fips_rsa_sign.[o|c]

int FIPS_rsa_sign(struct rsa_st *rsa, const unsigned char *msg, int msglen, const struct env_md_st
*mhash, int rsa_pad_mode, int saltlen, const struct env_md_st *mgf1Hash, unsigned char *sigret,
unsigned int *siglen)
<-> rsa
-> msg
-> msglen
-> mhash
-> rsa_pad_mode
-> saltlen
-> mgf1Hash
<- sigret
<- siglen
<- Return

Page 214 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_rsa_sign_ctx in file ./fips/rsa/fips_rsa_sign.[o|c]

int FIPS_rsa_sign_ctx(struct rsa_st *rsa, struct env_md_ctx_st *ctx, int rsa_pad_mode, int saltlen,
const struct env_md_st *mgf1Hash, unsigned char *sigret, unsigned int *siglen)
<-> rsa
<- ctx
-> rsa_pad_mode
-> saltlen
-> mgf1Hash
<- sigret
<- siglen
<- Return

FIPS_rsa_sign_digest in file ./fips/rsa/fips_rsa_sign.[o|c]

int FIPS_rsa_sign_digest(struct rsa_st *rsa, const unsigned char *md, int md_len, const struct
env_md_st *mhash, int rsa_pad_mode, int saltlen, const struct env_md_st *mgf1Hash, unsigned
char *sigret, unsigned int *siglen)
<-> rsa
-> md
-> md_len
-> mhash
-> rsa_pad_mode
-> saltlen
-> mgf1Hash
<- sigret
<- siglen
<- Return

FIPS_rsa_size (renames RSA_size) in file ./crypto/rsa/rsa_crpt.[o|c]

int FIPS_rsa_size(const RSA *rsa)
-> rsa
<- Return

FIPS_rsa_verify in file ./fips/rsa/fips_rsa_sign.[o|c]

int FIPS_rsa_verify(struct rsa_st *rsa, const unsigned char *msg, int msglen, const struct
env_md_st *mhash, int rsa_pad_mode, int saltlen, const struct env_md_st *mgf1Hash, const

Page 215 of 222

User Guide - OpenSSL FIPS Object Module v2.0

unsigned char *sigbuf, unsigned int siglen)
<-> rsa
-> msg
-> msglen
-> mhash
-> rsa_pad_mode
-> saltlen
-> mgf1Hash
-> sigbuf
-> siglen
<- Return

FIPS_rsa_verify_ctx in file ./fips/rsa/fips_rsa_sign.[o|c]

int FIPS_rsa_verify_ctx(struct rsa_st *rsa, struct env_md_ctx_st *ctx, int rsa_pad_mode, int
saltlen, const struct env_md_st *mgf1Hash, const unsigned char *sigbuf, unsigned int siglen)
<-> rsa
<- ctx
-> rsa_pad_mode
-> saltlen
-> mgf1Hash
-> sigbuf
-> siglen
<- Return

FIPS_rsa_verify_digest in file ./fips/rsa/fips_rsa_sign.[o|c]

int FIPS_rsa_verify_digest(struct rsa_st *rsa, const unsigned char *dig, int diglen, const struct
env_md_st *mhash, int rsa_pad_mode, int saltlen, const struct env_md_st *mgf1Hash, const
unsigned char *sigbuf, unsigned int siglen)
<-> rsa
-> dig
-> diglen
-> mhash
-> rsa_pad_mode
-> saltlen
-> mgf1Hash
-> sigbuf
-> siglen
<- Return

Page 216 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_rsa_x931_derive_ex (renames RSA_X931_derive_ex) in file ./crypto/rsa/rsa_x931g.[o|c]

int FIPS_rsa_x931_derive_ex(RSA *rsa, BIGNUM *p1, BIGNUM *p2, BIGNUM *q1,
BIGNUM *q2, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *Xp, const
BIGNUM *Xq1, const BIGNUM *Xq2, const BIGNUM *Xq, const BIGNUM *e, BN_GENCB
*cb)
<-> rsa
<-> p1
<-> p2
<-> q1
<-> q2
-> Xp1
-> Xp2
-> Xp
-> Xq1
-> Xq2
-> Xq
-> e
<-> cb
<- Return

FIPS_rsa_x931_generate_key_ex (renames RSA_X931_generate_key_ex) in file
./crypto/rsa/rsa_x931g.[o|c]

int FIPS_rsa_x931_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e, BN_GENCB *cb)
<-> rsa
-> bits
-> e
<-> cb
<- Return

FIPS_selftest in file ./fips/fips_post.[o|c]

int FIPS_selftest()
<- Return

FIPS_selftest_aes in file ./fips/aes/fips_aes_selftest.[o|c]

int FIPS_selftest_aes()
<- Return

Page 217 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_selftest_aes_ccm in file ./fips/aes/fips_aes_selftest.[o|c]

int FIPS_selftest_aes_ccm()
<- Return

FIPS_selftest_aes_gcm in file ./fips/aes/fips_aes_selftest.[o|c]

int FIPS_selftest_aes_gcm()
<- Return

FIPS_selftest_aes_xts in file ./fips/aes/fips_aes_selftest.[o|c]

int FIPS_selftest_aes_xts()
<- Return

FIPS_selftest_check in file ./fips/fips.[o|c]

void FIPS_selftest_check()

FIPS_selftest_cmac in file ./fips/cmac/fips_cmac_selftest.[o|c]

int FIPS_selftest_cmac()
<- Return

FIPS_selftest_des in file ./fips/des/fips_des_selftest.[o|c]

int FIPS_selftest_des()
<- Return

FIPS_selftest_drbg in file ./fips/rand/fips_drbg_selftest.[o|c]

int FIPS_selftest_drbg()
<- Return

Page 218 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_selftest_drbg_all in file ./fips/rand/fips_drbg_selftest.[o|c]

int FIPS_selftest_drbg_all()
<- Return

FIPS_selftest_dsa in file ./fips/dsa/fips_dsa_selftest.[o|c]

int FIPS_selftest_dsa()
<- Return

FIPS_selftest_ecdh in file ./fips/ecdh/fips_ecdh_selftest.[o|c]

int FIPS_selftest_ecdh()
<- Return

FIPS_selftest_ecdsa in file ./fips/ecdsa/fips_ecdsa_selftest.[o|c]

int FIPS_selftest_ecdsa()
<- Return

FIPS_selftest_failed in file ./fips/fips.[o|c]

int FIPS_selftest_failed()
<- Return

FIPS_selftest_hmac in file ./fips/hmac/fips_hmac_selftest.[o|c]

int FIPS_selftest_hmac()
<- Return

FIPS_selftest_rsa in file ./fips/rsa/fips_rsa_selftest.[o|c]

int FIPS_selftest_rsa()
<- Return

Page 219 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_selftest_sha1 in file ./fips/sha/fips_sha1_selftest.[o|c]

int FIPS_selftest_sha1()
<- Return

FIPS_selftest_x931 in file ./fips/rand/fips_rand_selftest.[o|c]

int FIPS_selftest_x931()
<- Return

FIPS_set_error_callbacks in file ./fips/utl/fips_err.[o|c]

void FIPS_set_error_callbacks(void (*put_cb)(int lib, int func,int reason,const char *file,int line),
void (*add_cb)(int num, va_list args))
-> put_cb
<- add_cb

FIPS_set_locking_callbacks in file ./fips/utl/fips_lck.[o|c]

void FIPS_set_locking_callbacks(void (*func)(int mode, int type, const char *file,int line), int
(*add_cb)(int *pointer, int amount, int type, const char *file, int line))
-> func
-> add_cb

FIPS_set_malloc_callbacks in file ./fips/utl/fips_mem.[o|c]

void FIPS_set_malloc_callbacks(void *(*malloc_cb)(int num, const char *file, int line), void
(*free_cb)(void *))
-> malloc_cb
<-> free_cb

FIPS_text_end in file ./fips/fips_end.[o|c]

void *FIPS_text_end()
<- Return

Page 220 of 222

User Guide - OpenSSL FIPS Object Module v2.0

FIPS_text_start in file ./fips/fips_start.[o|c]

void *FIPS_text_start()
<- Return

FIPS_x931_bytes in file ./fips/rand/fips_rand.[o|c]

int FIPS_x931_bytes(unsigned char *out, int outlen)
<- out
-> outlen
<- Return

FIPS_x931_method in file ./fips/rand/fips_rand.[o|c]

const RAND_METHOD *FIPS_x931_method()
<- Return

FIPS_x931_reset in file ./fips/rand/fips_rand.[o|c]

void FIPS_x931_reset()

FIPS_x931_seed in file ./fips/rand/fips_rand.[o|c]

int FIPS_x931_seed(const void *buf, int num)
-> buf
-> num
<- Return

FIPS_x931_set_dt in file ./fips/rand/fips_rand.[o|c]

int FIPS_x931_set_dt(unsigned char *dt)
<- dt
<- Return

FIPS_x931_set_key in file ./fips/rand/fips_rand.[o|c]

int FIPS_x931_set_key(const unsigned char *key, int keylen)

Page 221 of 222

User Guide - OpenSSL FIPS Object Module v2.0

-> key
-> keylen
<- Return

FIPS_x931_status in file ./fips/rand/fips_rand.[o|c]

int FIPS_x931_status()
<- Return

FIPS_x931_stick in file ./fips/rand/fips_rand.[o|c]

void FIPS_x931_stick(int onoff)
-> onoff

FIPS_x931_test_mode in file ./fips/rand/fips_rand.[o|c]

int FIPS_x931_test_mode()
<- Return

Page 222 of 222

	Table of Contents
	1. Introduction
	1.1 FIPS What? Where Do I Start?
	1.2 “Change Letter” Modifications
	1.3 The “Private Label” Validation

	2. Background
	2.1 Terminology
	2.1.1 FIPS 140-2 Specific Terminology
	2.1.2 General Glossary

	2.2 The FIPS Module and Integrity Test
	2.3 The FIPS Integrity Test
	2.3.1 Requirement for Exclusive Integrity Test
	2.3.2 Requirement for Fixed Object Code Order

	2.4 The File Integrity Chain
	2.4.1 Source File (Build Time) Integrity
	2.4.2 Object Module (Link Time) Integrity
	2.4.3 Application Executable Object (Run Time) Integrity

	2.5 Relationship to the OpenSSL API
	2.6 FIPS Mode of Operation
	2.6.1 FIPS Mode Initialization
	2.6.2 Algorithms Available in FIPS Mode

	2.7 Revisions of the 2.0 Module
	2.8 Prior FIPS Object Modules
	2.9 Future FIPS Object Modules
	2.10 Clone Validations

	3. Compatible Platforms
	3.1 Build Environment Requirements
	3.2 Known Supported Platforms
	3.2.1 Code Paths and Command Sets
	3.2.2 32 versus 64 Bit Architectures
	3.2.3 Assembler Optimizations

	3.3 Creation of Shared Libraries
	3.4 Cross-compilation

	4. Generating the FIPS Object Module
	4.1 Delivery of Source Code
	4.1.1 Creation of a FIPS Object Module from Other Source Code
	4.1.2 Verifying Integrity of Distribution (Best Practice)

	4.2 Building and Installing the FIPS Object Module with OpenSSL (Unix/Linux)
	4.2.1 Building the FIPS Object Module from Source
	4.2.2 Installing and Protecting the FIPS Object Module
	4.2.3 Building a FIPS Capable OpenSSL

	4.3 Building and Installing the FIPS Object Module with OpenSSL (Windows)
	4.3.1 Building the FIPS Object Module from Source
	4.3.2 Installing and Protecting the FIPS Object Module
	4.3.3 Building a FIPS Capable OpenSSL

	5. Creating Applications Which Reference the FIPS Object Module
	5.1 Exclusive Use of the FIPS Object Module for Cryptography
	5.2 FIPS Mode Initialization
	5.3 Generate Application Executable Object
	5.3.1 Linking under Unix/Linux
	5.3.2 Linking under Windows

	5.4 Application Implementation Recommendations
	Provide an Indication of FIPS Mode
	Graceful Avoidance of Non-FIPS Algorithms

	5.5 Documentation and Record-keeping Recommendations
	5.6 When is a Separate FIPS 140-2 Validation Required?
	5.7 Common Issues and Misconceptions
	5.7.1 Don't Fight It
	5.7.2 Don't Overthink It

	6. Technical Notes
	6.1 DRBGs
	6.1.1 Overview
	6.1.2 The DRBG API

	6.2 Role Based Module Authentication
	6.3 Self Tests
	6.3.1 POST Tests
	6.3.1.1 Integrity Test
	6.3.1.2 DRBG Self Test
	6.3.1.3 X9.31 PRNG Self Test
	6.3.1.4 Digest Test
	6.3.1.5 HMAC Test
	6.3.1.6 CMAC Test
	6.3.1.7 Cipher Self Tests
	6.3.1.8 GCM Self Test
	6.3.1.9 CCM Self Test
	6.3.1.10 XTS Self Test
	6.3.1.11 Signature Algorithm Tests
	6.3.12 ECDH Self Tests

	6.3.2 Conditional self tests.
	6.3.2.1 Pairwise consistency Test
	6.3.2.2 Continuous PRNG Test

	6.4 ECDH
	6.5 ECC and the NSA Sublicense
	6.6 The "Secure Installation" Issue
	6.6.1 What Won't Work
	6.6.2 What Might Work
	6.6.3 Still Confused?

	6.7 GMAC
	6.7.1 CAVP Action
	6.7.2 Options for Addressing
	6.7.3 Practical Impact

	6.8 DH
	6.9 DSA
	6.10 CCM

	7. REFERENCES
	Appendix A OpenSSL Distribution Signing Keys
	OpenSSL Core Team PGP Keys

	Appendix B CMVP Test Procedure
	B.1 Building the Software - Linux/Unix
	B.2 Algorithm Tests - Linux/Unix
	B.3 Building the Software - Windows
	B.4 Algorithm Tests - Windows
	B.5 FIPS 140-2 Test - All Platforms
	B.6 Testvector Data Files and the fipsalgtest.pl Utility
	B.6 Documentation

	Appendix C Example OpenSSL Based Application
	C.1 Native Compilation of Statically Linked Program
	Makefile
	Source File

	C.2 Cross-compilation of "FIPS capable" Shared OpenSSL Libraries

	Appendix D FIPS API Documentation
	D.1 FIPS Mode
	D.2 FIPS_mode_set(), FIPS_selftest()
	D.3 FIPS_mode()
	D.4 Error Codes

	Appendix E Platform Specific Notes
	E.1 Apple OS X Support
	E.2 Apple iOS Support
	Acquire Required Files
	Build the Incore Utility
	Build the FIPS Object Module
	Build the FIPS Capable Library
	OpenSSL Xcode Application

	E.3 Windows CE Support
	Appendix F Restrictions on the Export of Cryptography
	F.1 Open Source Software
	F.2 “Export Jobs, Not Crypto”

	APPENDIX G Security Policy Errata
	Appendix H DTR Analysis
	Appendix I API Entry Points by Source File

