
 
  

OpenSSL FIPS
Object Module

Version 1.2
By the

Open Source Software Institute
http://www.oss-institute.org/

OpenSSL FIPS 140-2 User Guide
June 25, 2012

http://openssl.org/
http://www.oss-institute.org/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Copyright Notice

Copyright © 2003-2012 the OpenSSL Software Foundation. 

This document may be freely reproduced in whole or part without permission and without 
restriction.

Sponsored by

U.S. Department of Defense
Offices of Advanced Systems and Concepts

Open Technology Development Program

Page 2 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Acknowledgments

The Open Source Software Institute (OSSI) serves as the "vendor" for this validation.  Project management 
coordination for this effort was provided by:

Steve Marquess +1 877-673-6775
The OpenSSL Software Foundation marquess@opensslfoundation.com
1829 Mount Ephraim Road
Adamstown, MD  21710
USA

John Weathersby 601-427-0152 office/601-818-7161 cell
Executive Director jmw@oss-institute.org
Open Source Software Institute 601-427-0156 fax
8 Woodstone Plaza
Ste. 101
Hattiesburg, MS  39402 http://oss-institute.org/
USA

with technical work by:

Stephen Henson
4 Monaco Place, shenson@drh-consultancy.co.uk
Westlands, Newcastle-under-Lyme
Staffordshire. ST5 2QT.
England, United Kingdom http://www.drh-consultancy.co.uk/

in coordination with

Andy Polyakov
Chalmers University of Technology appro@fy.chalmers.se 
SE-412 96 Gothenburg 
Sweden

Tim Hudson             +61 7 3103 0321 
P.O. Box 6389          tjh@cryptsoft.com 
Fairfield Gardens 4103 
Australia              http://www.cryptsoft.com/ 
ACN 074 537 821 

and the OpenSSL Team at www.openssl.org. 

Validation testing relating to this software was performed by The DOMUS IT Security Laboratory...

Christian Brych 613-726-5091 office
FIPS 140 Program Manager 613-867-1241 cell
DOMUS IT Security Laboratory cbrych@domusitsl.com
400 March Road, Suite 190 http://www.domusitsl.com/
Kanata, Ontario
Canada, K2K 3H4

...and by Aspect Labs, a division of BKP Security, Inc.:

Page 3 of 79
FIPS 140-2 User Guide

http://www.domusitsl.com/
mailto:cbrych@nuvo.com
file:///FIPS140_Object_Module/Docs/SecurityPolicy/Released/www.openssl.org
http://www.drh-consultancy.co.uk/
mailto:shenson@drh-consultancy.co.uk
http://oss-institute.org/
mailto:jmw@oss-institute.org
mailto:marquess@opensslfoundation.com


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Aspect Labs 888-347-7140
3080 Olcott Street, Suite 110-A info@aspectlabs.com
Santa Clara, CA 95054-3221 http://www.aspectlabs.com/
USA

Page 4 of 79
FIPS 140-2 User Guide

http://www.aspectlabs.com/
mailto:info@aspectlabs.com


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Revision History

This document will be revised over time as new information becomes available; check
http://www.openssl.org/docs/fips/  for the latest version.  Suggestions for additions, corrections, or 
improvement are welcome.

Date Description

2012-06-25 Document new Apple iOS and OS X support
2009-11-21 Extensive changes to cover the uClinux change letter update and incorporate 

numerous editorial suggestions from Tim Hudson.
2009-10-25 Removed superfluous and confusing footnote in section 4.2.2 and correction to 

command line in section 4.2.1, reported by Patrick Rael; updated contact info in 
section 6.

2009-10-22 Updated acknowledgments contact info; added announcement URL to section 1; 
correction in 5.5 para 3, reported by Henry Unger and Patrick Rael

2009-05-08 Several corrections in Appendix B.
2009-04-25 Corrected typos in 2.4, reported by Steve Weymann.
2009-04-18 Added discussion of new fipsalgtest.pl to Appendix B.
2009-01-11 Fix references to allowed buildtime options in 4.2, more error coded in Appendix D.
2008-12-17 Fix error in Example 5.2b.
2008-12-07 Multiple corrections from initial draft release.
2008-09-26 Finalized draft at validation award for initial release.
2008-02-29 Incorporated extensive input from a detailed review by Conrad G. Welling.
2007-09-22 Initial draft for openssl-fips-1.2.tar.gz.

Page 5 of 79
FIPS 140-2 User Guide

http://www.openssl.org/docs/fips/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Table of Contents

1. INTRODUCTION.........................................................................................................................8

2. BACKGROUND............................................................................................................................9

2.1 TERMINOLOGY...............................................................................................................................9
2.2 THE FIPS MODULE AND INTEGRITY TEST......................................................................................11
2.3 THE FIPS INTEGRITY TEST...........................................................................................................11

2.3.1 Requirement for Exclusive Integrity Test.........................................................................12
2.3.2 Requirement for Fixed Object Code Order......................................................................12

2.4 THE FILE INTEGRITY CHAIN..........................................................................................................13
2.4.1 Source File (Build Time) Integrity...................................................................................13
2.4.2 Object Module (Link Time) Integrity................................................................................13
2.4.3 Application Executable Object (Run Time) Integrity.......................................................14

2.5 RELATIONSHIP TO THE OPENSSL API............................................................................................14
2.6 FIPS MODE OF OPERATION..........................................................................................................15

2.6.1 Initialization.....................................................................................................................16
2.6.2 Algorithms Available in FIPS Mode................................................................................16

3. COMPATIBLE PLATFORMS..................................................................................................18

3.1 BUILD ENVIRONMENT REQUIREMENTS.............................................................................................18
3.2 KNOWN SUPPORTED PLATFORMS....................................................................................................19

3.2.1 Code Paths and Command Sets........................................................................................20
3.2.2 Assembler Optimizations..................................................................................................21
3.2.3 32 versus 64 Bit Architectures..........................................................................................22

4. GENERATING THE FIPS OBJECT MODULE.....................................................................23

4.1 DELIVERY OF SOURCE CODE.........................................................................................................23
4.1.1 Creation of a FIPS Object Module from Other Source Code..........................................23
4.1.2 Verifying Integrity of Distribution....................................................................................23
4.1.3 Verifying Integrity of the Full Distribution for the FIPS Object Module........................26

4.2 BUILDING AND INSTALLING THE FIPS OBJECT MODULE WITH OPENSSL (UNIX/LINUX)......................26
4.2.1 Building the FIPS Object Module from Source................................................................26
4.2.2 Installing and Protecting the FIPS Object Module..........................................................27
4.2.3 Building a FIPS Capable OpenSSL..................................................................................28

4.3 BUILDING AND INSTALLING THE FIPS OBJECT MODULE WITH OPENSSL (WINDOWS)..........................29
4.3.1 Building the FIPS Object Module from Source................................................................29
4.3.2 Installing and Protecting the FIPS Object Module..........................................................29
4.3.3 Building a FIPS Capable OpenSSL..................................................................................30

5. CREATING APPLICATIONS WHICH REFERENCE THE FIPS OBJECT MODULE. .32

5.1 EXCLUSIVE USE OF THE FIPS OBJECT MODULE FOR CRYPTOGRAPHY.................................................32
5.2 FIPS MODE INITIALIZATION.........................................................................................................32

Page 6 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

5.3 GENERATE APPLICATION EXECUTABLE OBJECT................................................................................34
5.3.1 Linking under Unix/Linux................................................................................................34
5.3.2 Linking under Windows....................................................................................................36

5.4 APPLICATION IMPLEMENTATION RECOMMENDATIONS.........................................................................37
5.5 DOCUMENTATION AND RECORD-KEEPING RECOMMENDATIONS............................................................38
5.6 WHEN IS A SEPARATE FIPS 140-2 VALIDATION REQUIRED?............................................................39

6. FUTURE PLANS.........................................................................................................................43

7. REFERENCES............................................................................................................................45

APPENDIX A OPENSSL DISTRIBUTION SIGNING KEYS...................................................46

APPENDIX B CMVP TEST PROCEDURE................................................................................47

B.1 BUILDING THE SOFTWARE - LINUX/UNIX........................................................................................47
B.2 ALGORITHM TESTS - LINUX/UNIX.................................................................................................47
B.3 BUILDING THE SOFTWARE - WINDOWS...........................................................................................49
B.4 ALGORITHM TESTS - WINDOWS.....................................................................................................49
B.5 FIPS 140-2 TEST - ALL PLATFORMS...........................................................................................50
B.6 TESTVECTOR DATA FILES AND THE MKFIPSSCR.PL UTILITY................................................................51
B.7 FILES FOR A RUNTIME VALIDATION...............................................................................................57
B.8 RETROFITTING THE FIPSALGTEST.PL UTILITY....................................................................................58

APPENDIX C  EXAMPLE OPENSSL BASED APPLICATION..............................................61

APPENDIX D FIPS API DOCUMENTATION...........................................................................64

D.1 FIPS_MODE...............................................................................................................................64
D.2 FIPS_MODE_SET(), FIPS_SELFTEST()..........................................................................................65
D.3 ERROR CODES............................................................................................................................65

APPENDIX E PLATFORM SPECIFIC NOTES.........................................................................67

E.0 NOMENCLATURE FOR ABIS:.........................................................................................................67
E.1 COMPILER PLACEMENT OF READ-ONLY DATA....................................................................................69
E.2 BUGS IN MICROSOFT TLS IMPLEMENTATION...................................................................................70
E.3 SOLARIS AND GCC PROBLEMS........................................................................................................71
E.5 HP-UX VENDOR SUPPORT..........................................................................................................72
E.6 APPLE OS X SUPPORT................................................................................................................72
E.7 APPLE IOS SUPPORT...................................................................................................................74

APPENDIX F RESTRICTIONS ON THE EXPORT OF CRYPTOGRAPHY........................77

F.1 OPEN SOURCE SOFTWARE.............................................................................................................77
F.2 “EXPORT JOBS, NOT CRYPTO”......................................................................................................78

APPENDIX G  SECURITY POLICY ERRATA.........................................................................79

Page 7 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

1. Introduction

This document is a guide to the use of the OpenSSL FIPS Object Module, a software component 
intended for use with the OpenSSL product.  It is a companion document to the OpenSSL FIPS 
140-2 Security Policy document submitted to NIST as part of the FIPS 140-2 validation process.  It 
is intended as a technical reference for developers using, and system administrators installing, the 
OpenSSL FIPS software, for use in risk assessment reviews by security auditors, and as a summary 
and overview for program managers.  It is intended as a guide for annotation and more detailed 
explanation of the Security Policy, and not as a replacement.  In the event of a perceived conflict or 
inconsistency between this document and the Security Policy the latter document is authoritative as 
only it has been reviewed and approved by the Cryptographic Module Validation Program 
(CMVP), a joint U.S. - Canadian program for the validation of cryptographic products 
(http://csrc.nist.gov/cryptval/)

Familiarity with the OpenSSL distribution and library API (Application Programming Interface) is 
assumed.  This document is not a tutorial on the use of OpenSSL and it only covers issues specific 
to the FIPS 140-2 validation.  For more information on the use of OpenSSL in general see the many 
other sources of information such as http://openssl.org/docs/ and Network Security with OpenSSL ( 
Reference 4).

The Security Policy document (Reference 1)  is available online at the NIST Cryptographic Module 
Validation website, http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf.

For more information on OSSI see http://www.oss-institute.org/.  For more information on the 
OpenSSL project see http://openssl.org/.  For more information on NIST and the cryptographic 
module validation program, see http://csrc.nist.gov/cryptval/.

For information and announcements regarding current and future OpenSSL related validations see 
http://openssl.org/docs/fips/fipsnotes.html.

Page 8 of 79
FIPS 140-2 User Guide

http://openssl.org/docs/fips/fipsnotes.html
http://csrc.nist.gov/cryptval/
http://openssl.org/
http://www.oss-institute.org/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://openssl.org/docs/
http://csrc.nist.gov/cryptval/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

2. Background

For the purposes of FIPS 140-2 validation the OpenSSL FIPS Object Module v1.2 is defined as a 
specific discrete unit of binary object code (the “FIPS Object Module”) generated from a specific 
set and revision level of source files embedded within a source distribution.  These platform 
portable source files are compiled to create this object code in an isolated and separated form that is 
used to provide a cryptographic API (Application Programming Interface) to external applications. 
The term FIPS Object Module elsewhere in this document refers to this OpenSSL FIPS Object  
Module object code.

The FIPS Object Module provides an API for invocation of FIPS approved cryptographic functions 
from calling applications, and is designed for use in conjunction with standard OpenSSL 0.9.8 
distributions beginning with 0.9.8j. Note: OpenSSL 1.0.0 is not supported for use with the 
OpenSSL FIPS Object Module.  These standard OpenSSL 0.9.8 source distributions support the 
original non-FIPS API as well as a FIPS mode in which the FIPS approved algorithms are 
implemented by the FIPS Object Module and non-FIPS approved algorithms other than DH are 
disabled by default.  These non-validated algorithms include, but are not limited to, Blowfish, 
CAST, IDEA, RC-family, and non-SHA message digest and other algorithms.  

The FIPS Object Module was designed and implemented to meet FIPS 140-2 requirements. As 
such, there are no special steps required to ensure FIPS 140-2 compliant operation of the FIPS 
Object Module, other than building, loading, and initializing the FIPS approved and HMAC-SHA-1 
digest verified source code.  This process of generating the  application executable object from 
source code for all supported platforms1  is documented in detail in sections 4 and 5 .

The FIPS Object Module provides confidentiality, integrity and message digest services. The FIPS 
Object Module  supports the following algorithms: Triple DES, AES, RSA (for digital signatures), 
DH, DSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, and HMAC-SHA-1, HMAC-SHA-
224, HMAC-SHA_256, HMAC-SHA-384, HMAC-SHA-512.  The FIPS Object Module supports 
an ANSI X9.31 compliant pseudo-random number generator.

2.1 Terminology

During the course of the OpenSSL validation it became clear that a mapping between the 
tterminology used by the OpenSSL developers and cryptographers  and that of the CMVP and FIPS 
140-2 specialists.  In this section some of these distinctions are discussed.

Approved Mode

1By definition, for all platforms to which the validation can be extended.  Per the requirements of the Security Policy, 
any change to the documented build process renders the result non-FIPS approved

Page 9 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

The FIPS 140-2 Approved Mode of Operation is the operation of the FIPS Object Module when all 
requirements of the Security Policy have been met and the software has successfully performed the 
power-up and self test operation (invocation of the FIPS_mode_set() function call).  In this 
document this Approved Mode is referred to simply as FIPS mode.

Crypto   Officer  

System administrator.  The FIPS 140-2 Crypto Officer3 is the person having the responsibility and 
access privileges to install, configure, and initialize the cryptographic software.

HMAC-SHA-1 digest

A HMAC-SHA-1 digest of a file using a specific HMAC key (the ASCII string 
“etaonrishdlcupfm”).  Such digests are referred to in this document as “digests” or 
“fingerprints”.  The digests are used for integrity checking to verify that the software in question 
has not been modified or corrupted from the form originally used as the basis of the FIPS 140-2 
validation.

Note that the PGP or GPG signatures traditionally used to check the integrity of open source 
software distributions are not a component of any of the FIPS 140-2 integrity checks.

Module

The concept of the cryptographic module is an important one for FIPS 140-2, with subtle nuances . 
In the context of FIPS 140-2 “cryptographic module” is often referred to simply as “module”.  That 
term is capitalized in this document as a reminder that it has a somewhat different meaning than 
assumed by software developers outside of a FIPS 1340-2 context.

Conceptually the Module is the binary object code and data in the FIPS Object Module for a 
running process.  This binary object as it resides in memory is verified by the FIPS integrity test.

Note that traditionally the executable (or shared library) file on disk corresponding to this Module 
as a running process is also considered by the CMVP to be a Module4; an integrity check of the 
entire executable file on disk prior to memory mapping is considered acceptable as long as that 
executable file does not contain any extraneous5 software.  In this traditional case the specific 
executable file is submitted for testing and thus the precise content (as a bit string) is known in 
advance.

3The term “Officer” does not imply a requirement for a military or government official, although some military or 
government organizations may choose to restrict the performance of this system administration  role to certain official 
capacities.
4Presumably because the transformations of the disk resident file contents performed by the runtime loader are 
considered to be well understood and sufficiently minimal.
5The definition of what constitutes “extraneous” is not formally specified and subject to interpretation.

Page 10 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

In the case of the FIPS Object Module only source code is submitted for validation testing, so the 
bit string value of the binary object code in memory cannot be known in advance.  A chain  of 
checks beginning with the source code and continuing with each step in the transformation of that 
source code into a running process is established to provide the equivalent check to that used by 
more traditional object based validations.

The chain of checks works backwards from the software as resident in memory for a process  to the 
executable program file from which the process was created (the existing precedent), then to the 
FIPS Object Module used to link the program file, and finally to the original source files used to 
create the FIPS Object Module.  Each of those stages can be thought of as antecedents of the 
Module, and the integrity of each needs to be verified to assure the integrity of the Module.

2.2 The FIPS Module and Integrity Test

The FIPS Object Module is generated in binary file form, with an embedded pre-calculated 
HMAC-SHA-1 digest covering the module6 as it is loaded into application address space.  The 
Module integrity check consists of recalculating that digest from the memory areas and comparing 
it to the embedded value which necessarily resides in an area not included in the calculated digest7. 
This “in-core hashing” integrity test is designed to be both executable format independent and fail-
safe.

For this scenario the Module is the text and data segments as mapped into memory for the running 
application.

The term Module is also used, less accurately, to designate the antecedent of that memory mapped 
code and data, the FIPS Object Module file residing on disk.

The FIPS Object Module is generated from source code, so the integrity of that source must also be 
verified.  The single runtime digest check typical of pre-built binary files is replaced by a chain of 
digest checks in order to validate that the running code was in fact generated from the original 
source code.  As before the term Module properly designates the text and data segments mapped 
into memory, but is also more loosely used to reference several levels of antecedents.  These levels 
are discussed below.

2.3 The FIPS Integrity Test

The FIPS 140-2 standard requires an integrity test of the Module to verify its integrity at 
initialization.  In addition to the  requirement that the integrity test validate that the FIPS Object 

6Specifically, the text and read-only data segments which constitute the initialized components of the module.
7If the digest value resided in the data area included in the calculation of that digest, the calculated value of the digest 
would itself be an input into that calculation.

Page 11 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Module code and data have not changed, two additional implicit requirements for the integrity test 
were identified during the validation process.

2.3.1 Requirement for Exclusive Integrity Test

An integrity test that is merely guaranteed to fail if any of the cryptographic module software 
changes is not sufficient.  It is also necessary that the integrity test not fail if the cryptographic 
module software is not directly corrupted, even though the application referencing the 
cryptographic module may be damaged with unpredictable consequences for the correct 
functioning of that application.  Another way of looking at this is that as application failures are out 
of scope of the integrity test there needs to be some level of assurance that changes to application 
software not affect the cryptographic module integrity test8.

This requirement is met with an in-core integrity test that carefully excludes any extraneous object 
code from the digest calculation and verification.

2.3.2 Requirement for Fixed Object Code Order

The relative order of all object code components within the module must be fixed and invariant. 
The usual linking process does not care about the relative order of individual object modules, e.g. 
both

gcc -o runfile alpha.o beta.o gamma.o

and

gcc -o runfile beta.o alpha.o gamma.o

produce functionally identical executable files.  Likewise, the order of object modules in a static 
link library is irrelevant:

ar r libxxx.a alpha.o beta.o gamma.o

and

ar r libxxx.a beta.o alpha.o gamma.o

produce interchangeable link libraries, and a given application may not incorporate all of the object 
modules contained with the link library when resolving references.  For the FIPS Object Module it 
was required that any such omission or rearrangement of the Module object modules during the 
application creation process not occur.  This requirement is satisfied by simply compiling all the 
source code into a single monolithic object module:

ld -r -o fipscanister.o fips_start.o ... fips_end.o

8This assurance was given by showing during testing that corruption of code or data outside of the memory area 
containing the FIPS Object Module did not result in an integrity test failure.

Page 12 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

with all the object modules between the fips_start.o and fips_end.o modules that define the 
low and high boundaries of a monolithic object module.  All subsequent reference to this 
monolithic object module will preserve the relative order, and presence, of the original object code 
components.

2.4 The File Integrity Chain

Most validated products consisting of a pre-built binary executable implement the module integrity 
check as a digest check over portions of that executable file or the corresponding memory mapped 
image.  For the FIPS Object Module the module integrity check instead takes the form of a chain of 
digest checks beginning with the source files used for the CMVP validation testing.  Note that 
while this chain of checks is more complex, it provides much more visibility for independent 
verification.  In the case of validated pre-built binary executables neither the FIPS 140-2 CMVP 
test lab nor the end user has an independent means of directly verifying that the vendor supplied 
software is actually derived from the validated code.  With the FIPS Object Module the prospective 
user can independently verify that the runtime executable does indeed directly derive from the same 
source that was the basis of the validation.

2.4.1 Source File (Build Time) Integrity

“Build time” is when the FIPS Object Module is created from the OpenSSL FIPS source 
distribution, in accordance with the Security Policy.

The first file integrity check occurs at build time when the HMAC-SHA-1 digest of the distribution 
file is calculated and compared to the stored value published in the Security Policy (Appendix B).

Because the source files reside in this specific distribution and cannot be modified these source 
files are referred to as sequestered files.

Note that a means to calculate the HMAC-SHA-1 digest is required in order to perform this 
integrity check.  A “bootstrap” standalone HMAC-SHA-1 utility, fips_standalone_sha1, is 
included in the distribution.  This utility is generated first before the sequestered files are compiled 
in order to perform the integrity check.  Appendix C gives an example of an equivalent utility.

2.4.2 Object Module (Link Time) Integrity

“Link time” is when the application is linked with the previously built and installed FIPS Object 
Module to generate an executable program.

The build process described in the Security Policy results in the creation of an object module, 
fipscanister.o, and a matching digest file, fipscanister.o.sha1.  This FIPS Object 

Page 13 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Module contains the object code corresponding to the sequestered source files (object code for 
FIPS specific functions such as FIPS_mode_set() and for the algorithm implementations).

The link time integrity check occurs when the FIPS Object Module is used to create an application 
executable object (binary executable or shared library).  The digest stored in the installed file 
fipscanister.o.sha1 must match the digest calculated for the fipscanister.o file.

2.4.3 Application Executable Object (Run Time) Integrity

Application “run time” occurs when the previously built and installed application program is 
invoked.  Unlike the previous step this invocation is usually performed repeatedly.

The runtime integrity check occurs when the application attempts to enable FIPS mode via the 
FIPS_mode_set() function call.  The digest embedded within the object code from 
fipscanister.o must match the digest calculated for the memory mapped text and data areas.

2.5 Relationship to the OpenSSL API

The FIPS Object Module is designed for use with the OpenSSL API.  Applications linked with the 
FIPS Object Module and with the separate OpenSSL libraries can use both the FIPS validated 
cryptographic functions of the FIPS Object Module and the high level functions of OpenSSL.

First, some important definitions to avoid confusion.  The FIPS Object Module is the special 
monolithic object module built from the special source distribution identified in the Security Policy. 
It is not the same as the OpenSSL product or any specific official OpenSSL distribution release.

A version of the OpenSSL product that is suitable for reference by an application along with the 
FIPS Object Module is a FIPS compatible OpenSSL.

When the FIPS Object Module and a FIPS compatible OpenSSL are separately built and installed 
on a system, the combination is referred to as a FIPS capable OpenSSL.

Summary of definitions

The FIPS Object Module is the FIPS 140-2 validated module described in the Security Policy

A FIPS compatible OpenSSL is a version of the OpenSSL product that is designed for compatibility with 
the FIPS Object Module API

A FIPS capable OpenSSL is the combination of the separately installed FIPS Object Module  along with a 
FIPS compatible OpenSSL.

Table 2.5

Page 14 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

The OpenSSL libraries, when built from a standard OpenSSL distribution with the “fips” 
configuration option for use with the FIPS Object Module, will contain the usual non-FIPS 
algorithms and non-cryptographic supporting functions, and the non-FIPS algorithm disabling 
restrictions.

Note the object modules comprising the FIPS Object Module could easily be incorporated directly 
in the OpenSSL libcrypto.a library, but for the fact that such a combination (linking to a static 
library) is specifically forbidden by FIPS 140-2 and the CMVP9.

Various non-FIPS algorithms such as Blowfish, IDEA, CAST, MD2, etc. will be included in the 
OpenSSL libraries (depending on the ./config options specified in addition to fips).  For 
applications that do not care about FIPS 140-2 the resulting libraries are drop-in compatible with 
the libraries generated without the fips option (a deliberate design decision to encourage wider 
availability and use of FIPS 140-2 validated algorithms).  The converse is not true; a non-FIPS 
compatible OpenSSL library cannot be substituted for the FIPS compatible library for an 
application using FIPS mode because the FIPS specific function calls, in particular 
FIPS_mode_set(), will not be present.

Applications that do wish to use FIPS mode must call the FIPS_mode_set() function, and after 
the runtime FIPS mode initialization the non-FIPS algorithms are disabled by default.

In this sense the combination of the FIPS Object Module and the usual OpenSSL libraries 
constitutes a “FIPS capable API”, capable of being used for either FIPS mode operation or for 
conventional non-FIPS purposes as before.

2.6 FIPS Mode of Operation

The FIPS Object Module together with a compatible version of the OpenSSL product can be used 
in the generation of both FIPS mode and conventional applications.  The enabling of runtime FIPS 
mode is  explicitly performed by a function call.

9Actually, to encourage use of fipscanister.o even in non-FIPS mode application, a copy is incorporated into 
libcrypto.a, but special care is taken to preclude its usage in FIPS enabled applications.  The fipsld utility 
provided in the FIPS compatible OpenSSL distributions prevents that usage as follows.  In static link context that is 
achieved by referencing the official fipscanister.o first on the command line., and in dynamic link context by 
temporarily removing it from libcrypto.a.  This removal is necessary because dynamic linking is commonly 
accompanied by –whole-archive, which would force both copies of fipscanister.o into the shared library. 
Note the integrity check is designed as a failsafe precaution in the event of link errors -- even if two copies are 
included into the application in error, the integrity check will prevent the use of one copy for the integrity test and the 
other for the actual implementation of cryptography.  In other words, if both the official fipscanister.o and the 
unvalidated version that is embedded in libcrypto.a both end up in an executable binary, and if 
FIPS_mode_set() returns success, the unvalidated copy will not be used for cryptography.

Page 15 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

2.6.1 Initialization

Only one initialization call, FIPS_mode_set(), is required to operate the FIPS Object Module 
in a FIPS 140-2 Approved mode, referred to herein as "FIPS mode".  When the FIPS Object 
Module is in FIPS mode all security functions and cryptographic algorithms are performed in 
Approved mode.  Use of the FIPS_mode_set() function call is described in §5.

A power-up self-test is performed automatically by the FIPS_mode_set() call, or optionally at 
any time by the FIPS_selftest() call (see Appendix D).  If any power-up self-test fails the 
internal global error flag FIPS_selftest_fail is set and subsequently tested to prevent 
invocation of any cryptographic function calls.

The internal global flag FIPS_mode is set to FALSE indicating non-FIPS mode by default.  The 
FIPS_mode_set() function verifies the integrity of the runtime executable using a HMAC-
SHA-1 digest computed at build time.  If the digests match the power-up self-test is then 
performed.  If the power-up self-test is successful FIPS_mode_set() sets the FIPS_mode flag 
to TRUE and the FIPS Object Module is in FIPS mode.

2.6.2 Algorithms Available in FIPS Mode

Only the algorithms listed in table 4.5a of the Security Policy are allowed in FIPS mode.  Note that 
Diffie-Hellman and RSA are allowed in FIPS mode for key agreement and key establishment even 
though they are “Non-Approved” for that purpose.  RSA for sign and verify is “Approved” and 
hence also allowed, along with all the other Approved algorithms listed in that table.

By design, the OpenSSL API attempts to disable non-FIPS algorithms, when in FIPS mode, at the 
EVP level and via most low level function calls.  Failure to check the return code from low level 
functions could result in unexpected behavior.  Note also that sufficiently creative or unusual use of 
the API may still allow the use of non-FIPS algorithms.  The non-FIPS algorithm disabling is 
intended as a aid to the developer in preventing the accidental use of non-FIPS algorithms in FIPS 
mode, and not as an absolute guarantee. It is the responsibility of the application developer to 
ensure that no non-FIPS algorithms are used when in FIPS mode.

OpenSSL provides a mechanism, the "ENGINE" component, for interfacing with external 
cryptographic devices such as accelerator cards.  This mechanism is not disabled in FIPS mode.  In 
general, if a FIPS validated cryptographic device is used with OpenSSL in FIPS mode so that all 
cryptographic operations are performed either by the device or the FIPS Object Module, then the 
result is still FIPS compliant.  In general, the OpenSSL FIPS 140-2 validation still holds true in the 
case that other separately FIPS 140-2 validated hardware or software modules are utilized in 
conjunction with the OpenSSL FIPS validated cryptographic module.

Page 16 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

However, if any cryptographic operations are performed by a non-FIPS validated device the result 
is not FIPS compliant.  It is the responsibility of the application developer to ensure that any use of 
devices via the OpenSSL ENGINE support are for FIPS validated devices only (when in FIPS 
mode).

Page 17 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

3. Compatible Platforms

The FIPS Object Module was built from source and tested on specific hardware/software 
environments (See the Security Policy) .  The FIPS Object Module maintains vendor affirmed FIPS 
140-2 compliance on other operating systems provided that the conditions described in Section 4 of 
the Security Policy apply.

The FIPS Object Module is designed to run on a wide range of hardware and software platforms. 
Any such computing platform that meets the conditions in the Security Policy can be used to host a 
FIPS 140-2 validated FIPS Object Module provided that module is generated in accordance with 
the Security Policy.  At the time the OpenSSL FIPS Object Module v 1.2 was developed all Unix®10-
like environments supported by the full OpenSSL distribution were also supported by the FIPS 
validated source files included in the FIPS Object Module.  However, successful compilation of the 
FIPS Object Module for all such platforms was not verified.  If any platform specific compilation 
errors occur that can only be corrected by modification of the FIPS distribution files  (see Appendix 
B of the Security Policy) then the FIPS Object Module will not be validated for that platform  Note 
also that future releases of OpenSSL may support additional platforms requiring new or changed 
source from that of the current FIPS source distribution, in which case use of OpenSSL with the 
FIPS Object Module will not be validated for those new platforms.

By default, the FIPS Object Module software utilizes assembly language optimizations for some 
supported platforms.  Currently assembler language code residing within the cryptographic module 
boundary is used only for the x86/Intel® 11 ELF machine architecture.  The FIPS Object Module 
build process will automatically select and include these assembly routines by default when 
performed on a x86 platform.  This assembly language code was included in the validation testing 
and hence a FIPS Object Module built using the x86/Intel® assembly language routines is a FIPS 
140-2 validated FIPS Object Module.

3.1 Build Environment Requirements

The platform portability of the FIPS Object Module source code is contingent on several basic 
assumptions about the build environment:

1. The environment is either a) “Unix®-like” with a make command and a ld command with 
a “-r” (or “-i”) option, or Microsoft Windows.

Creation of the monolithic FIPS Object Module fipscanister.o requires a linker 
capable of merging several object modules into one.  This requirement is known to be a 
problem with VMS and some older versions of LD.EXE under Windows®.

10UNIX is a registered trademark of The Open Group
11Intel is a registered trademark of the Intel Corporation

Page 18 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

2. The compiler is required to place variables declared with the const qualifier in a read-only 
segment.  This behavior is true of almost all modern compilers.  If the compiler fails to do 
so the condition will be detected at run-time and the in-core hashing integrity check will 
fail.  

3. The platform supports execution of compiled code on the build system (i.e. build host and 
target are binary compatible); or the patch openss fips1.2.crossbuild.diff.gz as noted in the 
Security Policy is applied and build option “U2” is used for cross-compilation support 
where the in core hash is calculated on the build host.

3.2 Known Supported Platforms

The generation of a monolithic object module and the in-core hashing integrity test have been 
verified to work with both static and shared builds on the following platforms (note the ./config 
“shared” option is forbidden by the terms of the validation when building a FIPS validated 
module, but the fipscanister.o object module can be used in a shared library12).  Note a 
successful build of the FIPS module may be possible on other platforms; only the following were 
explicitly tested as of the date this document was written:

● Linux®13 on x86, x86_64, IA64 
● SPARC® Solaris®14, both 32 and 64 bit ABIs
● x86 Solaris® on 32 and 64 bit ABIs
● IRIX®15 6.5, n32, and 64-bit ABIs
● Tru64®16

● HP-UX®17, 32 and 64 bit PA-RISC®, 32 and 64 bit IA64
● Mac OS X®18 on PowerPC®19

● Windows®20 with Cygwin®21 and Mingw

12A convenient way of generating a chared library containing fipscanister.o is discussed in Appendix B
13Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
14SPARC and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other 
countries.
15IRIX is a trademark of Silicon Graphics, Inc.
16Tru64 is a registered trademark of Compaq Computer Corporation.
17HP-UX is a registered trademark of Hewlett-Packard Company.
18Mac OS X is a registered trademark of Apple Computer, Inc.
19PowerPC is a trademarks of International Business Machines Corporation in the United States, other countries, or 
both.
20Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
21Cygwin is a registered trademark of Red Hat, Inc.

Page 19 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

● OpenBSD®22 and FreeBSD®23 on x86
● uClinux®24 on ARM

Among the platforms known to not be supported are VMS25 and Windows CE.

3.2.1 Code Paths and Command Sets

For the purposes of the validation testing a “platform” is a unique combination of source code and 
the specific build-time options used to turn that source code into binary code.  The build-time 
inclusion of assembler optimizations effectively changes the source code, and source code 
selections vary based on the target architecture word size of 32 or 64 bits.

Due to budget and schedule constraints only the assembler optimizations for x86 and x86_64 were 
tested, so only those optimizations are available for building the FIPS Object Module.  Four 
separate sets of source code were identified to cover plain C (no assembler) for both 32 and 64 bits, 
and optimizations for x86 and x86_64.

Even though the same source code is used for both Linux/Unix and Windows operating systems, 
the most natural build instructions are sufficiently unique to each of the two O/S families that the 
decision was made to test each code path for both O/S families.

The resulting eight test cases can be represented in the following tables:

Code Path Command Set

Linux/Unix Windows

Representative Platform

Linux/Unix Windows

pure C 32 bit U1 W1 u1 w1

pure C 64 bit U2 W2 u1 / w2

x86 assembler U3 W3 u2 w3

x86_64 assembler U4 W4 u2 w4

Table 3.2.1a - Code Paths and Command Sets

where the command sets are

Command Set Name Build Commands

u1 Linux/Unix, pure C ./config fipscanisterbuild no­asm

22OpenBSD is a registered trademark of Theo de Raadt.
23FreeBSD is a registered trademark of the FreeBSD Foundation.
24uClinux is a registered trademark of Arcturus Networks Inc.
25VMS is a registered trademark of Digital Equipment Corporation.

Page 20 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Command Set Name Build Commands
make
make install

u2 Linux/Unix with x86/x86_64 optimizations ./config fipscanisterbuild
make
make install

w1 Windows, pure C ms\do_fips no­asm

w2 Windows with x86/x86_64 optimizations ms\do_fips

u1 Linux/Unix, pure C, cross-compiled ./config fipscanisterbuild
make
make install

3.2.1b - Command Sets

The actual representative systems tested for the validation were:

Generic System Actual System
U1 Linux x86 no­asm Linux.2.6.18_i686_gcc­4.1.2 (OpenSuSE 10.2)

U2 Linux x86­64 no­asm Linux.2.6.20_x86­64_gcc­4.1.2 (F7)

U3 Linux x86 asm Linux.2.6.18_i686_gcc­4.1.2 (OpenSuSE 10.2)

U4 Linux x86­64 asm Linux.2.6.20_x86­64_gcc­4.1.2 (F7)

W1 Windows x86 no­asm WinXP.SP2_i386_MSVC.8.0 no­asm

W2 Windows x64 no­asm WinXP.SP2_x86­64_MSVC.8.0 no­asm

W3 Windows x86 asm WinXP.SP2_i386_MSVC.8.0 NASM, SSE2

W4 Windows x64 asm WinXP.SP2_x86­64_MSVC.8.0

C1 Linux ARM no­asm      Linux.2.4.32­uc0_armv4l gcc­3.4.4 (uCLinux)

Table 3.2.1c - Representative Systems

3.2.2 Assembler Optimizations

The only option for processor architectures other than x86 and x86_64 is to use the pure C 
language implementation and not any of the hand-coded performance optimized assembler as each 
assembler implementation requires separate FIPS testing.  For example, an Itanium or PowerPC 
system can only build and use the pure C language module.

Page 21 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

For x86 or x86_64 processors either the plain C or hand-coded assembler build can be performed, 
though there would be no advantage (from a FIPS perspective) in building the plain C version.

3.2.3 32 versus 64 Bit Architectures

Many 64 bit platforms provide backward compatible support for 32 bit code via hardware or 
software emulation.  Software built on a 32 bit version of a specific operating system will generally 
run as-is on the equivalent 64 bit version of that operating system.  Software built on a 64 bit 
operating system can be either 32 bit or 64 bit code depending on vendor build environment 
defaults and explicit build time options.  Any such 64 bit code will not run on a 32 bit equivalent 
operating system, so care must be taken when compiling code for distribution to both 32 and 64 bit 
systems.

By default the FIPS Object Module build process will generate 64 bit code on 64 bit systems.

Since the command sets included in the validation testing do not permit the explicit specification of 
the compile time options that would otherwise be used to specify the generation of 32 or 64 bit 
code, it may be necessary for some platforms to build a 32 bit FIPS Object Module on a 32 bit 
system, and conversely for 64 bit.

It is also possible on most 64-bit platforms to install a 32-bit build environment which would be 
supported. Details as to how to configure such an environment are out of the scope of this 
document.

3.3 Creation of Shared Libraries

The FIPS Object Module is not directly usable as a shared library, but it can be linked into an 
application that is a shared library.  A “FIPS compatible” OpenSSL distribution will automatically 
incorporate an available FIPS Object Module into the libcrypto shared library when built using 
the fips option (see §4.2.3)

Page 22 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

4. Generating the FIPS Object Module

This section describes the creation of a FIPS Object Module for subsequent use by an application.

4.1 Delivery of Source Code

The OpenSSL FIPS Object Module software is available only in source format.  The specific 
distribution was taken from the FIPS development branch which was a mid-release version of 
OpenSSL after 0.9.8e and before 0.9.8f, .  This specific distribution can be found at 
http://www.openssl.org/source/openssl-fips-1.2.tar.gz.

The OpenSSL FIPS Object Module software was delivered to the FIPS 140-2 testing laboratory in 
source form as this complete OpenSSL distribution, and was built by the testing laboratory using 
the standard build procedure as described in the Security Policy document and reproduced below 
and in Appendix B.

Note this downloaded file is untrusted for any purpose until verified as described in §4.1.2, and 
untrusted for the purposes of building a FIPS Object Module until verified as described in §4.1.3.

Note that while the specific FIPS Object Module Distribution could be used to build the 
conventional OpenSSL libraries in addition to the FIPS Object Module, it should not be used for 
that purpose.  Use of a newer version of OpenSSL (0.9.8.j+) linking against the FIPS module is 
effectively mandatory due to several compilation issues with gcc versions 4.2 which were present 
at the parent 0.9.8e/f baseline and not addressed until later.

4.1.1 Creation of a FIPS Object Module from Other Source Code

Some OpenSSL distributions other than the specific distribution used for the validation can be used 
to build a fipscanister.o object using undocumented build-time options.  The reader is reminded 
that any such object code cannot be used or represented as FIPS 140-2 validated.  The Security 
Policy document is very clear on that point.

4.1.2 Verifying Integrity of Distribution

The integrity and authenticity of the complete OpenSSL distribution should be validated manually 
with the PGP signatures26 published by the OpenSSL Team with the distributions 
(ftp://ftp.openssl.org/source/) to guard against a corrupted source distribution.  Note this check is 
separate and distinct from the specific FIPS 140-2 source file integrity check (§4.1.3).

26Note this PGP/GPG signature check is not related to any of the FIPS integrity checks!

Page 23 of 79
FIPS 140-2 User Guide

ftp://ftp.openssl.org/source/
http://www.openssl.org/source/openssl-fips-1.2.tar.gz


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

The PGP signatures are contained in the file

openssl-fips-1.2.tar.gz.asc

This digital signature of the distribution file can be verified against the OpenSSL PGP public key 
by using the PGP or GPG applications (GPG can be obtained free of charge from 
http://www.gnupg.org/)27.  This validation consists of confirming that the distribution was signed 
by a known trusted key as identified in Appendix A, “OpenSSL Distribution Signing Keys”.

First, find out which key was used to sign the distribution.  Any of  several different valid keys may 
have been be used for this purpose.  The "hexadecimal key id", an identifier used for locating keys 
on the keystore servers, is displayed when attempting to verify the distribution.  If the signing key 
is not already in your keyring the hexadecimal key id of the unknown key will still be displayed:

Example 4.1.2a - Find Id of Signing Key

In this example the key id is 0x49A563D9.  Next see if this key id belongs to one of the OpenSSL 
core team members authorized to sign distributions.  The authorized keys are listed in Appendix A.

Note that some older versions of gpg will not display the key id of an unknown public key; either 
upgrade to a newer version or load all of the authorized keys.

If the hexadecimal key id matches one of the known valid OpenSSL core team keys then download 
and import the key.

PGP keys can be downloaded interactively from a keyserver web interface or directly by the pgp or 
gpg commands.

The hexadecimal key id of the team member key (for example, the search string "0x49A563D9" 
can be used to download the OpenSSL PGP key from a public keyserver 
(http://www.keyserver.net/, http://pgp.mit.edu, or others).  Keys can be downloaded interactively to 
an intermediate file or directly by the pgp or gpg program.

27Note that although PGP and GPG are functionally interoperable, some versions of PGP are currently FIPS 140 
validated and no versions of GPG are.  For the purposes of FIPS 140-2 validation a validated version of PGP must be 
used.  The examples given here are applicable to both GPG and PGP.

Page 24 of 79
FIPS 140-2 User Guide

$ gpg  openssl-0.9.8z.tar.gz.asc
gpg: Signature made Tue Sep 30 09:00:37 2009 using RSA key ID 49A563D9
gpg: Can't check signature: public key not found
$

http://pgp.mit.edu/
http://www.keyserver.net/
http://www.gnupg.org/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Example 4.1.2b - Importing a Key from a Downloaded file

Once downloaded to an intermediate file, markcox.key in this example, the key can be imported 
with the command:

These examples assume the pgp or gpg software is installed.  The key may also be imported 
directly into your keyring:

Example 4.1.2c - PGP Key Import

Note that at this point we have not yet established that the key is authentic or that the distribution 
was signed with that key; a key that might be authentic has been obtained in a form where it can be 
utilized for further validation.

To verify that the distribution file was signed by the imported key use the pgp or gpg command 
with the signature file as the argument, with the distribution file also present in the same directory:

Example 4.1.2d - PGP File Signature Verification

In this example the validity of the file signature with respect to the key is verified, i.e. the target file 
openssl-fips-1.2.tar.gz was signed by the key with id 49A563D9.  The warning message in 

Page 25 of 79
FIPS 140-2 User Guide

$ gpg --keyserver pgp.mit.edu --recv-key 49a563d9
gpg: key 49A563D9: public key "Mark Cox <mjc@redhat.com>" imported
gpg: Total number processed: 1
gpg:               imported: 1  (RSA: 1)

$ gpg --import markcox.key     
gpg: key 49A563D9: public key "Mark Cox <mjc@redhat.com>" imported
gpg: Total number processed: 1
gpg:               imported: 1  (RSA: 1)
$

$ gpg /work/build/openssl/openssl-0.9.8z.tar.gz.asc
gpg: Signature made Tue Sep 30 09:00:37 2009  using RSA key ID 49A563D9
gpg: Good signature from "Mark Cox <mjc@redhat.com>"
gpg:                 aka "Mark Cox <mark@awe.com>"
gpg:                 aka "Mark Cox <mark@c2.net>"
gpg:                 aka "Mark Cox <mcox@c2.net>"
gpg:                 aka "Mark Cox <mark@ukweb.com>"
gpg:                 aka "Mark Cox <mjc@apache.org>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg:          There is no indication that the signature belongs to the owner.
Primary key fingerprint: 7B 79 19 FA 71 6B 87 25  0E 77 21 E5 52 D9 83 BF
$



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

this example is noting the fact that the key is not already part of the "web of trust", a relational 
ranking system based on manually assigned confidence levels.  Instead of relying on the web of 
trust which will differ from one user to another the key should be matched directly to a list of 
known valid keys.

For this final step establish that the signing key, now known to have signed the distribution, is in 
fact authentic.  Confirm that the key fingerprint of the key which signed the distribution, 7B 79 19 
FA 71 6B 87 25  0E 77 21 E5 52 D9 83 BF in this example, is one of the valid OpenSSL core 
team keys listed in Appendix A, “OpenSSL Distribution Signing Keys”.

At this point the signature of the distribution has been verified as belonging to the signing key, and 
the authenticity of the signing key has been verified against a reference (this document) 
downloaded from the NIST web site.

4.1.3 Verifying Integrity of the Full Distribution for the FIPS Object Module

A separate source file integrity check is required to meet the requirements of FIPS 140-2.

The HMAC-SHA-1 digest of the distribution file is published in Appendix B of the Security Policy. 
The Security Policy can be found at NIST, http://csrc.nist.gov/groups/STM/cmvp/documents/140-
1/140sp/140sp1051.pdf.
This digest should be calculated and compared against the published value, as in:

$ env OPENSSL_FIPS=1 openssl sha1 -hmac etaonrishdlcupfm openssl-fips-1.2.tar.gz

where the openssl command is from a recent version of OpenSSL that supports the -hmac 
option28.   If you don't have the openssl command yet it will be generated by the build process.

4.2 Building and Installing the FIPS Object Module with OpenSSL  
(Unix/Linux)

Due to significant differences in the two basic operating system families, Unix®/Linux® and 
Microsoft® Windows® platforms are discussed separately.  Instructions for Windows® are given  in 
§4.3.

4.2.1 Building the FIPS Object Module from Source

Next build the FIPS Object Module from source.  The FIPS 140-2 validation specific code is 
incorporated into the generated FIPS Object Module when the fips configuration option is 
28The OPENSSL_FIPS=1 environment variable will enable FIPS mode for an openssl command built from a FIPS 
capable OpenSSL distribution.

Page 26 of 79
FIPS 140-2 User Guide

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

specified.  Per the conditions of the FIPS 140-2 validation only two configuration commands may 
be used:

./config fipscanisterbuild 
or

./config fipscanisterbuild no-asm

where the specific option used  depends on the platform (see §3.2.1).

The specification of any other options on the command line, such as

./config fipscanisterbuild shared

is  not permitted.  Note that in the case of the “shared” option position independent code is 
generated by default so the generated FIPS Object Module can be included in a shared library29.

Note that as a condition of the FIPS 140-2 validation no other user specified configuration options 
may be specified.  This restriction means that an optional install prefix cannot be specified – 
however, there is no restriction on subsequent manual relocation of the generated files to the 
desired final location.

Then:

make

to generate the FIPS Object Module file  fipscanister.o, the digest for the FIPS Object 
Module file, fipscanister.o.sha1, and the source file used to generate the embedded digest, 
fips_premain.c.  The fipscanister.o, fipscanister.o.sha1, and 
fips_premain.c files are intermediate files (i.e., used in the generation of an application but 
not referenced by that application at runtime).  The  object code in the fipscanister.o file is 
incorporated into the runtime executable application at the time the binary executable is generated.

This should also be obvious, but modifications to any of the intermediate files generated by the 
“./config fipscanisterbuild” or “make” commands are not permitted.  If the original 
distribution is modified, or if anything than those three specified commands are used, or if any 
intermediate files are modified, the result is not FIPS validated.

4.2.2 Installing and Protecting the FIPS Object Module

29If not for the FIPS validation prohibition, on most but not all platforms the “shared” option could safely be chosen 
regardless of the intended use.  See Appendix H for one known exception.

Page 27 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

The system administrator should install the generated fipscanister.o, 
fipscanister.o.sha1, and fips_premain.c files in a location protected by the host 
operating system security features.  These protections should allow write access only to authorized 
system administrators (FIPS 140-2 Crypto Officers) and read access only to authorized users.

For Unix® based or Linux® systems this protection usually takes the form of root ownership and 
permissions of 0755 or less for those files and all parent directories.  When all system users are not 
authorized users the world (public) read and execute permissions should be removed from these 
files.

The usual

make install

will install the fipscanister.o, fipscanister.o.sha1, fips_premain.c, and 
fips_premain.c.sha1 files in the target location (typically /usr/local/ssl/fips-
1.0/lib/  for Unix® based or Linux® systems.) with the appropriate permissions to satisfy the 
security requirement.  These four files constitute the validated FIPS Object Module, the (many) 
other files also installed by this command are not validated.  Note that it is also permissible to 
install these files in other locations by other means, provided that they are protected as noted above:

cp fipscanister.o fipscanister.o.sha1 <target-directory>
cp fips_premain.c fips_premain.c.sha1 <target-directory>

Note that  fipscanister.o can either be statically linked into an application binary executable, 
or statically linked into a shared library. 

4.2.3 Building a FIPS Capable OpenSSL

At this point a full OpenSSL library has been installed.  However, the special distribution required 
to generate the validated FIPS Object Module does not correspond exactly to any official OpenSSL 
releases.  Once the validated FIPS Object Module has been generated the other OpenSSL 
components can be replaced with components from a different OpenSSL distributions.  Any 0.9.8 
releases from j onwards (i.e. 0.9.8j or above) can be used for this purpose. OpenSSL 1.0 is not 
compatible.  The commands

./config fips <...other options...>
make <...options...>
make install

Page 28 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

will install the new OpenSSL without overwriting the validated FIPS Object Module files.  The 
--with-fipslibdir option can be used to explicitly reference the location of the FIPS Object 
Module (fipscanister.o).

The combination of the validated FIPS Object Module plus an OpenSSL distribution built in this 
way is referred to as a FIPS capable OpenSSL, as it can be used either as a drop-in replacement for 
a non-FIPS OpenSSL or for use in generating FIPS mode applications.

Note that a standard OpenSSL distribution built for use with the FIPS Object Module must have the 
./config fips option specified.  Other configuration options may be specified in addition to 
fips, but omission of the fips option will cause errors when using the OpenSSL libraries with 
the FIPS Object Module.

4.3 Building and Installing the FIPS Object Module with OpenSSL  
(Windows)

The build procedure for Windows is similar to that for the regular OpenSSL product, using MSVC 
and NASM for compilation.  Note MASM is not supported.

The second stage uses VC++ to link OpenSSL 0.9.8j or later against the installed FIPS module, to 
obtain the complete FIPS capable OpenSSL.  Both static and shared libraries are supported.

4.3.1 Building the FIPS Object Module from Source

Build the FIPS Object Module from source:

ms\do_fips [no-asm]

where the no-asm option may or may not be present depending on the platform (see §3.2.1).

Note that as a condition of the FIPS 140-2 validation no other user specified configuration options 
may be specified.

4.3.2 Installing and Protecting the FIPS Object Module

The system administrator should install the generated fipscanister.obj, 
fipscanister.obj.sha1, and fips_premain.c files in a location protected by the host 
operating system security features.  These protections should allow write access only to authorized 
system administrators (FIPS 140-2 Crypto Officers) and read access only to authorized users.

Page 29 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

For Microsoft® Windows® based systems this protection can be provided by ACLs limiting write 
access to the administrator group.  When all system users are not authorized users the Everyone 
(public) read and execute permissions should be removed from these files.

4.3.3 Building a FIPS Capable OpenSSL

The final stage is VC++ compilation of a standard OpenSSL distribution to be referenced in 
conjunction with the previously built and installed FIPS Object Module.

Download an OpenSSL 0.9.8 distribution, 0.9.8j or later.  Follow the standard Windows® build 
procedure except that instead of the command:

perl Configure VC-WIN32

do:

perl Configure VC-WIN32 fips --with-fipslibdir=c:\fips\path

where "c:\fips\path" is wherever the FIPS module from the first stage was installed. Static 
and shared library builds are supported.

This command is followed by the usual 

ms\do_nasm

and

nmake -f ms\ntdll.mak

to build the shared libraries only, or

nmake -f ms\nt.mak

to build the OpenSSL static libraries.  The standard OpenSSL build with the fips option will use 
a base address for libeay32.dll of 0xFB00000 by default.  This value was chosen because it 
is unlikely to conflict with other dynamically loaded libraries.  In the event of a clash with another 
dynamically loaded library which will trigger runtime relocation of  libeay32.dll the integrity 
check will fail with the error

FIPS_R_FINGERPRINT_DOES_NOT_MATCH_NONPIC_RELATED

Page 30 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

A base address conflict can be resolved by shuffling the other DLLs or re-compiling OpenSSL with 
an alternative base address specified with the --with-baseaddr= option.  

Note that the developer can identify which DLLs are relocated with the Process Explorer utility 
from http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/ProcessExplorer.mspx. 

The resulting FIPS capable OpenSSL can be used for shared or static linking.  The shared library 
built (when ms\ntdll.mak is used as the Makefile) links fipscanister.o into 
libeay32.dll using fipslink.pl  in accordance with the requirements of the Security  
Policy.

Page 31 of 79
FIPS 140-2 User Guide

http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/ProcessExplorer.mspx
http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/ProcessExplorer.mspx


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

5. Creating Applications Which Reference the FIPS Object 
Module

Only minor modifications are needed to adapt most applications that currently use OpenSSL for 
cryptography to use the FIPS capable OpenSSL with the FIPS Object Module.  This checklist 
summarizes the modifications which are covered in more detail in the following discussion:

Figure 4 - Application Checklist

Appendix C contains a simple but complete sample application utilizing the FIPS Object Module 
with OpenSSL as described in this section.

5.1 Exclusive Use of the FIPS Object Module for Cryptography

In order for the referencing application to claim FIPS 140-2 validation all cryptographic functions 
utilized by the application must be provided exclusively by the FIPS Object Module.  The 
OpenSSL API used in conjunction with the FIPS Object Module in FIPS mode is designed to 
automatically disable all non-FIPS cryptographic algorithms.

5.2 FIPS Mode Initialization

Somewhere very early in the execution of the application FIPS mode must be enabled. This should 
be done by invocation of the FIPS_mode_set() function call, either directly or indirectly as in 
these following examples.

Note that it is permitted to not enable FIPS mode, in which case OpenSSL should function as it 
always has.  The application will not, of course, be operating in validated mode.

Option 1:  Direct call to FIPS_mode_set()

Page 32 of 79
FIPS 140-2 User Guide

q Use the FIPS Object Module for all cryptography
q Initialize FIPS mode with FIPS_mode_set()
q Generate application executable object with embedded FIPS 

Object Module digest
q Protect critical security parameters



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Example 5.2a – Direct Invocation of FIPS_mode_set()

Option 2: Indirect call via OPENSSL_config()

The OPENSSL_config() call can be used to enable FIPS mode via the standard openssl.conf 
configuration file:

Example 5.2b – Indirect Invocation of FIPS_mode_set()

The call to OPENSSL_config("XXXX_conf") will check the system default OpenSSL configuration 
file for a section XXXX_conf.  If section XXXX_conf is not found then the section defaults to 
openssl_conf.  The resulting section is checked for a alg_section specification naming a section 
that can contain an optional “fips_mode = yes” statement.

Page 33 of 79
FIPS 140-2 User Guide

 
OPENSSL_config("XXXX_conf") 

#ifdef OPENSSL_FIPS
if (FIPS_mode())
{

fprintf(stderr,"*** IN FIPS MODE ***\n");
}
#endif 

#ifdef OPENSSL_FIPS 
if(options.no_fips <= 0)
{
if(!FIPS_mode_set(1)) 
{
ERR_load_crypto_strings();
ERR_print_errors_fp(stderr);
exit(1); 
            } 
else
fprintf(stderr,"*** IN FIPS MODE ***\n");
}
#endif 



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

 # Default section
XXXX_conf = XXXX_options

...

[ XXXX_options ]
alg_section = algs

...

[ algs ]
fips_mode = yes

...

.
Example 5.2c – Sample openssl.conf File

Note that OPENSSL_config() has no return code.  If a configuration error occurs it will write to 
STDERR and forcibly exit the application.  Applications that want finer control can call the 
underlying functions such as CONF_modules_load_file() directly.

5.3 Generate Application Executable Object

Note that applications interfacing with the FIPS Object Module are outside of the cryptographic 
boundary.

When statically linking30 the application with the FIPS Object Module two steps are necessary:

1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified 
against the installed digest to ensure the integrity of the FIPS Object Module.

2. A HMAC-SHA1 digest of the FIPS Object Module code and read-only data must be generated 
and embedded in the application executable object for use by the FIPS_mode_set() 
function at runtime initialization.

5.3.1 Linking under Unix/Linux

The OpenSSL distribution contains a utility, fipsld, which both performs the check of the FIPS 
Object Module and generates the new HMAC-SHA-1 digest for the application executable.  The 
fipsld utility has been designed to act as a front end for the actual compilation and linking 

30Note that where fipscanister.o has been incorporated in a shared library then subsequent dynamic linking of 
an application to that shared library is done the usual way and these steps are irrelevant.

Page 34 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

operations in order to ease the task of modifying an existing software project to incorporate the 
FIPS Object Module.  It can be used to create either binary executables or shared libraries.

The fipsld command requires that the CC and/or FIPSLD_CC environment variables be set, 
with the latter taking precedence.  These variables allow a typical Makefile to be used without 
modification by specifying a command of the form

make CC=fipsld FIPSLD_CC=gcc

where fipsld is invoked by make in lieu of the original compiler and linker (gcc in this 
example), and in turn invokes that compiler where appropriate.  Note that CC=fipsld can be 
passed to autoconf configure scripts as well.

This type of command line macro overloading will work for many smaller software projects.  The 
makefile can also be modified to achieve the same macro substitutions.  Depending on the form of 
the Makefile this substitution may be as simple as defining FIPSLD_CC to reference the actual C 
compiler and redefining the CC macro to reference fipsld:

FIPSLD_CC = $(CC)
CC = fipsld

.

.

.
<application>: $(OBJS)

$(CC) $($CFLAGS) -o $@ $(OBJS) $(LIBCRYPTO) ...

Setting CC=fipsld is appropriate when the link rules rely on $(CC) instead of ld to produce the 
executable images, but in some cases it may be desirable or necessary to not redefine the $(CC) 
macro variable.  A typical makefile rule referencing fipsld directly for the link step would look 
something like31:

OPENSSLDIR = /usr/local/ssl/fips-1.0
FIPSMODULE = $(OPENSSLDIR)/lib/fipscanister.o

.

.

.
<application>: $(OBJS) $(FIPSMODULE)
    env FIPSLD_CC=$(CC) fipsld $(CFLAGS) -o $@ $(OBJS) \

$(LIBS) $(LIBCRYPTO)

31The use of env is actually redundant in a Makefile context, but is specified here to give a command line also valid 
for non-Bourne shells.

Page 35 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Even though the fipsld command name implies use as a replacement for the ld command, it 
also invokes the C compiler between the two link stages, hence fipsld can also replace $(CC) 
in rules producing .o object files, replacing both compilation and linking steps for the entire 
Makefile, i.e.:

<application>.o: <application>.c
$(CC) $(CFLAGS) -c <application>.c ...

<application>: $(OBJS)
ld -o $@ $(OBJS) $(LIBCRYPTO) ...

becomes

<application>: <application>.c
env FIPSLD_CC=$(CC) fipsld $(CFLAGS) -o $@ $@.c \ 

$(LIBCRYPTO) ...

Larger software projects are likely to prefer to modify only the Makefile rule(s) linking the 
application itself, leaving other Makefile rules intact.  For these more complicated Makefiles the 
individual rules can be modified to substitute fipsld for just the relevant compilation linking 
steps.

The fipsld command is designed to locate fipscanister.o automatically.  It will verify that 
the HMAC-SHA-1 digest in file fipscanister.o.sha1 matches the digest generated from 
fipscanister.o, and will then create the file <application> containing the object code 
from fipscanister.o, and embedded within that the digest calculated from the object code 
and data in fipscanister.o .

At runtime the FIPS_mode_set() function compares the embedded HMAC-SHA-1 digest with 
a digest generated from the text and data areas. This digest is the final link in the chain of validation 
from the original source to the application executable object file.

5.3.2 Linking under Windows

For a shared library application just linking with the DLL is sufficient.  Linking an application with 
the static libraries involves a bit more work, and can be complicated by the fact that GUI based 
tools are often used for such linking.

For the Windows® environment a perl script fipslink.pl is provided which performs a 
function similar to fipsld for Unix®/Linux®.  Several environment variables need to be set:

FIPS_LINK is the linker name, normally “link”

Page 36 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

FIPS_CC is the C compiler name, normally “cl”

FIPS_CC_ARGS is a string of  C compiler arguments for compiling fips_premain.c

PREMAIN_DSO_EXE should be set to the path to fips_premain_dso.exe if a DLL is 
being linked (can be omitted otherwise)

PREMAIN_SHA1_EXE is the full path to fips_standalone_sha1.exe

FIPS_TARGET is the path of the target executable or DLL file

FIPSLIB_D is the path to the directory containing the installed FIPS module

When these variables are specified fipslink.pl can be called in the same way as the standard 
linker.  It will automatically check the hashes, link the target, generate the target in-core hash, and 
link a second time to embed the hash in the target file.

The static library Makefile ms\nt.mak in the OpenSSL distribution gives an example of the 
usage of fipslink.pl.

5.4 Application Implementation Recommendations

This section describes additional steps not strictly required for FIPS 140-2 validation but 
recommended as good practice.

Provide an Indication of FIPS Mode

Security and risk assessment auditors will want to verify that an application utilizing cryptography 
is using FIPS 140-2 validated software in a FIPS compliant mode.  Many such applications will 
superficially appear to function the same whether built with a non-FIPS OpenSSL, when built with 
the FIPS Object Module and running in non-FIPS mode, and when built with the FIPS Object 
Module and running in FIPS mode.  

As an aid to such reviews the application designer should provide a readily visible indication that 
the application has initialized the FIPS Object Module to FIPS mode, after a successful return from 
the FIPS_mode_set() API call. The indication can take the form of a tty or stdout 
message, a syslog entry, or an addition to a protocol greeting banner.  For example a SSH server 
could print a protocol banner of the form:

SSH-2.0-OpenSSH_3.7.1p2 FIPS

Page 37 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

to provide an easily referenced indication that the server was properly initialized to FIPS mode.

Graceful Avoidance of Non-FIPS Algorithms

Many applications allow end user and/or system administrator configurable specification of 
cryptographic algorithms.  The OpenSSL API used with the FIPS Object Module in FIPS mode is 
designed to return error conditions when an attempt is made to use a non-FIPS algorithm via the 
OpenSSL API.  These errors may result in unexpected failure of the application, including fatal 
assert errors for algorithm functions calls lacking a testable return code.  However, there is no 
guarantee that the OpenSSL API will always return an error condition in every possible 
permutation or sequence of API calls that might invoke code relating to non-FIPS algorithms.  In 
any case, it is the responsibility of the application programmer to avoid the use of non-FIPS 
algorithms.  Unexpected run-time errors can be avoided if the cipher suites or other algorithm 
selection options are defaulted to FIPS approved algorithms, and if warning or error messages are 
generated for any end user selection of non-FIPS algorithms.

5.5 Documentation and Record-keeping Recommendations

The supplier or developer of a product based on the FIPS Object Module cannot claim that the 
product itself is FIPS 140-2 validated under certificate #1051.  Instead a statement similar to the 
following is recommended:

Product XXXX uses an embedded FIPS 140-2-validated cryptographic module (Certificate  
#1051) running on a YYYY platform per FIPS 140-2 Implementation Guidance section G.5  
guidelines.

where XXXX is the product name (“Cryptomagical Enfabulator v3.1®“) and YYYY is the host 
operating system (“Solaris 10”).

While not strictly required by the Security Policy or FIPS 140-2, a written record documenting 
compliance with the Security Policy would be a prudent precaution for any party generating and 
using or distributing an application that will be subject to FIPS 140-2 compliance requirements. 
This record should document the following:

For the FIPS Object Module generation:

1. Where the openssl-fips-1.2.tar.gz distribution file was obtained from, and how 
the HMAC SHA-1 digest of that file was verified per Appendix B of the Security Policy.

2. The host platform on which the fipscanister.o, fipscanister.o.sha1, 
fips_premain.c, and fips_premain.c.sha1 files were generated.  This platform 

Page 38 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

identification at a minimum should note the processor architecture (“x86”, “PA-RISC”,...), 
the operating system (“Solaris 10”, “Windows XP”,...), and the compiler (“gcc 3.4.3”,...).

3. An assertion that the fipscanister.o module was generated with the three commands
./config fipscanisterbuild [no-asm]
make
make install

and specifically that no other build-time options were specified.
4. A record of the HMAC SHA-1 digest of the fipscanister.o (the contents of the 

fipscanister.o.sha1 file).  That digest identifies this specific FIPS Object Module; 
if you immediately build another module it will have a different digest and is a different 
FIPS Object Module.

5. An assertion that the contents of the distribution file were not manually modified in any 
way at any time during the build process.

For the application in which the FIPS Object Module is embedded:

1. A record of the HMAC SHA-1 digest of the fipscanister.o that was embedded in the 
application.

2. An assertion that the application does not utilize any cryptographic implementations other 
that those provided by the FIPS Object Module or contained in the FIPS capable OpenSSL 
0.9.8j+ libraries (where non-FIPS algorithms are disabled in FIPS mode).

3. A description of how the application clearly indicates when FIPS mode is enabled 
(assuming that FIPS mode is a runtime selectable option).  Note that the application must 
call FIPS_mode_set(), whether that call is triggered by runtime options or not.

5.6 When is a Separate FIPS 140-2 Validation Required?

When a decision is made on whether a particular IT solution is FIPS 140-2 compliant multiple 
factors need to be taken into account, including the FIPS Pub 140-2 standard, FIPS 140-2 Derived 
Test Requirements, CMVP FAQ and Implementation Guidance.  The ultimate authority in this 
process belongs to the CMVP.  The CMVP provides its current interpretations and guidelines as to 
the interpretation of the  FIPS 140-2 standard and the conformance testing/validation process on its 
public web site http://csrc.nist.gov/cryptval/.

In particular, the only official document known to us which discusses use of embedded 
cryptographic modules is the  CMVP FAQ available at http://csrc.nist.gov/cryptval/140-
1/CMVPFAQ.pdf.  This FAQ (Frequently Asked Questions document) discusses incorporation of 
another vendor's cryptographic modules in a subsection of Section 2.2.1 entitled "Can I  
incorporate another vendor's validated cryptographic module".  In particular, the following is 
specified:

Page 39 of 79
FIPS 140-2 User Guide

http://csrc.nist.gov/cryptval/140-1/CMVPFAQ.pdf
http://csrc.nist.gov/cryptval/140-1/CMVPFAQ.pdf
http://csrc.nist.gov/cryptval/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

"Yes. A cryptographic module that has already been issued a FIPS 140-1 or FIPS 140-2 
validation certificate may be incorporated or embedded into another product. The new 
product may reference the FIPS 140-1 or FIPS 140-2 validated cryptographic module so 
long as the new product does not alter the original validated cryptographic module. A 
product which uses an embedded validated cryptographic module cannot claim itself to be 
validated; only that it utilizes an embedded validated cryptographic module.  There is no  
assurance that a product is correctly utilizing an embedded validated cryptographic module  
- this is outside the scope of the FIPS 140-1 or FIPS 140-2 validation."

Note that the CMVP FAQ does specify that a FIPS 140-1/2 validated module may be incorporated 
into another product. It then specifies that making a decision on whether a product is correctly 
utilizing an embedded module is outside of the scope of the FIPS 140-1 or FIPS 140-2 validation.

A subsection of Section 2.1 of the CMVP FAQ entitled "A vendor is selling me a crypto solution -  
what should I ask?" states:

"Verify with the vendor that the application or product that is being offered is either a  
validated cryptographic module itself (e.g. VPN, SmartCard, etc) or the application or  
product uses an embedded validated cryptographic module (toolkit, etc). Ask the vendor to  
supply a signed letter stating their application, product or module is a validated module or  
incorporates a validated module, the module provides all the cryptographic services in the  
solution, and reference the modules validation certificate number."

It is specified that the module provides "all the cryptographic services in the solution".  It is not 
specified that the module provides "all the security-relevant services in the solution".  A typical IT 
product may provide a variety of services, both cryptographic and non-cryptographic.  A network 
protocol such as SSH or TLS provides both cryptographic services such as encryption and network 
services such as transmission of data packets, packet fragmentation, etc. 

The FIPS 140-2 standard is focused on the cryptography.  There are many generic security relevant 
functionalities such as anti-virus protection, firewalling, IPS/IDS and others which are not currently 
covered by the FIPS 140-2 standard.  An anti-virus solution which uses a cryptographic module for 
its operations  can satisfy requirements of the FIPS 140-2 by delegating its cryptographic functions 
to an embedded FIPS 140-2 validated module.  Including the entire anti-virus solution in the FIPS 
140-2 validation would hardly improve the overall security since FIPS 140-2 does not currently 
have requirements in the field of anti-virus protection.  In a similar fashion, the FIPS 140-2 
standard does not currently have requirements related to network vulnerabilities or denial of service 
attacks.

Validated modules typically provide algorithm implementations only, no network functionality 
such as IPSec, SSH, TLS etc.  This does not, for example, prevent Microsoft Windows from 
providing IPSec/IKE and TLS/SSL functionality.  Therefore, for example, an OpenSSH based 
product properly using the OpenSSl FIPS Object Module would not differ from Microsoft using its 
Microsoft Kernel Mode Crypto Provider in Microsoft IPSec/IKE client which is shipped with every 

Page 40 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

copy of Windows.   If an application product delegates all cryptographic services to a validated 
module the entire product will be FIPS compliant. 

A typical network protocol, such as IPSec/IKE, TLS, SSH, S-MIME or 802.11 protocol family may 
provide a complex variety of services.  Some aspects of such services may have a cryptographic 
nature and utilize Approved or “allowed for use” cryptographic algorithms, such as encryption, 
decryption, signatures, hashes, message digests and others.  Other services provided by a network 
protocol may be of non-cryptographic nature, such as packet routing, packet assembly/disassembly, 
defragmentation, radio and link layer communications, firewalling, network address translation, 
address resolution, quality of service, re-transmission and others.  While the ultimate verdict for a 
particular solution belongs to the CMVP, it is generically logical to assume that non-cryptographic 
services of a particular network protocol or a set of protocols may be implemented outside of a 
validated cryptographic module.  This is also logical having in mind that in many cases non-
cryptographic services of a particular protocol may be delegated to other devices in the IT solution. 
For instance, in some wireless LAN access systems an implementation of the 802.11 protocol set is 
provided jointly by a wireless access switch and a wireless access point, where the wireless access 
point may provide non-cryptographic services of the 802.11 protocol set such as radio 
transmissions, frequency and signal strength control, initial wireless client association and others. 
Another widely used example is a web server offloading cryptographic functionality of the 
HTTPS/TLS protocol to a FIPS 140-2 validated cryptographic accelerator card (many such cards 
are available on the market).

In addition to consulting the written CMVP guidance, it is then also important to consider industry-
wide interpretation patterns and precedents in this field.  After performing a review of the FIPS 
140-2 validated products list http://csrc.nist.gov/cryptval/140-1/140val-all.htm one may conclude 
that implementing non-cryptographic services of a particular network protocol outside of a 
validated cryptographic module can in many cases be considered as an industry trend. There are 
multiple examples which illustrate such a trend.  For illustration purposes only we can take a look 
at the example of the Microsoft Kernel Module

http://csrc.nist.gov/cryptval/140-1/140sp/140sp241.pdf

Note that there are many other modules which follow a similar trend, this module is just one 
example out of many.  The analysis here is generic, applies to a large number of validated modules, 
and is not intended to make any specific statements as to the validation of this particular module.

As specified by the vendor, the Kernel Module is used by the vendor implementation of the 
IPSec/IKE protocol

http://www.microsoft.com/technet/archive/security/topics/issues/fipseval.mspx?mfr=true

In particular it is stated that

Page 41 of 79
FIPS 140-2 User Guide

http://www.microsoft.com/technet/archive/security/topics/issues/fipseval.mspx?mfr=true
http://csrc.nist.gov/cryptval/140-1/140sp/140sp241.pdf
http://csrc.nist.gov/cryptval/140-1/140val-all.htm


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

"Both IPSEC and EFS in Windows 2000, XP, and Server 2003 use the FIPS-140-1 or FIPS 
140-2 (as appropriate) evaluated Kernel Mode Cryptographic Module to encrypt the traffic  
packet data and file contents respectively if configured appropriately with the selections of  
FIPS compliant algorithms."

A review of the Kernel Module Security Policy then shows that the module's services are specified 
as services performing cryptographic algorithms supported by IPSec/IKE(such as 
encryption/decryption and key agreement) and not as providing a full IPSec/IKE protocol 
implementation.  This could again serve as an illustration of the fact that non-cryptographic 
services of a particular protocol are in many cases implemented outside of a cryptographic module. 
A similar analysis could be performed for other protocols specified in

http://www.microsoft.com/technet/archive/security/topics/issues/fipseval.mspx?mfr=true

such as S/MIME (used in Outlook), TLS (used in Explorer), Remote Desktop Protocol and 
Encrypting File System.  Other examples can be discussed by analyzing the list of historically 
validated products http://csrc.nist.gov/cryptval/140-1/140val-all.htm.  In general the vendor of a 
product based on the OpenSSL FIPS Object Module should be able to find an existing validated 
module, and similar products claiming validation by virtue of that module, for one of several large 
well-known IT companies.

In conclusion, both the historical perspective and the current CMVP guidance point to a possibility 
of non-cryptographic services in an IT solution being implemented outside of a validated 
cryptographic module.  We are not aware of any CMVP regulations explicitly denying use of 
embedded validated cryptographic modules to satisfy the requirements of FIPS 140-2 statement, 
provided that the set of conditions specified in the CMVP FAQ and other relevant documentation is 
satisfied.  With this in mind, the ultimate decision for a particular product/protocol belongs to the 
CMVP and the analysis presented here can serve for discussion purposes only.

The main job of a FIPS 140-2 testing lab is to consistently apply the FIPS 140-2 standard, the 
Derived Test Requirements and the Implementation Guidance to all modules which the testing lab 
checks.  Testing labs can have suggestions for further improvements which could be communicated 
to the CMVP and potentially incorporated in the future versions of the standard or in the 
implementation guidance.  

Since the CMVP does not have a formal program for validation of IT solutions with embedded 
FIPS 140-2 modules, the question is how is the actual compliance/non-compliance determined.  In 
practice the compliance is determined by the federal agency/buyer selecting the solution.  During 
the process the customer may contact the CMVP, testing labs or security experts for an opinion.  In 
many cases, though, the buyers make such decisions independently.  Here it should be noted that 
FIPS 140-2 is only a baseline and each federal agency may establish its own requirements 
exceeding the requirements of FIPS 140-2.  In the particular example of network protocols federal 
agencies generally do accept networking products (IPSec/TLS/SSH etc.) with embedded FIPS 140-
2 validated cryptographic software modules or hardware cards as FIPS 140-2 compliant.

Page 42 of 79
FIPS 140-2 User Guide

http://csrc.nist.gov/cryptval/140-1/140val-all.htm
http://www.microsoft.com/technet/archive/security/topics/issues/fipseval.mspx?mfr=true


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

For those vendors desiring a “sanity check” of the compliance status of their OpenSSL FIPS Object 
Module based product, OSSI can perform a review and provide an opinion letter stating whether, 
based on information provided by the vendor, that product appears to OSSI to satisfy the 
requirements of the  OpenSSL FIPS Object Module Security Policy.  This opinion letter can 
include a review by one or more CMVP test labs and/or a OpenSSL team member as appropriate. 
This opinion letter clearly states that only the CMVP can provide an authoritative ruling on FIPS 
140-2 compliance.

6. Future Plans

The current validated FIPS Object Module has a number of limitations, among them:

1. Not all FIPS compliant cryptographic algorithms are validated (ECC, for example).  An 
algorithm test involves coding a test driver (dsa/fips_dsatest.c, 
hmac/fips_hmactest.c, etc. in the ./fips/ subdirectory) to process input test 
vectors in a format described in a standards document.  Most of these were relatively 
straightforward, if tedious, to code, though a few required considerable trial-and-error 
experimentation to interpret.

2. Not compatible with OpenSSL 1.0 where a number of data structures are not binary 
compatible with OpenSSL 0.9.8 on which the FIPS module is based.

These first OpenSSL FIPS validations were pioneer efforts that confronted may uncertainties in the 
validation process with limited resources.  Now that the initial validations have been awarded and 
the requirements for a source code validation are better understood these limitations can be 
addressed in future validations.

Any such future validation will have one  fixed cost, the CMVP testing laboratory fee, plus 
whatever costs are associated with the specific software development items.  For that reason the 
more financial co-sponsors are involved in a given validation, the lower the cost to each sponsor.

Any interested parties willing to consider co-sponsoring a future OpenSSL FIPS 140-2 or 140-3 
validation effort should contact

Steve Marquess 877-673-6775 office
OpenSSL Software Foundation marquess@opensslfoundation.com
1829 Mount Ephraim Road http://opensslfoundation.com/
Adamstown, MD  21710
USA

or

John Weathersby 601-427-0152 office
Executive Director 601-818-7161 cell
Open Source Software Institute 601-427-0156 fax
8 Woodstone Plaza jmw@oss-institute.org

Page 43 of 79
FIPS 140-2 User Guide

mailto:jmw@oss-institute.org
http://opensslfoundation.com/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Ste. 101 http://oss-institute.org/
Hattiesburg, MS  39402
USA

for information on current plans and the opportunities for participation.  Note plans for new 
validations will be announced at http://www.openssl.org/docs/fips/fipsnotes.html.

Page 44 of 79
FIPS 140-2 User Guide

http://www.openssl.org/docs/fips/fipsnotes.html
http://oss-institute.org/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

7. REFERENCES

1. OpenSSL FIPS 140-2 Security Policy, Version 1.2, Open Source Software Institute.  This 
document is available at http://csrc.nist.gov/groups/STM/cmvp/documents/140-
1/140sp/140sp1051.pdf and http://www.openssl.org/docs/fips/.

2. FIPS PUB 140-2  , Security Requirements for Cryptographic Modules, May 2001, National 
Institute of Standards and Technology, available at 
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

3. Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation   
Program, January 26, 2007, National Institute of Standards and Technology, available at 
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf.

4. Network Security with OpenSSL, John Viega et. al., 15 June 2002, O'Reilly & Associates

The algorithm certificates:

RSA http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#323
DSA http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsaval.htm#264
3DES http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesval.html#627
AES http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#695
HMAC http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#373
SHA-1,2 http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm#723
RNG http://csrc.nist.gov/groups/STM/cavp/documents/rng/rngval.html#407

Page 45 of 79
FIPS 140-2 User Guide

http://csrc.nist.gov/groups/STM/cavp/documents/rng/rngval.html#407
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm#723
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#373
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#695
http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesval.html#627
http://csrc.nist.gov/groups/STM/cavp/documents/dss/dsaval.htm#264
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#323
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.openssl.org/docs/fips/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Appendix A OpenSSL Distribution Signing Keys

In order to be considered FIPS 140-2 validated the FIPS Object Module must be derived from an 
OpenSSL distribution signed by one of these authorized keys, as shown by the value in the 
Fingerprint row.

The procedure for verifying that a source distribution was signed by one of these keys is described 
in detail in §4.1.2.

Note the fingerprint formats are slightly different for the two different types of keys (RSA and 
DSA).

OpenSSL Core Team PGP Keys
Key Id Team member

49A563D9 Mark Cox <mark@awe.com>
Fingerprint  7B 79 19 FA 71 6B 87 25  0E 77 21 E5 52 D9 83 BF

26BB437D Ralf S. Engelschall <rse@engelschall.com>
Fingerprint  00 C9 21 8E D1 AB 70 37  DD 67 A2 3A 0A 6F 8D A5

F295C759 Dr Stephen Henson <shenson@drh-consultancy.co.uk>
Fingerprint  D0 5D 8C 61 6E 27 E6 60  41 EC B1 B8 D5 7E E5 97

9C58A66D Lutz Janicke <Lutz.Jaenicke@aet.TU-Cottbus.DE>
Fingerprint  13 D0 B8 9D 37 30 C3 ED  AC 9C 24 7D 45 8C 17 67

2118CF83 Ben Laurie <ben@cryptix.org>
Fingerprint  7656 55DE 62E3 96FF 2587  EB6C 4F6D E156 2118 CF83

E06D2CB1 Richard Levitte <levitte@lp.se>
Fingerprint  35 3E 6C 9E 8C 97 85 24  BD 9F D1 9E 8F 75 23 6B

5A6A9B85 Bodo Moeller <2004@bmoeller.de>
Fingerprint  C7 AC 7E AD 56 6A 65 EC  F6 16 66 83 7E 86 68 28

Page 46 of 79
FIPS 140-2 User Guide

http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x5A6A9B85
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0xE06D2CB1
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x2118CF83
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x9C58A66D
http://pgp.mit.edu:11371/pks/lookup?op=vindex&search=0xF295C759
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x26BB437D
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x49A563D9


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Appendix B CMVP Test Procedure

Instructions for building OpenSSL and performing the FIPS 140-2 and related algorithm tests on 
Linux®/Unix® Microsoft Windows® based platforms are given here.  These instructions are 
primarily of interest to the CMVP testing laboratory performing the validation testing, or anyone 
wishing to verify that the executable library generates generates the same output for the algorithm 
tests performed by the testing laboratory.

Note there is no requirement for end users or application developers to run these tests, this 
discussion is included for reference purposes to illustrate the algorithm testing performed by the 
CMVP test lab.  Note this step requires a large directory tree of input test data files produced by the 
testing lab using a NIST provided tool (CAVS); several sets of input and response values can be 
found http://www.openssl.org/docs/fips/.

B.1 Building the Software - Linux/Unix

1. Copy the OpenSSL distribution (openssl-fips-1.2.tar.gz) to a directory on the test system. 
Approximately 80Mb free space is needed.

2. Perform the standard build.  Use of a script file or comparable means of capturing the output 
is highly recommended.

gunzip -c openssl-fips-1.2.tar.gz | tar xf -
cd openssl
./config fipscanisterbuild [no-asm]
make

...where the no-asm option may or not be present depending on the platform.

3. Optionally run

make test

to perform the standard integrity test.  A large amount of output is generated.  If an error occurs 
processing will be aborted. 

B.2 Algorithm Tests - Linux/Unix

4. Add the subtree of test data to the distribution work area:

Page 47 of 79
FIPS 140-2 User Guide

http://www.openssl.org/docs/fips/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

cd fips
unzip <zipfile of test vectors>.zip -d testvectors

5. Run the FIPS 140-2 algorithm tests:

perl mkfipsscr.pl --dir=testvectors --rspdir=resp
sh fipstests.sh

This step runs the algorithm tests specific to the FIPS mode.  Again a large amount of output 
will be generated.  If an error occurs processing will be aborted.

6. The many (approximately 198) generated *.rsp files will be found in the 
./testvectors/ directory tree under ./fips/:

find testvectors/ -name '*.rsp'

7. The generates responses can be tested against another set of known good testvector responses at 
pathname FIPS_TVOK=<pathname> with:

make fips_test_diff FIPS_TVOK=<pathname>

This comparison automatically suppresses the whitespace and comment line differences and 
ignores the seven testvector files that are always different32.

8. The tree of *.rsp files can be extracted for comparison with another tree:

find testvectors -name '*.rsp' | cpio -oc > rsp1.cpio
.
.
.

cd /tmp
mkdir rsp1 rsp2
cd rsp1; cpio -ic < rsp1.cpio
cd ../rsp2; cpio -ic < rsp2.cpio
diff -r . ../rsp1

32Due to the nature of the cryptographic operations involved the following responses files will always be different:
KeyPair.rsp DSA
PQGGen.rsp DSA
SigGen.rsp DSA
SigGen15.rsp RSA
SigGenPSS.rsp RSA
SigGenRSA.rsp RSA
SigGenPSS.rsp RSA

These files are listed in the file ./fips/fips-nodiff.txt that is referenced by the fips_test_diff 
makefile target.

Page 48 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

If the only other differences are the commented date-time labels then the trees match:

diff -r ./testvectors/aes/resp/CBCGFSbox128.rsp \
../rsp1/testvectors/aes/resp/CBCGFSbox128.rsp

6c6
< # Thu Mar  4 11:05:36 2004
---
> # Fri Feb 20 12:21:24 2004
diff -r ./testvectors/aes/resp/CBCGFSbox192.rsp \

../rsp1/testvectors/aes/resp/CBCGFSbox192.rsp
6c6
< # Thu Mar  4 11:05:36 2004
---
> # Fri Feb 20 12:21:24 2004

.

.

.

B.3 Building the Software - Windows

1. Copy the OpenSSL distribution (openssl-fips-1.2.tar.gz) to a directory on the test system. 
Approximately 80Mb free space is needed.

2. Perform the standard build. 

cd openssl
ms\do_fips [no-asm]
out32dll\fips_test_suite

...where the no-asm option may or not be present depending on the platform.

B.4 Algorithm Tests - Windows

3. This procedure is similar to that for Linux/Unix:

cd fips
unzip <zipfile of test vectors>.zip -d testvectors
perl mkfipsscr.pl --win32 --dir=testvectors --rspdir=resp
.\fipstests.bat

Page 49 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

There is no bundled zip/unzip command for most versions of Microsoft Windows, but many third 
party implementations are available, such as http://gnuwin32.sourceforge.net/packages/unzip.htm.

B.5 FIPS 140-2 Test - All Platforms

A test driver program has been provided to demonstrate both successful and failed power-up self-
tests and the invocation of some basic cryptographic operations.  This program was developed 
during the course of the FIPS 140-2 validation as a aid to the test lab evaluators.  This test program, 
fips_test_suite, can be found in the ./test/ subdirectory.   This program behaves the 
same for Linux/Unix and Windows; for Windows invoke as .\fips_test_suite instead of 
./fips_test_suite  as shown in this example.

1. When executed with no argument output similar to the following is produced:

$ ./fips_test_suite
        FIPS-mode test application

1. Non-Approved cryptographic operation test...
        a. Included algorithm (D-H)...successful
2. Automatic power-up self test...successful
3. AES encryption/decryption...successful
4. RSA key generation and encryption/decryption...successful
5. DES-ECB encryption/decryption...successful
6. DSA key generation and signature validation...successful
7a. SHA-1 hash...successful
7b. SHA-256 hash...successful
7c. SHA-512 hash...successful
7d. HMAC-SHA-1 hash...successful
7e. HMAC-SHA-224 hash...successful
7f. HMAC-SHA-256 hash...successful
7g. HMAC-SHA-384 hash...successful
7h. HMAC-SHA-512 hash...successful
8. Non-Approved cryptographic operation test...
        a. Included algorithm (D-H)...successful as expected
9. Zero-ization...
 Generated 128 byte RSA private key
        BN key before overwriting:
8E0CD7345733DA2922DFDA0C8FC79F5B7F67567E8391C81FA0A3298DF1CE0C6A33646A0840F5
5F098711075F457943FC340719760851E21DB7918A8B0728D4F33F1210FC22A52EF8BB20353F
98BB3C8C7E2FC5C36B49AC28E0932568CFC948E6F4923F42906BC8B14E4071E8960EF17974C8
70C541241B4F3BB3D5F001E45C01
        BN key after overwriting:
8045F430EAD7D1ADF7E3582517692DC69F958844C62FDE68DF62F31A26F1F319BDE04A62DBCB
B0965B7055BB45B613E428B29F22797884DFC1B51B593346F9B9470FB660F91B8FA487AE469A
B7FFC23135CF5107FD62D5E355D613462F08D5D5235D62A897B398F7089FD911144B3AF33492
BD0C5B7FB93B43D26CE26B60E9DF
        char buffer key before overwriting:
                4850f0a33aedd3af6e477f8302b10968

Page 50 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

        char buffer key after overwriting:
                8ff13f1c2311f716f165e24a5042c47d

All tests completed with 0 errors
$ 

2. To demonstrate the effect of a corrupted Known Answer Test invoke the fips_test_suite 
command with one of the arguments aes, des, dsa, rsa, sha1, rng.  The 
command must be invoked separately with each argument for the KAT test to fail for each 
separate algorithm.  Output similar to the following will be produced for each algorithm (AES 
in this example):

$ ./fips_test_suite aes
        FIPS-mode test application

3. AES encryption/decryption with corrupted KAT...
24557:error:24064064:random number generator:SSLEAY_RAND_BYTES:PRNG not 
seeded:md_rand.c:512:You need to read the OpenSSL FAQ, 
http://www.openssl.org/support/faq.html
24557:error:2A068065:lib(42):FIPS_selftest_aes:selftest 
failed:fips_aes_selftest.c:92:
Power-up self test failed
$

B.6 Testvector Data Files and the mkfipsscr.pl Utility

The FIPS 140-2 test labs use CMVP provided Windows based software known as the “CAVS tool” 
to generate the testvector data files used for the algorithm tests.  The CAVS tool performance used 
to be an issue (requiring days to produce testvector data sets) however it has been improved and 
this is no longer an issue..  The only constant is the name of the actual *.rsp files of input data. 
For the initial validation there were 196 unique file name with 2 duplicate names, for a total of 198 
files:

Algorithm Number of *.req 
files

AES 108

DSA 4

HMAC 1

RNG 6

RSA 0

SHA 15

TDES 55

Page 51 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Total 198

The specific file names are:

HMAC HMAC.req

AES CFB8MMT128.req

AES CFB128VarTxt128.req

AES CBCGFSbox128.req

AES CFB128KeySbox256.req

AES OFBGFSbox192.req

AES CBCMMT128.req

AES OFBVarKey256.req

AES CFB8VarKey256.req

AES CFB8MCT256.req

AES CFB1MMT128.req

AES CFB8KeySbox128.req

AES OFBMCT128.req

AES CFB8GFSbox128.req

AES CFB128MCT192.req

AES OFBMMT256.req

AES OFBGFSbox256.req

AES CFB8MMT192.req

AES OFBMMT192.req

AES ECBGFSbox256.req

AES CFB8VarTxt192.req

AES ECBKeySbox128.req

AES CFB1GFSbox256.req

AES CFB128VarKey256.req

AES CFB8VarKey128.req

AES CFB128VarTxt256.req

AES CFB8VarTxt256.req

AES CFB128GFSbox192.req

AES CFB128KeySbox128.req

AES CFB8MCT192.req

AES CFB1MMT256.req

AES CFB1VarKey128.req

AES CFB8KeySbox256.req

AES OFBKeySbox256.req

AES CFB1KeySbox192.req

AES CFB1MCT192.req

AES CFB1VarTxt192.req

AES CBCVarKey192.req

AES CBCMCT128.req

AES CFB1MMT192.req

AES ECBMMT192.req

AES CBCVarTxt128.req

AES CFB128VarKey192.req

Page 52 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

AES OFBGFSbox128.req

AES OFBMCT256.req

AES CBCKeySbox128.req

AES CFB1VarTxt256.req

AES OFBKeySbox192.req

AES ECBVarTxt192.req

AES OFBMMT128.req

AES ECBMMT128.req

AES ECBKeySbox192.req

AES OFBVarTxt256.req

AES CBCGFSbox192.req

AES CFB128GFSbox256.req

AES CBCVarKey128.req

AES CBCVarKey256.req

AES CFB1GFSbox128.req

AES CFB1KeySbox256.req

AES CBCMMT256.req

AES CFB8VarKey192.req

AES CFB1VarKey256.req

AES ECBGFSbox192.req

AES CBCMMT192.req

AES CBCKeySbox256.req

AES CFB128VarTxt192.req

AES CFB1MCT128.req

AES CBCGFSbox256.req

AES ECBVarKey192.req

AES CFB128KeySbox192.req

AES CFB128VarKey128.req

AES CFB128MMT256.req

AES CBCKeySbox192.req

AES CBCVarTxt256.req

AES CFB1GFSbox192.req

AES OFBMCT192.req

AES ECBVarTxt256.req

AES OFBVarKey192.req

AES CFB128MMT192.req

AES ECBMCT192.req

AES CFB1VarKey192.req

AES OFBVarKey128.req

AES ECBVarKey128.req

AES CFB8GFSbox256.req

AES ECBVarTxt128.req

AES CBCMCT192.req

AES CBCMCT256.req

AES ECBMCT128.req

AES ECBMMT256.req

AES CFB8KeySbox192.req

AES CFB1VarTxt128.req

Page 53 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

AES ECBVarKey256.req

AES CFB128MMT128.req

AES CFB1MCT256.req

AES ECBGFSbox128.req

AES CFB8GFSbox192.req

AES OFBKeySbox128.req

AES CFB128GFSbox128.req

AES CFB1KeySbox128.req

AES CFB128MCT256.req

AES ECBKeySbox256.req

AES ECBMCT256.req

AES CBCVarTxt192.req

AES CFB8MMT256.req

AES CFB8VarTxt128.req

AES OFBVarTxt128.req

AES CFB8MCT128.req

AES OFBVarTxt192.req

AES CFB128MCT128.req

TDES TOFBinvperm.req

TDES TCFB64Monte2.req

TDES TECBMonte1.req

TDES TCBCvartext.req

TDES TECBpermop.req

TDES TCFB8invperm.req

TDES TCFB8MMT3.req

TDES TECBMonte2.req

TDES TCBCsubtab.req

TDES TCBCinvperm.req

TDES TCFB8Monte1.req

TDES TOFBvartext.req

TDES TOFBMonte3.req

TDES TOFBMMT2.req

TDES TOFBsubtab.req

TDES TCBCpermop.req

TDES TCBCMonte1.req

TDES TOFBvarkey.req

TDES TOFBMonte2.req

TDES TECBsubtab.req

TDES TECBvartext.req

TDES TECBMMT1.req

TDES TCFB64Monte3.req

TDES TCBCvarkey.req

TDES TCFB64varkey.req

TDES TCFB64MMT2.req

TDES TCFB8MMT2.req

TDES TCFB8varkey.req

TDES TECBvarkey.req

TDES TCFB64MMT3.req

Page 54 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

TDES TCBCMMT2.req

TDES TECBMonte3.req

TDES TOFBpermop.req

TDES TCBCMMT1.req

TDES TCFB8Monte2.req

TDES TCFB8subtab.req

TDES TCFB64vartext.req

TDES TCBCMonte3.req

TDES TECBMMT3.req

TDES TCFB64subtab.req

TDES TCFB8vartext.req

TDES TECBMMT2.req

TDES TECBinvperm.req

TDES TCFB64MMT1.req

TDES TCFB64permop.req

TDES TOFBMMT1.req

TDES TCBCMMT3.req

TDES TCFB8permop.req

TDES TCFB64invperm.req

TDES TCFB8Monte3.req

TDES TCFB8MMT1.req

TDES TCBCMonte2.req

TDES TCFB64Monte1.req

TDES TOFBMMT3.req

TDES TOFBMonte1.req

RSA SigVerPSS.req

RSA KeyGenRSA.req

RSA SigGenRSA.req

RSA SigGenPSS.req

RSA SigVerRSA.req

RSA SigVer15.req

RSA SigGen15.req

SHA SHA384LongMsg.req

SHA SHA512LongMsg.req

SHA SHA224ShortMsg.req

SHA SHA1ShortMsg.req

SHA SHA512ShortMsg.req

SHA SHA224LongMsg.req

SHA SHA224Monte.req

SHA SHA1LongMsg.req

SHA SHA384Monte.req

SHA SHA512Monte.req

SHA SHA256Monte.req

SHA SHA1Monte.req

SHA SHA384ShortMsg.req

SHA SHA256LongMsg.req

SHA SHA256ShortMsg.req

DSA SigGen.req

Page 55 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

DSA KeyPair.req

DSA SigVer.req

DSA PQGGen.req

RNG ANSI931_AES128VST.req

RNG ANSI931_AES192VST.req

RNG ANSI931_AES256MCT.req

RNG ANSI931_AES192MCT.req

RNG ANSI931_AES256VST.req

RNG ANSI931_AES128MCT.req

RSA SigVerPSS.req (SALT=62)

RSA SigGenPSS.req (SALT=62)

In order to facilitate the processing of testvector data a series of utilities were developed, 
culminating in the mkfipssccr.pl program.  This program searches a target directory for the 
known *.rsp files and generates a script referencing the actual pathnames for those files.  That 
script can then be executed to perform the algorithm tests that generate the *.rsp result files.  The 
mkfipsscr.pl program reports unrecognized duplicate *.rsp files and any files that were 
expected but not found.

Testvector data sets are generally received as *.zip files, rarely as *.tgz.  A typical pathname 
structure (for this validation) is as follows:

OpenSSL vectors (Linux 32 bit No ASM) 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/HMAC 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/HMAC/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/HMAC/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/AES 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/AES/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/AES/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/TDES 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/TDES/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/TDES/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/RSA 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/RSA/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/RSA/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/SHA 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/SHA/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/SHA/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/DSA 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/DSA/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/DSA/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/RNG 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/RNG/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-0 1.2/RNG/req 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-62 1.2 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-62 1.2/RSA 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-62 1.2/RSA/resp 
OpenSSL vectors (Linux 32 bit No ASM)/OpenSSL-x86_ noASM_Linux-SALT-62 1.2/RSA/req 

Note the typical use of embedded spaces in the directory names.  The data files will generally 
(though not necessarily) be carriage return-line feed delimited.

Page 56 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

If multiple platforms are involved in a validation the testvector files for several platforms may be 
interspersed in the same directory tree.  We have also received testvector files for a single platform 
in multiple different *.zip files, so the mkfipssrc.pl program must be able to filter the 
relevant *.rsp files out of multiple subdirectories.

The following mkfipssrc.pl options can be used to accommodate various representations of 
testvector files:

--win32 Generate Windows style script (default is *nix)
--onedir All executables are in current directory
--quiet Suppress warnings
--dir=<dirname> Only search named directory
--rspdir=<dirname> Name of subdirs for *.rsp files (default resp)
--tprefix=<prefix> Path to test executables
--shwrap_prefix=<prefix> Path to shlib_wrap.sh (*nix only)
--filter=<string> Only search pathnames containing <string>

B.7 Files for a Runtime Validation

Many vendors validate binary code generated from OpenSSL source.  The minimal set of files 
needed to obtain a validation of the binary shared libraries libfips.so.0.9.8 (Linux/Unix) or 
libosslfips.dll (Windows) are generated as follows:

For Linux/Unix:

./config fipsdso
make
mkdir ../<target_dir>
cp test/fips_*test ../<target_dir>/
cp test/fips_*vs ../<target_dir>/
cp test/fips_test_suite ../<target_dir>/
cp util/shlib_wrap.sh ../<target_dir>/
cp libfips.so.0.9.8 ../<target_dir>/
cp fips/mkfipsscr.pl ../<target_dir>/

will place all the files needed for the test lab validation testing in the target directory 
../<target_dir>/.  The test lab then runs the binaries in that target directory as follows:

cd ../<target_dir>/
unzip <zipfile of test vectors>.zip
perl mkfipsscr.pl --onedir --rspdir=resp
sh fipstest.sh
./shlib_wrap.sh ./fips_test_suite

The test vectors are sometimes in tar or tat.gz format, in which case the appropriate command 
would be used such as <gunzip -c <tarball of test vectors>.tar.gz | tar xf -.

Page 57 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

For Windows33:

perl Configure VC-WIN32 fipsdso
nmake -f ms\do_fips
copy test\fips_*test <target_dir>
copy test\fips_*vs <target_dir>
copy test\fips_test_suite <target_dir>
copy libosslfips.dll <target_dir>
copy fipslink.pl <target_dir>

The test lab then executes the binaries in that target directory:

unzip <zipfile of test vectors>.zip
perl mkfipsscr.pl --win32 --onedir --rspdir=resp
fipstests.bat
fips_test_suite

There is no bundled tar or unzip command for most versions of Microsoft Windows, but many third 
party implementations are available, such as http://gnuwin32.sourceforge.net/packages/gtar.htm 
and http://gnuwin32.sourceforge.net/packages/unzip.htm.

Note that the Microsoft Visual C++ Redistributable package 
(http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=200b2fd9-ae1a-
4a14-984d-389c36f85647) may be required to execute these programs on a system that does not 
have a version of Microsoft Visual C++ installed.

B.8 Retrofitting the fipsalgtest.pl Utility

As of the 0.9.8k OpenSSL baseline, which post-dates the OpenSSL FIPS Object Module v1.2 
validation, a new more comprehensive replacement for mkfipsscr.pl was developed.  Since 
this utility is external to the cryptographic module it can be used for v1.2 based validations.

Copy fipsalgtest.pl from a 0.9.8k or later OpenSSL distribution, and in place of the 
mkfipsscr.pl and fipstest.sh scripts referenced earlier in this appendix, simply run

perl fipsalgtest.pl --dir=testvectors --generate 

to generate the *.rsp files for submission to the test lab.

33Note that for the original openssl-fips-1.2.tar.gz and some subsequent 0.9.8k+ source distributions the do_fips.bat file 
must be modified to change “fipscanisterbuild” to “fipsdso”.  Such modifications are permissible in the context of a 
complete new validation.

Page 58 of 79
FIPS 140-2 User Guide

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=200b2fd9-ae1a-4a14-984d-389c36f85647
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=200b2fd9-ae1a-4a14-984d-389c36f85647
http://gnuwin32.sourceforge.net/packages/unzip.htm
http://gnuwin32.sourceforge.net/packages/gtar.htm


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Subsequently running fipsalgtest.pl without the --generate option will perform some 
sanity checks on the previously generated *.rsp files.  If run on the stock  OpenSSL FIPS Object 
Module v1.2 some DSA errors will be reported:

$ perl fipsalgtest.pl --dir=testvectors --generate
Running DSA tests 
Don't know how to keyver. 
WARNING: error executing verify test KeyPair ../util/shlib_wrap.sh 
../test/fips_dssvs keyver <2009-04-16-Sample-all//DSA/rsp/KeyPair.tst 
>2009-04-16-Sample-all//DSA/rsp/KeyPair.ver 
Running RSA tests 
Running SHA tests 
Running HMAC tests 
Running RAND (AES) tests 
Running AES tests 
Running Triple DES tests 
ALGORITHM TEST VERIFY SUMMARY REPORT: 
Tests skipped due to missing files:        0 
Algorithm test program execution failures: 0 
Test comparisons successful:               172 
Test comparisons failed:                   0 
Test sanity checks successful:             5 
Test sanity checks failed:                 0 
Sanity check program execution failures:   1 
***TEST FAILURE*** 
$ 

These errors are seen because some of the sanity checks had not yet been written for v1.2.  The 
fips_dssvs.c file from OpenSSL 0.9.8k and later provides those checks.

The fipsalgtest.pl utility provides a number of options:

--debug                     Enable debug output 
--dir=<dirname>             Optional root for *.req file search , default “.”
--filter=<regexp>           Optional regexp prefix for *.req file names
--onedir <dirname>          Assume all components in current directory 
--rspdir=<dirname>          Name of subdirectories containing *.rsp files
--shwrap_prefix=<prefix>    Path prefix for the shlib_wrap.sh script,
                            default “../util”.
--tprefix=<prefix>          Prefix for the directory containing the test binaries
--ignore-bogus              Ignore duplicate or bogus files 
--ignore-missing            Ignore missing test files 
--quiet                     Shhh.... 
--generate                  Generate algorithm test output 
--win32                     Win32 environment (O/S detection is automatic)

Individual algorithm tests can be selectively specified with options of the form --enable-xxx or 
--disable-xxx where xxx is one of the algorithm specifications

dsa
rsa 

Page 59 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

rsa-pss0 (disabled by default) 
rsa-pss62 
sha 
hmac
rand-aes
rand-des2 (disabled by default)
aes
aes-cfb1 (disabled by default) 
des3

The --ignore-bogus and --ignore-missing options suppress the error exit if the target 
test vector directory contains more or fewer *.rsp files than expected (a not uncommon 
occurrence in validation testing).

Note that as TDES CFB1 and AES CFB1 support has been added to the 0.9.8 branch following 
0.9.8k the fipsalgtest.pl defaults will change accordingly, so use of recent 
fipsalgtest.pl versions with the original v1.2 code will require that the options -disable-
aes-cfb1 and --disable-des3-cfb1 be specified.

Page 60 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Appendix C Example OpenSSL Based Application

This example shows a simple application using OpenSSL cryptography which will qualify as FIPS 
140-2 validated when built and installed in accordance with the procedures in §5.  In this 
application all cryptography is provided through the FIPS  Object Module and the FIPS mode 
initialization is performed via the FIPS_mode_set() call.  The command generates a HMAC-
SHA-1 digest of an input stream or a file, using the same arbitrary key as the OpenSSL FIPS 
Module file integrity check:

$ ./hmac -v hmac.c
FIPS mode enabled
8f2c8e4f60607613471c11287423f8429b068eb2
$
$ ./hmac < hmac.c
8f2c8e4f60607613471c11287423f8429b068eb2
$

Note this sample command is functionally equivalent to:

env OPENSSL_FIPS=1 openssl -hmac etaonrishdlcupfm hmac.c

The OPENSSL_FIPS=1 environment variable enables FIPS mode for a openssl command 
generated from a FIPS capable OpenSSL distribution.

Makefile

CC = gcc
OPENSSLDIR = /usr/local/ssl
LIBCRYPTO = $(OPENSSLDIR)/lib/libcrypto.a
INCLUDES = -I$(OPENSSLDIR)/include
CMD     = hmac
OBJS = $(CMD).o

$(CMD): $(OBJS)
    FIPSLD_CC=$(CC) $(OPENSSLDIR)/bin/fipsld -o $(CMD) $(OBJS) \

$(LIBCRYPTO)

$(OBJS): $(CMD).c
    $(CC) -c $(CMD).c $(INCLUDES)

clean:
rm $(OBJS)

Note the line

    $(OPENSSLDIR)/fips/fipsld -o $(CMD) $(OBJS)

Page 61 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

uses the fipsld command from the distribution source tree to perform the function of verifying 
the fipscanister.o digest and generating the new embedded digest in the application 
executable object.

Source File

/* 
   Sample application using FIPS mode OpenSSL.

   This application will qualify as FIPS 140-2 validated when built,
   installed, and utilized as described in the "OpenSSL FIPS 140-2
   Security Policy" manual.

   This command calculates a HMAC-SHA-1 digest of a file or input data
   stream using the same arbitrary hard-coded key as the FIPS 140-2
   source file build-time integrity checks and runtime executable
   file integrity check.
*/

#include <stdio.h>
#include <string.h>
#include <openssl/hmac.h>

static char label[] = "@(#)FIPS approved SHA1 HMAC";

static void dofile(FILE *fp)
    {
    HMAC_CTX ctx;
    unsigned char hmac_value[EVP_MAX_MD_SIZE];
    int hmac_len, i;
    char key[16] = "etaonrishdlcupfm";
    char buf[256];

    /* Generate digest of input stream */ 
    HMAC_Init(&ctx, key, sizeof(key), EVP_sha1());
    while(fgets(buf,sizeof(buf)-1,fp)) {
        HMAC_Update(&ctx, buf, strlen(buf));
    }
    HMAC_Final(&ctx, hmac_value, &hmac_len);
    HMAC_cleanup(&ctx);
    
    for(i = 0; i < hmac_len; i++) printf("%02x", hmac_value[i]);
        printf("\n");
    return;
}

main(int argc, char *argv[])
    {
    char *opt = NULL;
    int verbose = 0;

Page 62 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

    int fipsmode = 1;
    FILE *fp = stdin;
    int i;

    /* Process command line arguments */ 
    i = 0;
    while(++i < argc) {
        opt = argv[i];
        if (!strcmp(opt,"-v")) verbose = 1;
        else if (!strcmp(opt,"-c")) fipsmode = 0;
        else if ('-' == opt[0]) {
            printf("Usage: %s <filename>\n", argv[0]);
            puts("Options:");
            puts("\t-c\tUse non-FIPS mode"); 
            puts("\t-v\tVerbose output"); 
            exit(1);
        }
        else break;
    }
 
    /* Enter FIPS mode by default */
    if (fipsmode) {
        if(FIPS_mode_set(1)) {
            verbose && fputs("FIPS mode enabled\n",stderr);
        }
        else {
            ERR_load_crypto_strings();
            ERR_print_errors_fp(stderr);
            exit(1);
        }
    }

    if (i >= argc) {
        dofile(fp);
    }
    else {
        while(i < argc) { 
            opt = argv[i];
            if ((fp = fopen(opt,"r")) == NULL) {
                fprintf(stderr,"Unable to open file \"%s\"\n", opt);
                exit(1);
            }
        dofile(fp);
        fclose(fp);
        i++;
        }
    }

    exit(0);
}

Page 63 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Appendix D FIPS API Documentation

D.1 FIPS_mode

NAME

FIPS mode - NIST FIPS 140-2 Approved mode of operation

DESCRIPTION

When built with the fips config option in accordance with some additional
procedural requirements the OpenSSL FIPS Object Module can be used to satisfy
requirements for FIPS 140-2 validated cryptography.

OVERVIEW

The OpenSSL FIPS Object Module must be built with the fips config option.  The
application must call FIPS_mode_set() to enable FIPS mode.  When in FIPS mode only
the FIPS approved encryption algorithms
are usable:

+RSA

+DSA

+DES in CBC, (CFB1), CFB8, CFB64, ECB, OFB modes

+DH

+AES in CBC, (CFB1), CFB8, CFB128, ECB, OFB modes with 128/192/256 bit keys

+SHA-1, SHA-2

+HMAC

Other non-FIPS approved algorithms such a Blowfish, MD5, IDEA, RC4, etc. are
disabled in FIPS mode.

If the FIPS power-up self-test fails subsequent cryptographic operations are disabled 
and the application will have to exit.

To be considered FIPS 140-2 validated the OpenSSL FIPS Object Module must use the
validated version of the FIPS specific OpenSSL source code.

While most platforms and applications can use the OpenSSL FIPS Object Module to
satisfy NIST requirements for FIPS 140-2 validated cryptography there are additional 
additional requirements beyond the call to FIPS_mode_set().  A more complete discussion
of the OpenSSL FIPS mode can be found in the OpenSSL FIPS 140-2 Security Policy which
can be found at http://csrc.nist.gov/cryptval/140-1/140sp/140sp1051.pdf. 

Information about FIPS 140 can be found at http://csrc.nist.gov/cryptval/.

NOTES

The power-up self-test can take a significant amount of time on slower systems.

HISTORY

Page 64 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

FIPS mode support was introduced in version m of OpenSSL.

SEE ALSO

FIPS_mode_set(7)

D.2 FIPS_mode_set(), FIPS_selftest()

NAME

FIPS_mode_set, FIPS_selftest - perform FIPS power-up self-test

SYNOPSIS

#include <openssl/fips/fips.h>
 
int FIPS_mode_set(int ONOFF)

int FIPS_selftest(void)

DESCRIPTION

FIPS_mode_set() enables the FIPS mode of operation for applications
that have complied with all the provisions of the OpenSSL FIPS 140-2 Security
Policy.  Successful execution of this function call with non-zero ONOFF is the
only way to enable FIPS mode.  After verifying the integrity of the executable
object code using the stored digest FIPS_mode_set() performs the power-up self-test.

When invoked with ONOFF of zero FIPS_mode_set() exits FIPS mode.

FIPS_selftest() can be called at any time to perform the FIPS power-up self-test.

If the power-up self-test fails subsequent cryptographic operations
are disabled.  The only possible recovery is a successful re-invocation of
FIPS_mode_set() which is unlikely to work unless the original path was incorrect.

RETURN VALUES

A return code of 1 indicates success, 0 failure.

SEE ALSO

FIPS_mode(7)

HISTORY

FIPS support was introduced in version m of OpenSSL.

D.3 Error Codes

In order to minimize the size of the FIPS module only numeric error codes are returned.  When 
used in conjunction with a FIPS capable OpenSSL distribution these numeric codes will 

Page 65 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

automatically be converted to the usual text format for display, but the FIPS specific standalone 
utilities print out numerical error codes.  These can be interpreted with the openssl errstr 
command or by checking the source file at the referenced location:

$ ../util/shlib_wrap.sh ./fips_shatest
ERROR:2d06c071:lib=45,func=108,reason=113:file=fips.c:line=274:1,129d0
$
$ openssl errstr 2d06c071
error:2D06C071:FIPS routines:FIPS_mode_set:unsupported platform
$ 

The FIPS_mode_set()call or other function calls in FIPS mode can return any of the following 
errors:

FIPS_R_CANNOT_READ_EXE "cannot read exe"

FIPS_R_CANNOT_READ_EXE_DIGEST "cannot read exe digest"

FIPS_R_CONTRADICTING_EVIDENCE "contradicting evidence"

FIPS_R_EXE_DIGEST_DOES_NOT_MATCH "exe digest does not match"

FIPS_R_FINGERPRINT_DOES_NOT_MATCH "fingerprint does not match"
The integrity test has failed.

FIPS_R_FINGERPRINT_DOES_NOT_MATCH_NONPIC_RELOCATED
"fingerprint does not match nonpic relocated"

This Microsoft Windows specific error indicates that there might be a DLL address conflict which needs to be 
addressed by re-basing the offending DLL.

FIPS_R_FINGERPRINT_DOES_NOT_MATCH_SEGMENT_ALIASING
“fingerprint does not match segment aliasing"

This error is returned when a defective compiler has merged .rodata (read-only) and .data (writable) segments. 
This situation effectively degrades the read-only status of constant tables and leaves them without hardware 
protection, thus jeopardizing the FIPS mode of operation.

FIPS_R_FIPS_MODE_ALREADY_SET "fips mode already set"

FIPS_R_INVALID_KEY_LENGTH "invalid key length"

FIPS_R_KEY_TOO_SHORT "key too short"

FIPS_R_NON_FIPS_METHOD "non fips method"
Attempted non FIPS-compliant DSA usage.

FIPS_R_PAIRWISE_TEST_FAILED "pairwise test failed"
One or more of the algorithm pairwise consistency tests has failed.

FIPS_R_RSA_DECRYPT_ERROR "rsa decrypt error"

FIPS_R_RSA_ENCRYPT_ERROR "rsa encrypt error"

FIPS_R_SELFTEST_FAILED "selftest failed"
One or more of the algorithm known answer tests has failed.

FIPS_R_TEST_FAILURE "test failure"

FIPS_R_UNSUPPORTED_PLATFORM "unsupported platform"
Indicates the validity of the digest test is unknown for the current platform.

Page 66 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Appendix E Platform Specific Notes
Note: the material in this appendix will be removed from upcoming revisions of this document and 
relocated elsewhere.  That new location will be at, or linked from, 
http://www.openssl.org/docs/fips/.

E.0 Nomenclature for ABIs:

Among other things an ABI is characterized by implicit (or default) integer, long integer, and 
pointer sizes with the letters I, L, P:

● I stands for sizeof(int)
● L stands for sizeof(long)
● P stands for size(void*), i.e. the size of a pointer

For example, HP-UX for Itanium/IA64 implements two separate ABIs, 32 bit “ILP32” and 64 bit 
“I32/LP64”.    In the first case sizeof(int)=sizeof(long)=sizeof(void*)=4 or 32 bits, while for the 
latter sizeof(int)=4 or 32 bits and sizeof(long)=sizeof(void*)=8 or 64 bits.

Considerations for Linux:

Due to the diversity of hardware platforms supported by Linux no universal guidance can be given. 
For Linux on x86_64, 32 bit code generation could be performed by installing 32-bit Linux x86 on 
an alternative partition or booting it off a "live CD" (or rather "live DVD" as there is insufficient 
room for a compiler on a CD).  For other 64 bit platforms the generation of 32 bit code is more of a 
challenge, most likely requiring access to old hardware on a corresponding 32-bit Linux can be 
booted.  However, while being perfectly capable of running corresponding legacy 32-bit *user-
land* code, most 64-bit non-x86_64 hardware can't run corresponding 32-bit kernels (or rather 
those 32-bit kernelsl not won't know how to handle such CPU).  Note that there are some "pure" 
64-bit Linux implementation which have no 32-bit legacy counterpart, such as Alpha and Itanium. 

Considerations for HP-UX:

HP-UX PA-RISC: It is not known if there are any HP-UX systems that capable of booting either 
32- or 64-bit kernels.  Presumably old hardware would be needed to compile 32-bit PA-RISC 
binaries. 

HP-UX Itanium: There is only a 64-bit kernel and no way to compile ILP32 Itanium code.  Note 
incidentally a subtle point, there is no such thing as legacy 32-bit Itanium code.  The ILP32 Itanium 
ABI was introduced to facilitate porting or re-compilation of non-64-bit safe applications from 
other 32-bit platforms, a backward compatibility of sorts that is really a source code compatibility. 

Page 67 of 79
FIPS 140-2 User Guide

http://www.openssl.org/docs/fips/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

This is apart from the fact that HP-UX Itanium can run legacy 32-bit PA-RISC binaries via 
emulation.

Considerations for Windows:

Microsoft Windows Win64 only implements “IL32/P64” where  sizeof(int)=sizeof(long)=32 bits 
and  sizeof(void*)=64 bits.  For Win64 “non 64 bit safe” code is code that is compiled for Win64 
but which  treats pointers as if they were 32 bit values, and the Win64 kernel can be instructed to 
execute any particular .exe to a  4Gb address space (the size of a 32 bit pointer).

The FIPS Object Module built on Win64 can be used with either “64 bit safe” or “non-64 bit safe” 
application code.  

Microsoft Visual Studio C++ 2005 comes with a number of different compilers (cl.exe programs). 
Depending on the install options and target system types several different tool chains may be 
present.  For example, on a Win32/X86 system the following may be present:

1. Win32/x86 cl.exe generating x86 code
2. Win32/x86 cl.exe generating x86_64(x64) code
3. Win32/x86 cl.exe generating IA64 code
4. Win32/x86 cl.exe generating ARM code (for Mobile PC)

A Win64/x86_64 (aka “x64” in Windows-speak) system will have all of the above plus

5. Win64/x64 cl.exe generating x86_64(x64) code

The Platform SDK and DDk for Win64 also adds one more compiler,

6. Win64/IA64 cl.exe generating IA64 code

Only the first four will be present on a Win32/x86 system.  Note that there are two different 
compilers generating x86_64 code.  On either Win32 or Win64 at least three of these will be cross-
compilers with no option to run code on the same system and hence cannot be used for building the 
FIPS Object Module.  Note it doesn't really matter which compiler is used as long as the resulting 
binary code can be executed.  For example, on Win64 x86_64 systems either the Win32/x86 cl.exe 
generating x86_86 code (which can be qualified as cross-compiler) or Win64/x64 cl.exe may be 
used.  Likewise for Itanium, either the Win32/x86 cl.exe generating IA64 code (which can be 
qualified as a cross-compiler) or Win64/IA64 cl.exe may be used.  The only difference in this case 
would be compilation time as the because Win32/x86 compiler would be slower. 

To build Win32/x86 compatible code on a Win64 system start

%SYSTEMROOT%\syswow64\cmd.exe

Page 68 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

and make sure a cl.exe  generating x86 code is in %PATH%.

Most people associate the term “backward compatibility” with backward binary compatibility, as 
when a 64-bit system is capable of running 32-bit binary code (for the same OS) without 
recompilation.  For example, a x86_64 system can run x86 binary code, a sparcv9 system can run 
sparcv8 binary code, etc.  Win64 can do this, i.e. both Win64 x86_64 and Win64 Itanium can run 
Windows x86 binaries.  But Win64 can do something else as well; the Win64 kernel can provide a 
run-time environment for re-compiled non-64-bit safe applications.  Thus backwards compatibility 
in Win64 is two-fold: binary and "source."

Note that backward "source" compatibility in Win64 (on both x86_64 and Itanium) is nothing like 
ILP32 in HP-UX Itanium.  In HP-UX Itanium ILP32 applications have a distinct binary format, 
require separate sets of run-time libraries such as libc.so, and use dedicated system call interfaces. 
The Win64 kernel on the other hand can simply can be instructed to restrict a the address space for 
a particular application to 2GB.  That restriction makes it possible for that application to safely cast 
pointers to 32-bit integer and back, a characteristic of non-64-bit safe programs.  But this is done 
with no dedicated ILP32 ABI, no special ntdll.dll, nothing but a single bit in .exe header, which can 
be set in the link stage with /LARGEADDRESSAWARE:NO (and even manipulated subsequently 
with editbin).  This capability means that the same .dll can be used in both 64-bit safe and non-64-
bit safe applications.

E.1 Compiler placement of read-only data

The in-core hashing mechanism requires that read-only data be placed in a read-only data segment. 
The FIPS_set_mode() function is designed to detect situations where this requirement is not 
met.  One example of this problem is on 32 bit34 HP-UX PA-RISC when using gcc to generate 
position independent code (-FPIC).  At least some versions of gcc do not discriminate read-only 
data and put it into a writable data segment.  This problem has been observed with gcc 3.2.3 and 
3.4.2.  This placement effectively voids the embedded digest value and the verification procedure is 
bound to fail.

A simple test program will demonstrate the problem.  On a 32 bit HP-UX PA-RISC system using 
gcc the commands

echo "const int i=0;" > a.c 
gcc -c a.c 
size a.o 
gcc -c -fPIC a.c 
size a.o 
gcc -v

34Note this problem occurs for 32 bit code whether executed on a 32 or 64 bit processor.  64 bit PA-RISC code has not 
been observed to exhibit this problem.

Page 69 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

generate the output

8 + 0 + 0 = 8
0 + 8 + 0 = 8
Reading specs from /usr/local/lib/gcc-lib/hppa2.0n-hp-hpux11.00/3.2.3/specs
Configured with: ../gcc-3.2.3/configure --enable-languages=c,c++ --with-gnu-as
Thread model: single
gcc version 3.2.3

On the same 32 bit HP-UX PA-RISC system using the HP C compiler the commands:

echo "const int i=0;" > a.c 
cc -Ae -c a.c
cc -Ae +Z -c a.c
cc -V -Ae -c a.c

give the result

4 + 0 + 0 = 4
4 + 0 + 0 = 4
cpp.ansi: HP92453-01 B.11.11.32871.GP HP C Preprocessor (ANSI)
ccom: HP92453-01 B.11.X.34412-34415.GP HP C Compiler

The workaround for this bug is to advise users to use the HP C compiler for their 32-bit HP-UX 
PA-RISC applications until/if gcc is fixed.

E.2 Bugs in Microsoft TLS Implementation

In FIPS mode the number of available ciphersuites is restricted to those using 3DES, AES, SHA-1 
and SHA-2, resulting in negotiation of AES and 3DES in CBC mode with a TLS client.  At least 
some versions of the Microsoft SSL/TLS implementation of CBC are unable to handle the empty 
fragments inserted in CBC mode by OpenSSL as a countermeasure for a minor security issue.

A discussion of this security issue can be found at http://www.openssl.org/~bodo/tls-cbc.txt.  The 
general consensus of the OpenSSL developers who implemented the FIPS mode is that this 
vulnerability is relatively minor.

This use of empty fragments can be disabled with the function call

SSL_CTX_set_options(ctx,SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)

Note the rudimentary https server provided by the (FIPS compatible) openssl command can be used 
to test for this bug:

OPENSSL_FIPS=1 openssl s_server -www [-debug]

Page 70 of 79
FIPS 140-2 User Guide

http://www.openssl.org/~bodo/tls-cbc.txt.T


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Note that TLS is disabled by default for the Microsoft Internet Explorer (go to “Tools” menu, select 
“Internet Options...”, select “Advanced”, scroll top the bottom and enable “Use TLS 1.0”).

E.3 Solaris and gcc Problems

There is a known problem with some versions of gcc35 on x86 Solaris where a program linked with 
the OpenSSL libcrypto will segfault in "_init".

Every object module consists of segment fractions which are merged by the link-editer.  For 
example, .text fractions from all *.o files are concatenated to form the program .text segment. 
Every such fraction is allowed to specify alignment in the resulting image and the link-editer is 
expected to align it accordingly.   When different fractions specify different alignments the link-
editer pads the previous fragment until the alignment requirement for the currently processed 
fragment is met.  The value used for padding varies by implementation.  Solaris ld uses a value of 
zero, which means that for executable segments machine code is padded with zeros.  That means 
that if the processor attempts to interpret that zero padding (opcode 0), it would execute a series of 
'add %al,(%eax)' instructions.  Depending on the value in register %eax that instruction might 
work or it might incur a segmentation violation.   But, even if the instruction does not segfault it 
can cause unpredicted behavior later on.  A better choice of padding value would be one which 
maps into an instruction which has no effect on the processor state.  In x86 context 0x90 (the NOP 
machine instruction) would be an appropriate value. 

Why is only the .init segment is affected and not .text?  Because .text fragments contain 
either complete functions and padding zeros are preceded by flow transfer instructions, such as 
return or branch), or code fragments that never complete (e.g. calling "exit this process" system 
call).  In other words padding is never executed in .text segments.  The .init fragments on the 
other hand contain pure code and are concatenated to form a linear stream of machine code.  The 
padding values are therefore executed as machine instructions and non-NOP padding is bound to 
have undesired side effects such as segmentation violation. 

Andy Polyakov has prepared a patch of sorts to address this issue 
(http://www.openssl.org/~appro/values.c).   This “patch”, a single file which is both a shell script 
and a C source file,  modifies the Solaris gcc development environment only, not the OpenSSL 
code.  On Solaris linking with libc requires linking with an object module which instantiates the 
_lib_version constant.  This object module is commonly provided by Sun and is linked first prior 
to crtbegin.o.   The patch procedure strategically places a replacement module36 on the gcc 
library search path.  But in addition to _lib_version the replacement module contains an .init 

35And with the Sun C compiler also, but OpenSSL currently does not use assembler optimizations with that compiler.
36The values.c patch actually installs several files with names of the form values-X?.o.  Which of these files is 
referenced depended on the compiler options.  For example, “cc -Xc ...” references values-Xc.o, “, “cc 
-Xt ...” references values-Xt.o, and gcc references values-Xc.o if -ansi is specified and values-
Xa.o otherwise.

Page 71 of 79
FIPS 140-2 User Guide

http://www.openssl.org/~appro/values.c


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

snippet, which simply checks if the value following the snippet code is zero (i.e., the troublesome 
padding) or not and conditionally skips over or executes it. 

The alignment of this replacement module .init fragment and the OpenSSL .init fragments is 
chosen carefully to work with both older and newer versions of gcc.  If OpenSSL .init fragments 
were not aligned the way they are, then padding following the last one would cause the problem 
with older versions of gcc.  Lack of replacement module padding preceding the first OpenSSL .init 
fragment would cause the problem with newer versions of gcc.  The patch addresses both older and 
newer gcc versions. 

Note the end-user does not need to patch anything to run the linked application.  Replacement 
modules are linked statically (just like the original ones) into either application or shared object 
code.

The gcc installation modifications can be reverted by removing the files “values-X*.o” from the 
directory containing libgcc.a.  The location of that directory can be obtained by executing “gcc 
-print-libgcc-file-name”.

E.5 HP-UX Vendor Support

Pre-compiled, pre-packaged supported versions of OpenSSL, the OpenSSL FIPS Object Module, 
and the prngd random number generator for HP-UX are available at 
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?
productNumber=OPENSSL11I.

HP was a sponsor of the original OpenSSL FIPS Object Module validation.

E.6 Apple OS X Support

The build environment can be specified by the auxiliary files:

setenv-reset.sh
setenv-darwin-i386.sh (for 32 bit)

setenv-darwin-x86_64.sh (for 64 bit)

These files can be obtained from:

http://openssl.com/fips/1.2/platforms/osx/

Note the instructions are very similar for the two platforms (32 and 64 bit), the only essential 
difference being the use of the appropriate environment settings.

Page 72 of 79
FIPS 140-2 User Guide

http://openssl.com/fips/1.2/platforms/osx/
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=OPENSSL11I
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=OPENSSL11I


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

First we set the environment variables to define the target platform in the appropriate workarea 
containing the source files:

$ cd  openssl-fips-1.2.4
$ .  ../setenv-reset.sh (note leading dot ".")

$ .  ../setenv-darwin-i386.sh (for 32 bit)

$ .  ../setenv-darwin-x86_64.sh (for 64 bit)

At this point we are ready to commence the standard FIPS canister build for the target platform.

$ ./config  fipscanisterbuild
should see several screens of output
$ make
should see lots of output
$ cd  ..

The architecture type can be confirmed with the lipo command:

$ lipo  -info  openssl-fips-1.2.4/test/fips_algvs 
Non-fat file: openssl-fips-1.2.4/test/fips_algvs is 
architecture: i386 (for 32 bit)

Non-fat file: openssl-fips-1.2.4/test/fips_algvs is 
architecture: x86_64 (for 64 bit)

$

Note the make command automatically generates the fips_algvs utility, no separate 
make build_algvs command is necessary.

The fips_algvs utility can now be invoked:

$ openssl-fips-1.2.4/test/fips_algvs  fips_test_suite
$ 

FIPS-mode test application 

1. Non-Approved cryptographic operation test... 
a. Included algorithm (D-H)...successful 

2. Automatic power-up self test...successful 
3. AES encryption/decryption...successful 

.

.

.
char buffer key after overwriting: 

ccfe6b7c02eb009d3157a67a4c2fe4e5 

Page 73 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

successful as expected 

All tests completed with 0 errors 
$

E.7 Apple iOS Support
The build environment requires the auxiliary files:

setenv-reset.sh
setenv-darwin-i386.sh
setenv-ios-10.sh (for use with OS X 10)

setenv-ios-11.sh (for use with OS X 11)

ios-incore-1.2.4.tar.gz

These files can be obtained from:

http://openssl.com/fips/1.2/platforms/ios/

The ios-incore.tar.gz file contains an OS X and iOS specific "incore" utility to determine 
the object code digest.

The ios-project.tar.gz file contains OS X and iOS specific files that define Xcode 
"project" information needed to create the test suite application for the iOS platform.

Setup

On the OS X build system:

$ gunzip  -c  openssl-fips-1.2.4.tar.gz  |  tar  xf  -

As the integrity check requires calculation of a fingerprint and the Darwin host cannot directly 
execute the target images, we use the cross-compilation approach of calculating the incore image 
on the build host using a separate "incore" utility.

To compile the "incore" utility.

$ .  setenv-reset.sh (note the leading dot ".")

$ .  setenv-darwin-i386.sh (note the leading dot ".")

$ cd   openssl-fips-1.2.4
$ gunzip  -c  ../ios-incore-1.2.4.tar.gz  |  tar  xf  -
$ ./config  fipscanisterbuild
should see several screens of output
$ make
should see lots of output

Page 74 of 79
FIPS 140-2 User Guide

http://openssl.com/fips/1.2/platforms/ios/


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

$ cd  iOS
should see several lines of output
$ make

The output of the build process is a utility incore_macho that should be installed in a location  in 
the PATH (this is done automatically for this build process).  Note this utility is a native binary that 
executes on the Darwin host.

Confirm the utility works:

$ ./incore_macho
usage:
        ./incore_macho [--debug] [-exe|-dso] executable
$

Then cleanup the build which was just done in order to construct the incore utility – it is no longer 
needed once incore_macho has been built.

$ cd   ..
$ make   clean (remove host build except for iOS directory)

$ rm   -f   *.dylib (remove left over dynamic libraries)

This instructions from this point assume the build environment has been prepared, including the 
creation of the "incode_macho" utility, as documented in the previous section.

Cross-compilation

This step can be performed either via a SSH command line session or in a terminal window in a 
graphical session (e.g. VNC).

First we set the environment variables to define the target platform, and confirm the pathnames are 
correct in the first window.  Note that while these commands look similar to those recently 
executed for the generation of the incore utility, there are some subtle differences.  This time 
around we are cross-compiling binaries for the iOS target device:

$ cd   openssl-fips-1.2.4
$ .   ../setenv-reset.sh (note the leading dot ".")

$ .   ../setenv-ios-NN.sh (note the leading dot ".")

$ llvm-gcc    -v (confirm we have the PATH right)

Target: i686-apple-darwin10
Using built-in specs. 
Target: i686-apple-darwin11 
Configured with: /private/var/tmp/llvmgcc42/llvmgcc42-
2336.1~1/src/configure --disable-checking --enable-werror 

Page 75 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

--prefix=/Developer/usr/llvm-gcc-4.2 --mandir=/share/man 
--enable-languages=c,objc,c++,obj-c++ --program-prefix=llvm- 
--program-transform-name=/^[cg][^.-]*$/s/$/-4.2/ --with-
slibdir=/usr/lib --build=i686-apple-darwin11 --enable-
llvm=/private/var/tmp/llvmgcc42/llvmgcc42-2336.1~1/dst-
llvmCore/Developer/usr/local --program-prefix=i686-apple-
darwin11- --host=x86_64-apple-darwin11 --target=i686-apple-
darwin11 --with-gxx-include-dir=/usr/include/c++/4.2.1 
Thread model: posix 
gcc version 4.2.1 (Based on Apple Inc. build 5658) (LLVM 
build 2336.1.00) 
$ 

At this point we are ready to commence the standard FIPS canister build for the target platform.

$ ./config   fipscanisterbuild
should see several screens of output
$ make
should see lots of output
$ make   install
should see lots of output

The output will be installed into the /usr/local/ssl/Release-iphoneos area (the 
installation location can be adjusted in the setenv-ios-NN.sh script). 

Note we can confirm that these binaries are for the iOS target device:

$ lipo  -info  /usr/local/ssl/Release-iphoneos/lib/fipscanister.o 
Non-fat file: /usr/local/ssl/Release-
iphoneos/lib/fipscanister.o is architecture: armv7 
$

Page 76 of 79
FIPS 140-2 User Guide



OpenSSL FIPS Object Module
FIPS 140-2 User Guide

Appendix F Restrictions on the Export of Cryptography

Government restrictions and regulations on the use, acquisition, and distribution of cryptographic 
products are a matter of concern for some potential users.

F.1 Open Source Software

In the United States the current export regulations appear to more or less leave open source 
software in source code format alone, except for a reporting requirement to the Bureau of Industry 
and Security (BIS) of the U.S. Department of Commerce; see 
http://bxa.doc.gov/Encryption/pubavailencsourcecodenofify.html.

When in doubt consultation with legal experts would be appropriate.  An example of an E-mail 
message sent to comply with this reporting requirement is:

To: crypt@bis.doc.gov, enc@nsa.gov, web_site@bis.doc.gov
Subject: TSU NOTIFICATION

SUBMISSION TYPE: TSU
SUBMITTED BY: Steve Marquess
SUBMITTED FOR: Veridical Systems, Inc.
POINT OF CONTACT: Steve Marquess
PHONE and/or FAX: 301-831-8447
MANUFACTURER: N/A
PRODUCT NAME/MODEL #: OpenSSL
ECCN: 5D002
 
NOTIFICATION: http://cvs.openssl.org/dir
 
Employee(s) of Veridical Systems, Inc. are participating in the
development of the freely available open source OpenSSL product by
providing feedback on new releases, by requesting new features, and by
correspondence either to the developer and user mailing lists or
directly with the core developers.   This correspondence may include
suggested source code fragments or patches.  All versions of any such
contributions incorporated in any of the OpenSSL software will be
publicly accessible at http://cvs.openssl.org/dir.
 

No response was received (or expected).

Other links of interest:

http://bxa.doc.gov/Encryption/ChecklistInstr.htm

Page 77 of 79
FIPS 140-2 User Guide

http://bxa.doc.gov/Encryption/ChecklistInstr.htm
http://cvs.openssl.org/dir
http://cvs.openssl.org/dir
http://bxa.doc.gov/Encryption/pubavailencsourcecodenofify.html


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

F.2 “Export Jobs, Not Crypto”

For software exported in binary form the situation is far less certain.  As incredible and 
unbelievably opposed to common sense as it seems, current U.S. export controls appear to restrict 
the export from the U.S. of software products that use the OpenSSL product, even if OpensSSL is 
used exclusively for all cryptographic functionality.

From what has been relayed from several vendors affected by these export restrictions, export 
approval for software utilizing OpenSSL is contingent on a number of factors including the type of 
linking (static build-time linking or dynamic run-time linking).  Static linking is more desirable, 
apparently something to do with the concept of an “open cryptographic interface”.  Evidently a 
product where the end user can easily substitute a new cryptographic library (a newer version of 
OpenSSL, say) is not permissible.

Needless to say the written regulations and expert commentary are varied, so advice of legal 
counsel is recommended.  The only other safe course of action would be to pay non-U.S. citizens to 
develop the cryptographic software overseas and import it into the U.S., as imports are not 
restricted.  Foreigners who benefit financially from this situation refer to the U.S. “export jobs, not 
crypto” policy.

Links of interest:

http://www.axsmith.com/Encryption_Law.htm
http://library.findlaw.com/2000/Jan/1/128443.html
http://cryptome.org/bxa-bernstein.htm

Page 78 of 79
FIPS 140-2 User Guide

http://cryptome.org/bxa-bernstein.htm
http://library.findlaw.com/2000/Jan/1/128443.html
http://www.axsmith.com/Encryption_Law.htm


OpenSSL FIPS Object Module
FIPS 140-2 User Guide

APPENDIX G Security Policy Errata

The formal Security Policy (http://csrc.nist.gov/groups/STM/cmvp/documents/140-
1/140sp/140sp1051.pdf) is a controlled document and so, as with the validated software proper, 
cannot readily be changed.  This section lists known errors in that document.

Appendix A

The entry “x84-64” in the last row of the table should be “x86-64”.  The sentence “Verify that the 
SHA-1 HMAC digest ...” in Installation Instructions should read “Verify the SHA-1 HMAC 
digest...”.  Reported by Thomas Hruska of Shining Light Productions.

Appendix B

The link in Appendix B on page 16 of the original published OpenSSL FIPS 140-2 Security Policy 
Version 1.2 (dated August 8, 2008) shows as http://www.openssl.org/source/openssl-fips-1.2.tar.gz 
but incorrectly links to http://www.openssl.org/source/OpenSSL-fips-1.0.tar.gz.  Reported by 
Henry P. Unger of Hitech Systems, Inc.  This error has been corrected in the subsequent Security 
Policy dated November 3, 2009.

Page 79 of 79
FIPS 140-2 User Guide

http://www.openssl.org/source/OpenSSL-fips-1.0.tar.gz
http://www.openssl.org/source/openssl-fips-1.2.tar.gz
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1051.pdf

	Table of Contents
	1. Introduction
	2. Background
	2.1 Terminology
	2.2 The FIPS Module and Integrity Test
	2.3 The FIPS Integrity Test
	2.3.1 Requirement for Exclusive Integrity Test
	2.3.2 Requirement for Fixed Object Code Order

	2.4 The File Integrity Chain
	2.4.1 Source File (Build Time) Integrity
	2.4.2 Object Module (Link Time) Integrity
	2.4.3 Application Executable Object (Run Time) Integrity

	2.5 Relationship to the OpenSSL API
	2.6 FIPS Mode of Operation
	2.6.1 Initialization
	2.6.2 Algorithms Available in FIPS Mode


	3. Compatible Platforms
	3.1 Build Environment Requirements
	3.2 Known Supported Platforms
	3.2.1 Code Paths and Command Sets
	3.2.2 Assembler Optimizations
	3.2.3 32 versus 64 Bit Architectures


	4. Generating the FIPS Object Module
	4.1 Delivery of Source Code
	4.1.1 Creation of a FIPS Object Module from Other Source Code
	4.1.2 Verifying Integrity of Distribution
	4.1.3 Verifying Integrity of the Full Distribution for the FIPS Object Module

	4.2 Building and Installing the FIPS Object Module with OpenSSL (Unix/Linux)
	4.2.1 Building the FIPS Object Module from Source
	4.2.2 Installing and Protecting the FIPS Object Module
	4.2.3 Building a FIPS Capable OpenSSL

	4.3 Building and Installing the FIPS Object Module with OpenSSL (Windows)
	4.3.1 Building the FIPS Object Module from Source
	4.3.2 Installing and Protecting the FIPS Object Module
	4.3.3 Building a FIPS Capable OpenSSL


	5. Creating Applications Which Reference the FIPS Object Module
	5.1 Exclusive Use of the FIPS Object Module for Cryptography
	5.2 FIPS Mode Initialization
	5.3 Generate Application Executable Object
	5.3.1 Linking under Unix/Linux
	5.3.2 Linking under Windows

	5.4 Application Implementation Recommendations
	Provide an Indication of FIPS Mode
	Graceful Avoidance of Non-FIPS Algorithms

	5.5 Documentation and Record-keeping Recommendations
	5.6 When is a Separate FIPS 140-2 Validation Required?

	6. Future Plans
	7. REFERENCES
	Appendix A OpenSSL Distribution Signing Keys
	OpenSSL Core Team PGP Keys

	Appendix B CMVP Test Procedure
	B.1 Building the Software - Linux/Unix
	B.2 Algorithm Tests - Linux/Unix
	B.3 Building the Software - Windows
	B.4 Algorithm Tests - Windows
	B.5 FIPS 140-2 Test - All Platforms
	B.6 Testvector Data Files and the mkfipsscr.pl Utility
	B.7 Files for a Runtime Validation
	B.8 Retrofitting the fipsalgtest.pl Utility

	Appendix C Example OpenSSL Based Application
	Makefile
	Source File

	Appendix D FIPS API Documentation
	D.1 FIPS_mode
	D.2 FIPS_mode_set(), FIPS_selftest()
	D.3 Error Codes

	Appendix E Platform Specific Notes
	E.0 Nomenclature for ABIs:
	E.1 Compiler placement of read-only data
	E.2 Bugs in Microsoft TLS Implementation
	E.3 Solaris and gcc Problems
	E.5 HP-UX Vendor Support
	E.6 Apple OS X Support
	E.7 Apple iOS Support

	Appendix F Restrictions on the Export of Cryptography
	F.1 Open Source Software
	F.2 “Export Jobs, Not Crypto”

	APPENDIX G Security Policy Errata

