

OpenSSL FIPS Object Module

Version 2.0.1 By the OpenSSL Software Foundation

OpenSSL FIPS 140-2 Security Policy

Version 2.0.1

June 26, 2012

Copyright Notice

Copyright © 2003-2012 the OpenSSL Software Foundation, Inc.

This document may be freely reproduced in whole or part without permission and without restriction.

Sponsored by:

Intersoft International, Inc.

Acknowledgments

The OpenSSL Software Foundation (OSF) serves as the "vendor" for this validation. Project management coordination for this effort was provided by:

Steve Marquess The OpenSSL Software Foundation 1829 Mount Ephraim Road Adamstown, MD 21710

+1 877-673-6775 marquess@opensslfoundation.com

with technical work by:

Stephen Henson 4 Monaco Place, Westlands, Newcastle-under-Lyme Staffordshire. ST5 2QT. England, United Kingdom

shenson@drh-consultancy.co.uk http://www.drh-consultancy.co.uk/

shenson@opensslfoundation.com

Andy Polyakov Chalmers University of Technology SE-412 96 Gothenburg Sweden

appro@openssl.org appro@fy.chalmers.se

Tim Hudson P.O. Box 6389 Fairfield Gardens 4103 Australia ACN 074 537 821

tjh@opensslfoundation.com tjh@cryptsoft.com

http://www.cryptsoft.com/

in coordination with the OpenSSL Team at www.openssl.org.

Validation testing was performed by InfoGard Laboratories. For information on validation or revalidations of software contact:

Mark Minnoch FIPS Program Manager, CISSP InfoGard Laboratories 709 Fiero Lane, Suite 25 San Luis Obispo, CA 93401

805-783-0810 tel 805-783-0889 fax mminnoch@infogard.com http://www.infogard.com/

Modification History

2011-06-15 Initial draft

References

Reference	Full Specification Name
[ANS X9.31]	Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001
[FIPS 180-3]	Secure Hash Standard
[FIPS 186-3]	<u>Digital Signature Standard</u>
[FIPS 197]	Advanced Encryption Standard
[FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC)
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
[SP 800-56A]	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
[SP 800- 67R1]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature Applications
[SP 800-90]	Recommendation for Random Number Generation Using Deterministic Random Bit Generators
[SP 800- 131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths

Table of Contents

1 Introduction	6
2 Tested Configurations	8
3 Ports and Interfaces	
4 Modes of Operation and Cryptographic Functionality	11
4.1 Critical Security Parameters and Public Keys	12
5 Roles, Authentication and Services	
6 Self-test	17
7 Operational Environment	19
8 Mitigation of other attacks	
Appendix A Installation and Usage Guidance	21
Appendix B Controlled Distribution File Fingerprint	
Appendix C Compilers	

1 Introduction

This document is the non-proprietary security policy for the OpenSSL FIPS Object Module, hereafter referred to as the Module.

The Module is a software library providing a C-language application program interface (API) for use by other processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a software module, multi-chip standalone module embodiment. The physical cryptographic boundary is the general purpose computer on which the module is installed. The logical cryptographic boundary of the Module is the fipscanister object module, a single object module file named *fipscanister.o* (Linux^{®1}/Unix^{®2} and Vxworks^{®3}) or *fipscanister.lib* (Microsoft Windows^{®4}). The Module performs no communications other than with the calling application (the process that invokes the Module services).

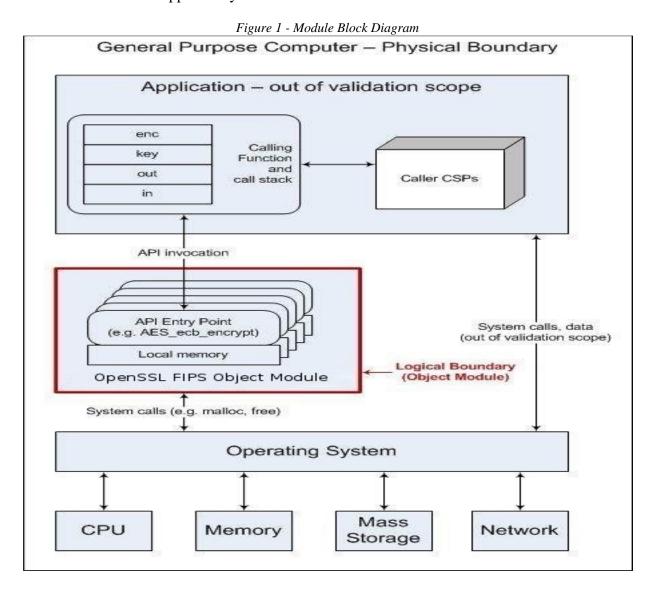
Note that the OpenSSL FIPS Object Module v2.0.1 is fully backwards compatible with all earlier revisions of the OpenSSL FIPS Object Module v2.0. The v2.0.1 Module incorporates support for new platforms without disturbing functionality for any previously tested platforms. The v2.0.1 Module can be used in any environment supported by the earlier revisions of the Module, and those earlier revisions remain valid.

The FIPS 140-2 security levels for the Module are as follows:

Security Requirement	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	2
Finite State Model	1
Physical Security	NA
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	3

¹ Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

² UNIX is a registered trademark of The Open Group


³ Vxworks is a registered trademark owned by Wind River Systems, Inc

⁴ Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Mitigation of Other Attacks NA

Table 1 – Security Level of Security Requirements

The Module's software version for this validation is 2.0.1. The 2.0.1 Module incorporates changes from the v2.0 module to support additional platforms. The 2.0.1 Module can be used in all the environments supported by the earlier v2.0 Module.

Page 7 of 26

2 Tested Configurations

#	Operational Environment	Processor	Optimiz- ations (Target)	EC	В
1	Android 2.2 (HTC Desire)	Qualcomm QSD 8250 (ARMv7)	NEON	P	U2
2	Android 2.2 (Dell Streak)	Qualcomm QSD 8250 (ARMv7)	None	P	U2
3	Microsoft Windows 7 32 bit	Intel Celeron (x86)	None	BKP	W2
4	uClinux 0.9.29	ARM 922T (ARMv4)	None	BKP	U2
5	Fedora 14	Intel Core i5 (x86)	AES-NI	ВКР	U2
6	HP-UX 11i (hpux-ia64-cc, 32 bit mode)	Intel Itanium 2 (IA64)	None	BKP	U1
7	HP-UX 11i (hpux64-ia64-cc, 64 bit mode)	Intel Itanium 2 (IA64)	None	ВКР	U1
8	Ubuntu 10.04	Intel Pentium T4200 (x86)	None	ВКР	U2
9	Android 3.0	NVIDIA Tegra 250 T20 (ARMv7)	None	P	U2
10	Linux 2.6.27	PowerPC e300c3 (PPC)	None	BKP	U2
11	Microsoft Windows 7 64 bit	Intel Pentium 4 (x86)	None	BKP	W2
12	Ubuntu 10.04 32 bit	Intel Core i5 (x86)	AES-NI	BKP	U2
13	Linux 2.6.33	PowerPC32 e300 (PPC)	None	ВКР	U2
16	Android 2.2	OMAP 3530 (ARMv7)	NEON	BKP	U2
19	VxWorks 6.8	TI TNETV1050 (MIPS)	None	BKP	U2
20	Linux 2.6	Broadcom BCM11107 (ARMv6)	None	ВКР	U2
21	Linux 2.6	TI TMS320DM6446 (ARMv4)	None	ВКР	U2
22	Linux 2.6.32	TI AM3703CBP (ARMv7)	None	ВКР	U2
23	Solaris 10 32bit	SPARC-T3 (SPARCv9)	None	BKP	U2
24	Solaris 10 64bit	SPARC-T3 (SPARCv9)	None	ВКР	U2
25	Solaris 11 32bit	Intel Xeon 5675 (x86)	None	ВКР	U2
26	Solaris 11 64bit	Intel Xeon 5675 (x86)	None	ВКР	U2
27	Solaris 11 32bit	Intel Xeon 5675 (x86)	AES-NI	ВКР	U2
28	Solaris 11 64bit	Intel Xeon 5675 (x86)	AES-NI	ВКР	U2

29	Oracle Linux 5 64bit	Intel Xeon 5675 (x86)	None	BKP	U2
30	CascadeOS 6.1 32bit	Intel Pentium T4200 (x86)	None	BKP	U2
31	CascadeOS 6.1 64bit	Intel Pentium T4200 (x86)	None	ВКР	U2
32	Ubuntu 10.04 32bit	Intel Pentium T4200 (x86)	None	ВКР	U1
33	Ubuntu 10.04 64bit	Intel Pentium T4200 (x86)	None	BKP	U1
34	Oracle Linux 5	Intel Xeon 5675 (x86)	AES-NI	BKP	U2
35	Oracle Linux 6	Intel Xeon 5675 (x86)	None	ВКР	U2
36	Oracle Linux 6	Intel Xeon 5675 (x86)	AES-NI	BKP	U2
37	Solaris 11 32bit	SPARC-T3 (SPARCv9)	None	ВКР	U2
38	Solaris 11 64bit	SPARC-T3 (SPARCv9)	None	ВКР	U2
39	Android 4.0	NVIDIA Tegra 250 T20 ARMv7)	None	P	U2
17	DSP Media Framework 1.4	TI C64x+	None	BKP	U2
40	Linux 2.6	Freescale PowerPC-e500	None	BKP	U2
41	Apple iOS 5.1	ARMv7	None	ВКР	U2
42	WinCE 6.0	ARMv5TEJ	None	ВКР	W2
43	WinCE 5.0	ARMv7	None	ВКР	W2
44	Android 4.0	OMAP 3	NEON	P	U2

Table 2 - Tested Configurations (B = Build Method; EC = Elliptic Curve Support). The EC column indicates support for prime curve only (P), or all NIST defined B, K, and P curves (BKP).

See Appendix A for additional information on build method and optimizations. See Appendix C for a list of the specific compilers used to generate the Module for the respective operational environments.

3 Ports and Interfaces

The physical ports of the Module are the same as the computer system on which it is executing. The logical interface is a C-language application program interface (API).

Logical interface type	Description
Control input	API entry point and corresponding stack parameters
Data input	API entry point data input stack parameters
Status output	API entry point return values and status stack parameters
Data output	API entry point data output stack parameters

Table 3 - Logical interfaces

As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the logical data output interface is inhibited. The module is single-threaded and in error scenarios returns only an error value (no data output is returned).

4 Modes of Operation and Cryptographic Functionality

The Module supports only a FIPS 140-2 Approved mode. Tables 4a and 4b list the Approved and Non-approved but Allowed algorithms, respectively.

Function	Algorithm	Options	Cert #
Random Number	[ANS X9.31] RNG	AES 128/192/256	985
Generation;	[SP 800-90] DRBG ⁵	Hash DRBG	157
Symmetric key	Prediction resistance	HMAC DRBG, no reseed	
generation	supported for all variations	CTR DRBG (AES), no derivation function	
		Dual EC DRBG: P-256, P-384, P-521	
	[SP 800-67]	3-Key TDES TECB, TCBC, TCFB, TOFB;	1223
		CMAC generate and verify	
Encryption,	[FIPS 197] AES	128/192/256 ECB, CBC, OFB, CFB 1, CFB 8, CFB 128, CTR, XTS; CCM; GCM; CMAC	1884
Decryption and	[SP 800-38B] CMAC	generate and verify	
CMAC	[SP 800-38C] CCM	generate and verify	
	[SP 800-38D] GCM		
	[SP 800-38E] XTS		
Message Digests	[FIPS 180-3]	SHA-1, SHA-2 (224, 256, 384, 512)	1655
Keyed Hash	[FIPS 198] HMAC	SHA-1, SHA-2 (224, 256, 384, 512)	1126
Digital Signature and	[FIPS 186-2] RSA	GenKey9.31, SigGen9.31, SigGenPKCS1.5,	960
Asymmetric Key		SigGenPSS, SigVer9.31, SigVerPKCS1.5,	
Generation		SigVerPSS (1024/1536/2048/3072/4096 with all	
		SHA sizes)	
	[FIPS 186-2] DSA	PQG Gen, PQG Ver, Key Pair Gen, Sig Gen, Sig	589
		Ver (1024 with SHA-1 only)	
	[FIPS 186-3] DSA	PQG Gen, PQG Ver, Key Pair Gen, Sig Gen, Sig	589
		Ver (1024/2048/3072 with all SHA sizes)	
	[FIPS 186-2] ECDSA	Key Pair, PKV, SigGen, SigVer (all NIST	270
		defined B, K, and P curves with SHA-1 only)	
		Key Pair, PKV, SigGen, SigVer (all NIST	264
		defined P curves with SHA-1 only)	
	[FIPS 186-3] ECDSA	Key Pair, PKV, SigGen, SigVer (all NIST	270
		defined B, K and P curves with all SHA sizes)	
		Key Pair, PKV, SigGen, SigVer (all NIST	264
		defined P curves with all SHA sizes)	
ECC CDH (KAS)	[SP 800-56A] (§5.7.1.2)	All NIST defined B, K and P curves	12
LCC CDII (KAS)		All NIST defined P curves	10

Table 4a – FIPS Approved Cryptographic Functions

⁵ For all DRBGs the "supported security strengths" is just the highest supported security strength per [SP800-90] and [SP800-57].

The Module supports only NIST defined curves for use with ECDSA and ECC CDH. The Module supports two operational environment configurations for elliptic curve; NIST prime curve only (listed in Table 2 with the EC column marked "P") and all NIST defined curves (listed in Table 2 with the EC column marked "BKP").

Category	Algorithm	Description
Key Agreement	EC DH	Non-compliant (untested) DH scheme using elliptic curve, supporting all NIST defined B, K and P curves. Key agreement is a service provided for calling process use, but is not used to establish keys into the Module.
Key Encryption, Decryption	RSA	The RSA algorithm may be used by the calling application for encryption or decryption of keys. No claim is made for SP 800-56B compliance, and no CSPs are established into or exported out of the module using these services.

Table 4b – Non-FIPS Approved But Allowed Cryptographic Functions

The Module supports only a FIPS 140-2 Approved mode. The Module requires an initialization sequence (see IG 9.5): the calling application invokes FIPS_mode_set()⁶, which returns a "1" for success and "0" for failure. If FIPS_mode_set() fails then all cryptographic services fail from then on. The application can test to see if FIPS mode has been successfully performed.

The Module is a cryptographic engine library, which can be used only in conjunction with additional software. Aside from the use of the NIST defined elliptic curves as trusted third party domain parameters, all other FIPS 186-3 assurances are outside the scope of the Module, and are the responsibility of the calling process.

4.1 Critical Security Parameters and Public Keys

All CSPs used by the Module are described in this section. All access to these CSPs by Module services are described in Section 4. The CSP names are generic, corresponding to API parameter data structures.

CSP Name	Description
RSA SGK	RSA (1024 to 16384 bits) signature generation key
RSA KDK	RSA (1024 to 16384 bits) key decryption (private key transport) key
DSA SGK	[FIPS 186-3] DSA (1024/2048/3072) signature generation key or [FIPS 186-2] DSA (1024) signature generation key
ECDSA SGK	ECDSA (All NIST defined B, K, and P curves) signature generation key
EC DH Private	EC DH (All NIST defined B, K, and P curves) private key agreement key.
AES EDK	AES (128/192/256) encrypt / decrypt key
AES CMAC	AES (128/192/256) CMAC generate / verify key

⁶ The function call in the Module is FIPS_module_mode_set() which is typically used by an application via the FIPS_mode_set() wrapper function.

AES XTS	AES (256/512) XTS cipher key
TDES EDK	TDES (3-Key) encrypt / decrypt key
TDES CMAC	TDES (3-Key) CMAC generate / verify key
HMAC Key	Keyed hash key (160/224/256/384/512)
RNG CSPs	Seed (128 bit), AES 128/192/256 seed key and associated state variables for ANS X9.31 AES based RNG ⁷
Hash_DRBG CSPs	V (440/880 bits) and C (440/880 bits), entropy input (length dependent on security strength)
HMAC_DRBG CSPs	V (160/224/256/384/512 bits) and Key (160/224/256/384/512 bits), entropy input (length dependent on security strength)
CTR_DRBG CSPs	V (128 bits) and Key (AES 128/192/256), entropy input (length dependent on security strength)
Dual_EC_DRBG CSPs	S (P-256, P-384, P-521), entropy input (length dependent on security strength)
CO-AD-Digest	Pre-calculated HMAC-SHA-1 digest used for Crypto Officer role authentication
User-AD-Digest	Pre-calculated HMAC-SHA-1 digest used for User role authentication

Table 4.1a – Critical Security Parameters

Authentication data is loaded into the module during the module build process, performed by an authorized operator (Crypto Officer), and otherwise cannot be accessed.

The module does not output intermediate key generation values.

CSP Name	Description
RSA SVK	RSA (1024 to 16384 bits) signature verification public key
RSA KEK	RSA (1024 to 16384 bits) key encryption (public key transport) key
DSA SVK	[FIPS 186-3] DSA (1024/2048/3072) signature verification key or [FIPS 186-2] DSA (1024) signature verification key
ECDSA SVK	ECDSA (All NIST defined B, K and P curves) signature verification key
EC DH Public	EC DH (All NIST defined B, K and P curves) public key agreement key.

Table 4.1b – Public Keys

For all CSPs and Public Keys:

Storage: RAM, associated to entities by memory location. The Module stores RNG and DRBG state values for the lifetime of the RNG or DRBG instance. The module uses CSPs passed in by the calling application on the stack. The Module does not store any CSP persistently (beyond the lifetime of an API call), with the exception of RNG and DRBG state values used for the Modules' default key generation service.

Generation: The Module implements ANSI X9.31 compliant RNG and SP 800-90 compliant DRBG services for creation of symmetric keys, and for generation of DSA, elliptic curve, and RSA keys as shown in Table 4a. The calling application is responsible for storage of

⁷ There is an explicit test for equality of the seed and seed key inputs

generated keys returned by the module.

Entry: All CSPs enter the Module's logical boundary in plaintext as API parameters, associated by memory location. However, none cross the physical boundary.

Output: The Module does not output CSPs, other than as explicit results of key generation services. However, none cross the physical boundary.

Destruction: Zeroization of sensitive data is performed automatically by API function calls for temporarily stored CSPs. In addition, the module provides functions to explicitly destroy CSPs related to random number generation services. The calling application is responsible for parameters passed in and out of the module.

Private and secret keys as well as seeds and entropy input are provided to the Module by the calling application, and are destroyed when released by the appropriate API function calls. Keys residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API. The operating system protects memory and process space from unauthorized access. Only the calling application that creates or imports keys can use or export such keys. All API functions are executed by the invoking calling application in a non-overlapping sequence such that no two API functions will execute concurrently. An authorized application as user (Crypto-Officer and User) has access to all key data generated during the operation of the Module.

In the event Module power is lost and restored the calling application must ensure that any AES-GCM keys used for encryption or decryption are re-distributed.

Module users (the calling applications) shall use entropy sources that meet the security strength required for the random number generation mechanism: 128 bits for the [ANS X9.31] RNG mechanism, and as shown in [SP 800-90] Table 2 (Hash_DRBG, HMAC_DRBG), Table 3 (CTR_DRBG) and Table 4 (Dual_EC_DRBG). This entropy is supplied by means of callback functions. Those functions must return an error if the minimum entropy strength cannot be met.

5 Roles, Authentication and Services

The Module implements the required User and Crypto Officer roles and requires authentication for those roles. Only one role may be active at a time and the Module does not allow concurrent operators. The User or Crypto Officer role is assumed by passing the appropriate password to the FIPS_module_mode_set() function. The password values may be specified at build time and must have a minimum length of 16 characters. Any attempt to authenticate with an invalid password will result in an immediate and permanent failure condition rendering the Module unable to enter the FIPS mode of operation, even with subsequent use of a correct password.

Authentication data is loaded into the Module during the Module build process, performed by the Crypto Officer, and otherwise cannot be accessed.

Since minimum password length is 16 characters, the probability of a random successful authentication attempt in one try is a maximum of $1/256^{16}$, or less than $1/10^{38}$. The Module permanently disables further authentication attempts after a single failure, so this probability is independent of time.

Both roles have access to all of the services provided by the Module.

- User Role (User): Loading the Module and calling any of the API functions.
- Crypto Officer Role (CO): Installation of the Module on the host computer system and calling of any API functions.

All services implemented by the Module are listed below, along with a description of service CSP access.

Service	Role	Description	
Initialize	User, CO	Module initialization, inclusive of all Table 9 tests (FIPS_module_mode_set). Does not access CSPs.	
Self-test	User, CO	Perform all Table 9 tests (FIPS_selftest). Does not access CSPs.	
Show status	User, CO	Functions that provide module status information: • Version (as unsigned long or const char *) • FIPS Mode (Boolean) Does not access CSPs.	
Zeroize	User, CO	Functions that destroy CSPs: • fips_rand_prng_reset: destroys RNG CSPs. • fips_drbg_uninstantiate: for a given DRBG context, overwrites DRBG CSPs (Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs, Dual_EC_DRBG CSPs.)	

Service	Role	Description	
		All other services automatically overwrite CSPs stored in allocated memory. Stack cleanup is the responsibility of the calling application.	
Random number generation	User, CO	Used for random number and symmetric key generation. Seed or reseed an RNG or DRBG instance Determine security strength of an RNG or DRBG instance Obtain random data Uses and updates RNG CSPs, Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs, Dual_EC_DRBG CSPs.	
Asymmetric key generation	User, CO	Used to generate DSA, ECDSA and RSA keys: RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK There is one supported entropy strength for each mechanism and algorithm type, the maximum specified in SP800-90	
Symmetric encrypt/decrypt	User, CO	Used to encrypt or decrypt data. Executes using AES EDK, TDES EDK (passed in by the calling process).	
Symmetric digest	User, CO	Used to generate or verify data integrity with CMAC. Executes using AES CMAC, TDES, CMAC (passed in by the calling process).	
Message digest	User, CO	Used to generate a SHA-1 or SHA-2 message digest. Does not access CSPs.	
Keyed Hash	User, CO	Used to generate or verify data integrity with HMAC. Executes using HMAC Key (passed in by the calling process).	
Key transport ⁸	User, CO	Used to encrypt or decrypt a key value on behalf of the calling process (does not establish keys into the module). Executes using RSA KDK, RSA KEK (passed in by the calling process).	
Key agreement	User, CO	Used to perform key agreement primitives on behalf of the calling process (does not establish keys into the module). Executes using EC DH Private, EC DH Public (passed in by the calling process).	
Digital signature	User, CO	Used to generate or verify RSA, DSA or ECDSA digital signatures. Executes using RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK (passed in by the calling process).	
Utility	User, CO	Miscellaneous helper functions. Does not access CSPs.	

Table 5 - Services and CSP Access

^{8 &}quot;Key transport" can refer to a) moving keys in and out of the module or b) the use of keys by an external application. The latter definition is the one that applies to the OpenSSL FIPS Object Module.

6 Self-test

The Module performs the self-tests listed below on invocation of Initialize or Self-test.

Algorithm	Type	Test Attributes
Software integrity	KAT	HMAC-SHA1
HMAC	HMAC KAT per SHA1, SHA224, SHA256, SHA384 and SHA512 Per IG 9.3, this testing covers SHA POST requirements.	
AES	KAT	Separate encrypt and decrypt, ECB mode, 128 bit key length
AES CCM	KAT	Separate encrypt and decrypt, 192 key length
AES GCM	KAT	Separate encrypt and decrypt, 256 key length
XTS-AES	KAT	128, 256 bit key sizes to support either the 256-bit key size (for XTS-AES-128) or the 512-bit key size (for XTS-AES-256)
AES CMAC	KAT	Sign and verify CBC mode, 128, 192, 256 key lengths
TDES	KAT	Separate encrypt and decrypt, ECB mode, 3-Key
TDES CMAC	KAT	CMAC generate and verify, CBC mode, 3-Key
RSA	KAT	Sign and verify using 2048 bit key, SHA-256, PKCS#1
DSA	PCT	Sign and verify using 2048 bit key, SHA-384
DRBG KAT CTR_DRBG: AES, 256 bit with and without derivation function HASH_DRBG: SHA256 HMAC_DRBG: SHA256 Dual_EC_DRBG: P-256 and SHA256		HASH_DRBG: SHA256 HMAC_DRBG: SHA256
ECDSA	PCT	Keygen, sign, verify using P-224, K-233 and SHA512. The K-233 self-test is not performed for operational environments that support prime curve only (see Table 2).
ECC CDH	KAT	Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6
X9.31 RNG	KAT	128, 192, 256 bit AES keys

Table 6a - Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test)

The Module is installed using one of the set of instructions in Appendix A, as appropriate for the target system. The HMAC-SHA-1 of the Module distribution file as tested by the CMT Laboratory and listed in Appendix A is verified during installation of the Module file as described in Appendix A.

The FIPS_mode_set()° function performs all power-up self-tests listed above with no operator intervention required, returning a "1" if all power-up self-tests succeed, and a "0" otherwise. If any component of the power-up self-test fails an internal flag is set to prevent subsequent invocation of any cryptographic function calls. The module will only enter the FIPS Approved

⁹ FIPS_mode_set() calls Module function FIPS_module_mode_set()

mode if the module is reloaded and the call to FIPS_mode_set() 9 succeeds.

The power-up self-tests may also be performed on-demand by calling FIPS_selftest(), which returns a "1" for success and "0" for failure. Interpretation of this return code is the responsibility of the calling application.

The Module also implements the following conditional tests:

Algorithm	Test	
DRBG	Tested as required by [SP800-90] Section 11	
DRBG	FIPS 140-2 continuous test for stuck fault	
DSA	Pairwise consistency test on each generation of a key pair	
ECDSA	Pairwise consistency test on each generation of a key pair	
RSA	Pairwise consistency test on each generation of a key pair	
ANSI X9.31 RNG	RNG Continuous test for stuck fault	

Table 6b - Conditional Tests

In the event of a DRBG self-test failure the calling application must uninstantiate and reinstantiate the DRBG per the requirements of [SP 800-90]; this is not something the Module can do itself.

Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt.

The Module supports two operational environment configurations for elliptic curve: NIST prime curves only (listed in Table 2 with the EC column marked "P") and all NIST defined curves (listed in Table 2 with the EC column marked "BKP").

7 Operational Environment

The tested operating systems segregate user processes into separate process spaces. Each process space is logically separated from all other processes by the operating system software and hardware. The Module functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation.

8 Mitigation of other attacks

The Module does not claim any attack mitigation beyond [FIPS 140-2] Level 1 requirements.

Appendix A Installation and Usage Guidance

The test platforms represent different combinations of installation instructions. For each platform there is a build system, the host providing the build environment in which the installation instructions are executed, and a target system on which the generated object code is executed. The build and target systems may be the same type of system or even the same device, or may be different systems – the Module supports cross-compilation environments.

Each of these command sets are relative to the top of the directory containing the uncompressed and expanded contents of the distribution files *openssl-fips-2.0.1.tar.gz* (all NIST defined curves as listed in Table 2 with the EC column marked "BKP") or *openssl-fips-ecp-2.0.1.tar.gz* (NIST prime curves only as listed in Table 2 with the EC column marked "P"). The command sets are:

```
U1:
    ./config no-asm
    make
    make install

U2:
    ./config
    make
    make install

W1:
    ms\do_fips no-asm

W2:
    ms\do_fips
```

Installation instructions

- Download and copy the distribution file to the build system.
 These files can be downloaded from http://www.openssl.org/source/.
- 2. Verify the HMAC-SHA-1 digest of the distribution file; see Appendix B. An independently acquired FIPS 140-2 validated implemention of SHA-1 HMAC must be used for this digest verification. Note that this verification can be performed on any convenient system and not necessarily on the specific build or target system. Alternatively, a copy of the distribution on physical media can be obtained from OSF¹⁰.

¹⁰ For some prospective users the acquisition, installation, and configuration of a suitable FIPS 140-2 validated product may not be convenient. OSF will on request mail a CD containing the source code distribution, via USPS or international post. A distribution file received by that means need not be verified by a FIPS 140-2 validated implementation of HMAC-SHA-1. For instructions on requesting this CD see http://opensslfoundation.org/fips/verify.html.

3. Unpack the distribution

```
gunzip -c openssl-fips-2.0.1.tar.gz | tar xf -
cd openssl-fips-2.0.1
```

- 4. Execute one of the installation command sets U1, W1, U2, W2 as shown above. No other command sets shall be used.
- 5. The resulting *fipscanister.o* or *fipscanister.lib* file is now available for use.
- 6. The calling application enables FIPS mode by calling the FIPS_mode_set()¹¹ function.

Note that failure to use one of the specified commands sets exactly as shown will result in a module that cannot be considered compliant with FIPS 140-2.

Linking the Runtime Executable Application

Note that applications interfacing with the FIPS Object Module are outside of the cryptographic boundary. When linking the application with the FIPS Object Module two steps are necessary:

- 1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified against the installed digest to ensure the integrity of the FIPS object module.
- 2. A HMAC-SHA1 digest of the FIPS Object Module must be generated and embedded in the FIPS Object Module for use by the FIPS_mode_set()¹¹ function at runtime initialization.

The fips_standalone_sha1 command can be used to perform the verification of the FIPS Object Module and to generate the new HMAC-SHA-1 digest for the runtime executable application. Failure to embed the digest in the executable object will prevent initialization of FIPS mode.

At runtime the FIPS_mode_set()¹¹ function compares the embedded HMAC-SHA-1 digest with a digest generated from the FIPS Object Module object code. This digest is the final link in the chain of validation from the original source to the runtime executable application file.

Optimization

The "asm" designation means that assembler language optimizations were enabled when the binary code was built, "no-asm" means that only C language code was compiled.

For OpenSSL with x86 there are three possible optimization levels:

- 1. No optimization (plain C). Currently no platforms are at this level
- 2. SSE2 optimization
- 3. AES-NI+PCLMULQDQ+SSSE3 optimization

¹¹ FIPS_mode_set() calls the Module function FIPS_module_mode_set()

Other theoretically possible combinations (e.g. AES-NI only, or SSE3 only) are not addressed individually, so that a processor which does not support all three of AES-NI, PCLMULQDQ, and SSSE3 will fall back to SSE2 optimization.

For more information, see:

- http://www.intel.com/support/processors/sb/CS-030123.htm?wapkw=sse2
- http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/?wapkw=aes-ni

For OpenSSL with ARM there are two possible optimization levels:

- 1. Without NEON
- 2. With NEON (ARM7 only)

For more information, see http://www.arm.com/products/processors/technologies/neon.php

Appendix B Controlled Distribution File Fingerprint

The *OpenSSL FIPS Object Module 2.0.1* consists of the FIPS Object Module (the *fipscanister.o* or *fipscanister.lib* contiguous unit of binary object code) generated from the specific source files.

For all NIST defined curves (listed in Table 2 with the EC column marked "BKP") the source files are in the specific special OpenSSL distribution *openssl-fips-2.0.1.tar.gz* with HMAC-SHA-1 digest of

1e05b021fdcd6e77c6155512bbce2d0cbc725aec

located at http://www.openssl.org/source/openssl-fips-2.0.1.tar.gz.

For NIST prime curves only (listed in Table 2 with the EC column marked "P") the source files are in the specific special OpenSSL distribution *openssl-fips-ecp-2.0.1.tar.gz* with HMAC-SHA-1 digest of

af82c8ebb9d3276be11feffd35e6b55bd0d1839f

located at http://www.openssl.org/source/openssl-fips-ecp-2.0.1.tar.gz.

The openss1 command from a version of OpenSSL that incorporates a previously validated version of the module may be used:

```
openssl shal -hmac etaonrishdlcupfm openssl-fips-2.0.1.tar.gz openssl shal -hmac etaonrishdlcupfm openssl-fips-ecp-2.0.1.tar.gz
```

The set of files specified in this tar file constitutes the complete set of source files of this module. There shall be no additions, deletions, or alterations of this set as used during module build. The OpenSSL distribution tar file (and patch file if used) shall be verified using the above HMAC-SHA-1 digest(s).

The arbitrary 16 byte key of:

```
65 74 61 6f 6e 72 69 73 68 64 6c 63 75 70 66 6d
```

(equivalent to the ASCII string "etaonrishdlcupfm") is used to generate the HMAC-SHA-1 value for the FIPS Object Module integrity check.

The functionality of all earlier revisions of the FIPS Object Module are subsumed by this latest revision, so there is no reason to use older revisions for any new deployments. However, older revisions remain valid. The source distribution files and corresponding HMAC-SHA-1 digests are listed below:

```
openssl-fips-2.0.tar.gz
```

URL: http://www.openssl.org/source/openssl-fips-2.0.tar.gz.

Digest: 2cdd29913c6523df8ad38da11c342b80ed3f1dae

openssl-fips-ecp-2.0.tar.gz

URL: http://www.openssl.org/source/openssl-fips-ecp-2.0.tar.gz.

Digest: e8d5ee306425b278bf6c8b077dae8e4a542e8215

Appendix C Compilers

This appendix lists the specific compilers used to generate the Module for the respective Operational Environments. Note this list does not imply that use of the Module is restricted to only the listed compiler versions, only that the use of other versions has not been confirmed to produce a correct result.

#	Operational Environment	Compiler
1	Android 2.2 (HTC Desire)	gcc 4.4.0
2	Android 2.2 (Dell Streak)	gcc 4.4.0
3	Microsoft Windows 7 32 bit	Microsoft 32-bit C/C++ Optimizing Compiler Version 16.00
4	uClinux 0.9.29	gcc 4.2.1
5	Fedora 14	gcc 4.5.1
6	HP-UX 11i (hpux-ia64-cc, 32 bit mode)	HP C/aC++ B3910B
7	HP-UX 11i (hpux64-ia64-cc, 64 bit mode)	HP C/aC++ B3910B
8	Ubuntu 10.04	gcc 4.1.3
9	Android 3.0	gcc 4.4.0
10	Linux 2.6.27	gcc 4.2.4
11	Microsoft Windows 7 64 bit	Microsoft C/C++ Optimizing Compiler Version 16.00 for x64
12	Ubuntu 10.04 32 bit	gcc 4.1.3
13	Linux 2.6.33	gcc 4.1.0
16	Android 2.2	gcc 4.1.0
19	VxWorks 6.8	gcc 4.1.2
20	Linux 2.6	gcc 4.3.2
21	Linux 2.6	gcc 4.3.2
22	Linux 2.6.32	gcc 4.3.2
23	Solaris 10 32bit	gcc 3.4.3

24	Solaris 10 64bit	gcc 3.4.3
25	Solaris 11 32bit	gcc 4.5.2
26	Solaris 11 64bit	gcc 4.5.2
27	Solaris 11 32bit	gcc 4.5.2
28	Solaris 11 64bit	gcc 4.5.2
29	Oracle Linux 5 64bit	gcc 4.1.2
30	CascadeOS 6.1 32bit	gcc 4.4.5
31	CascadeOS 6.1 64bit	gcc 4.4.5
32	Ubuntu 10.04 32bit	gcc 4.1.3
33	Ubuntu 10.04 64bit	gcc 4.1.3
34	Oracle Linux 5	gcc 4.1.2
35	Oracle Linux 6	gcc 4.4.6
36	Oracle Linux 6	gcc 4.4.6
37	Solaris 11 32bit	Sun C 5.12
38	Solaris 11 64bit	Sun C 5.12
39	Android 4.0	gcc 4.4.3
17	DSP Media Framework 1.4	TMS320C6x C/C++ Compiler v6.0.13
40	Linux 2.6	gcc 4.1.0
41	Apple iOS 5.1	gcc 4.2.1
42	WinCE 6.0	Microsoft C/C++ Optimizing Compiler Version 15.00 for ARM
43	WinCE 5.0	Microsoft C/C++ Optimizing Compiler Version 13.10 for ARM
44	Android 4.0	gcc 4.4.3

Table C - Compilers