OpenSSL FIPS
Object Module

Version 1.1.1
By the
Open Source Software Institute
http://www.oss-institute.org/

OPEN SOURCE &

SOFTWARE INSTITUTE

OpenSSL FIPS 140-2 Security Policy

Version 1.1.1b

January 29, 2007

http://openssl.org/
http://www.oss-institute.org/
http://www.oss-institute.org/

OpenSSL FIPS 140-2 Security Policy

Copyright Notice

Copyright © 2003, 2004, 2005, 2006, 2007 the OpenSSL Team.

This document may be freely reproduced in whole or part without permission and without restriction.

Sponsored by:

[}

invent
The Defense Medical Logistics Program The Hewlett-Packard Company

Page 2 of 45

OpenSSL FIPS 140-2 Security Policy

Acknowledgments
The principal author of this document is:
Steve Marquess 301-619-3933
Consultant Steve.Marquess@det.amedd.army.mil
DMLSS Program marquess@veridicalsystems.com

JMLFDC
623 Porter Street
Ft. Detrick, MD 21702

working under contract to the Defense Medical Logistics Standard Support program. Other significant contributors to this
document are, in alphabetical order:

Gary Gross HP Corporation

Ben Laurie OpenSSL

Peter Sargent PreVal Specialist, Inc

John Weathersby Open Source Software Institute

Thanks also to Andy Polyakov, Joel 1. Kirch and Rick Pearce for their reviews of earlier versions of this document.

The OpenSSL FIPS 140-2 validation effort was sponsored by the Defense Medical Logistics Standard Support program,
part of the TRICARE Management Activity, Office of the Assistant Secretary of Defense for Health Affairs, and co-
sponsored by the Hewlett-Packard Company. For further information contact:

Debra Bonner 707-575-9771
Director of Operations Debra.Bonner@tma.osd.mil
DMLSS Program Management Office http://ww.tricare.osd.mil/dmlss/

5109 Leesburg Pike, Suite 908
Falls Church, VA 22041

Gary Gross 408-447-6966 office
Security Evaluations Program Manager 650-380-1327 cell
Hewlett-Packard gary.gross@hp. com
1501 Page Mill Road http://hp.com

Palo Alto, CA 94304

The Open Source Software Institute (OSSI) serves as the "vendor" for this validation. Project management coordination for
this effort was provided by the OSSI:

John Weathersby 601-427-0152 office
Executive Director 601-818-7161 cell

Open Source Software Institute 601-427-0156 fax
Administrative Office jmw@oss-institute.org
P.0. Box 547 http://oss-institute.org/

Oxford, MS 38655

The initial OpenSSL FIPS 140-2 software development work was performed by:

Ben Laurie +44 (20) 8735 0686 office
17 Perryn Road +44 (20) 8735 0689 fax
London ben@algroup.co.uk

W3 7LR

Page 3 of 45

mailto:ben@algroup.co.uk
http://oss-institute.org/
mailto:jmw@oss-institute.org
http://hp.com/
mailto:gary.gross@hp.com
http://ww.tricare.osd.mil/dmlss/
mailto:Debra.Bonner@tma.osd.mil
mailto:marquess@veridicalsystems.com
mailto:Steve.Marquess@det.amedd.army.mil

OpenSSL FIPS 140-2 Security Policy

UK

with subsequent significant contributions by:

Stephen Henson

4 Monaco Place, shenson@drh-consultancy.co.uk
Westlands, Newcastle-under-Lyme

Staffordshire. ST5 2QT.

England, United Kingdom http://www.drh-consultancy.co.uk/

Andy Polyakov

Chalmers University of Technology appro@fy.chalmers.se
SE-412 96 Gothenburg
Sweden

in coordination with the OpenSSL Team at www.openssl.org, in particular:

Richard Levitte levitte@stacken.kth.se

Validation testing was performed by The DOMUS IT Security Laboratory. For information on validation or revalidations

of software contact:

Christian Brych 613-726-5091 office

FIPS 140 Program Manager 613-867-1241 cell

DOMUS IT Security Laboratory cbrych@nuvo.com

2650 Queensview Drive http://www.domusitsl.com/
Suite 100

Ottawa, Ontario

K2B 8H6

Assistance in preparation of the initial FIPS 140 documentation was provided by:

Peter C. Sargent 443-742-4430
PreVal Specialist, Inc. preval@att.net

214 Kennedy Dr.
Severna Park, MD 21146

Page 4 of 45

mailto:preval@att.net
http://www.domusitsl.com/
mailto:cbrych@nuvo.com
file:///mnt/sd/ossi/Released/www.openssl.org
http://www.drh-consultancy.co.uk/
mailto:shenson@drh-consultancy.co.uk

Date
2007-01-29

2007-01-24
200701-12

2007-01-10

2006-09-07

2006-08-31

2006-07-20

2006-06-16

2006-04-13

2006-03-24
2006-03-13

OpenSSL FIPS 140-2 Security Policy

Revision History

Description

Table 2.3: update RSA certificate number; Appendix B: update
distribution file HMAC-SHA-1 digest.

4.5.2: Reword Pair-wise Consistency Test”paragraph.

Change every occurrence of 1.1”to 1.1.1”(thus changing the name of
the source distribution file, although the contents of that file are
unchanged) .

1.1,1.3: change module name; 2.3: clarify example use of external keys;
Table 2.3: remove superfluous line; Table 3.3: add missing Key
Establishment algorithms; 4: replace 8ame as”with Bitwise

identical¥ 4.1: clarify input/output of keys; 4.5.2: elaborate on
pair-wise consistency test, remove continuous random number generator
test.

2: added commentary to DES footnote; 2.5: deprecation of DES; 5.2:
added commentary on key wrapping.

2,2.2,2.3: Refer to RSA Key wrapping, moved from Table 2.3 to 2.4.
Added RSA key strength statement.

2.5: Added sentence noting no FIPS mode until FPS mode is initialized.
5.2: changed the key database”to 4 key database”

C.3: Added footnote on SHA1-HMAC digest determination.

Added new algorithm certificate numbers, changed DES references to non-
Approved (replacing May 19 2007 caveat)

Removed pre-file hashes from Appendix B, changed distribution hash to
match new distribution file openssl-fips-1.1.tar.gz which rearranges
object code from the previous distribution.

Changed distribution file pathname from OpenSSL-fips-1.0.tar.gz”to
OpenSSLfipsl.0.tar.gz”to match certificate; Section 4.3, Appendix B,
Appendix C.

Additional commentary on source files in Appendix B

Final draft

Page 5 of 45

OpenSSL FIPS 140-2 Security Policy

Page 6 of 45

Table of Contents
Table of Contents

1. INTRODUCTION....uuueieererereresssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssess 10
To1 AUDIENCE vttt ettt e et s ettt e s e et e s e et s et e e e e aa s e e aaaeseeeaeseeeaessesanessaaneseennnraees 10
1.2 DOCUMENT ORGANIZATION. ...ccvvuuuueeeeeeeetttnneeeseeeeetsssunaesssseesssnmssssessessmmnsssssssssssmmnssssesesssmmnnesesssenns 10
1.3 REFERENCES. .« ettt ettt ettt e e e e e e e e e e e e e e e s e e e e e e e e e e e e s e eeae s e e aaeseeeeseeaaeseeaaneseennaaaaes 11
1.4 RELATIONSHIP TO THE OPENSSL APL ...ttt e et e e e e eeetree e e e e enaareeeas 11
. MODULE SPECIFICATION....cuuuteeueeeceeeeeeeseseecccssasssssesssssssons 12
2.1 THE FIPS OBIECT IMODULE....cctttuueettetettteeeee et eeeeeeeeee e e e e e ettt eeaeesee et aaaaaeesseseteaaaaaaeseesessannaeseeerenes 13
2.1.1 INtegrity Of SOUTCE COAE..........ccccuveeeeeeeaciiieesiieeeieeeeiee et ette e steeesateessseeesaseeensaeeesseeeenseas 13
2.1.2 Integrity Of OBJECt COe.........cccuueeeeueeieiieeeiieeeeieeesee e eee et eeeseeeesaaae e sraaeeesssseeessnaeesnnseeas 14
2.1.3 Integrity Of EXeCUIADIE COME..............ooeecueeeeiiiieeiieeeiie et eeiteeeste e esite e e svee s sae e e ssaeeseesaees 15
2.1.4 EXCIUSIVIEY Of INTEZTTLY TOSLS.c...uveeeuveeeeeieeeiieeeeiieeeieeeeieeesteeeseteeeateesaseeessseeenssaeessseeesnsseesnnseas 16
2.2 PORTS AND INTERFACES. .. ettt ettt et e e e et e e e e e e e e e e eeee s e e e e e e eeeeseeenaereeeaaeseenaenaees 16
2.3 APPROVED CRYPTOGRAPHIC ALGORITHMS . ..uuuteettuneeetruneseetuneseessnnsesssunesssssnessessunnesssmnesssssnesessmnesssmmneseees 17
2.4 NON-APPROVED CRYPTOGRAPHIC ALGORITHMSuueeeeneeeeeenneseeeeneeesennesseennaeseeeenaesesnnaeseeeeaeseeennaeseenaeseees 19
2.5 APPROVED MODE OF OPERATION.uuttetttueeetteeeeeeteeeeeetaeeeestaeesesteneeseseanaesestanaesseanaessseneseseannesesnnereees 19
200 TEST ENVIRONMENT . c.tvuueteeeettteeeeeeeetteeeee e e ettt eeeseeetaaaaaeseeeasanaseeeetaannesssseessanneseseessnnessssessnnnnsesesees 20
. ROLES, SERVICES AND AUTHENTICATION.....ccccceteteeeeecccecrsssossesssseseeeesessssescsccssssssssssssssseses 21
3.1 ROLES AND SERVICES....covtuuuuieetteeeettteieeeeeeeeeettsmaeeeseseeetesanaaesssssessssnnnesssesssessmmnsesssssesssssmnsnesessseseses 21
3.2 A UTHENTICATION. . eeu ettt e et ee et e e eee e e e e e e e e eem e s eean e e e e s e e e s aaanseeaneseeenaesennnareenneseeenaeeennereennaaaee 21
3.3 AUTHORIZED SERVICES....ccttuuuuueeeeeeeetetuunaeeseeeseseeusnsnesssssssssssanasesesssesssnnmnesssssssssssnnnnssssssesssssmnmnnssesesenes 21
3.4 FINITE STATE MACHINE IMIODEL.ceneeeeeee et eee e e e eee e e e et e e e e e e e e e eeeeeeeeaeeeeeeaereeeaaeseenaanaees 24
. OPERATIONAL ENVIRONMENT....uttuuceeeeeeeeeeeeeccessssssessscssessssssssssssssssseses w5
4.1 RULES OF OPERATIONceetueettee e et ee e e e e e e e e e eeae e e eee e e e e teeee et eeeennaeeeannaeeaenneeeanneaernnaeeennaeeennaeennnns 26
4.2 COMPATIBLE PLATEORMS....cettuettiitee ettt e et e e e et eee s e taee s ettt s e e taaeseeaaessataaesesanaaeseraneseranns 26
4.3 SOFTWARE SECURITY ...ueettetttttueeeeeeeettmmaeeesesessasaneeeseseesssanasssssssmmnsesesssmmnssssssssssmnessssssssmmssnesesseses 27
4.4 CRITICAL SECURITY PARAMETERS.....euuettttneeette et e et e e e et e e e eteee e e et e e e et eeeeeaasearaneserannaeeerenaesenanns 28
S SELF-TESTS ttuueeeeeeettteeee et e et e e e e e e ettt eee s e e et et aaaaaseseeeseaas s seeestanaaasseessssaannneseesesssnnannsseeerenes 29
.51 POWECE-UD TOSES....ccceeeiiieeeeeiieee ettt e e et e e e e sttt e e e s sttt e e e e s s nababeeesennasbeaeesenannees 29
B.5.2 CONAUILONAL TOSES...coeeeeeeeeeeeeeeee et e e e e e et eereee e e e e e e eeeaeeeeeeeeeaaaaaeseeeeeaanraaaeseerenes 30

OpenSSL FIPS 140-2 Security Policy

Pair-wise CONSISIENCY TESt..c..uuiiiiiiieiiiiee ettt ettt ettt e et e e et eessabaeeenabeeeeas 31
SoftWare/FIrMWare LLOAA TeSt. ... et e e e e e e e e eeaenaes 31
Manual Key ENtry TeSt.......uiiiiiiiiiee ettt ettt e st e st e e e sataeeesnbeaeennneeeeas 31
BYPaASS TOSt....eeiiiiiee e s 31
G.5.3CFIICAL FUNCTION TOSES...ccevvveeeeneeeeiieeeeeeeeeeee e eeeeeeee e e e teeee e e s e et etaaeaeeseseetaaaeeesseeetaasaaeseeresnanas 31

.0 PHYSICAL SECURITY «..ueeeeeeeeeeee e e et ee e e e e e et e e e e e et e aese e e e e aeseereaanaeeeaeeasaeseeseaannasseereennaaseeenees 31
4.7 MITIGATION OF OTHER ATTACKS 1euuuunetettrunneneseetemueeeseersmmseeseesssmmnsessssssmmsesessssmmsssssessmmesssssssmnmnseeeses 31

5. DESIGN ASSURANCEE......ottttteeueecereereeseeseesssssessasssses 32
5.1 SOURCE CODE CONTROL.....ceetvtuuueeeeeettittieeeeeeeetttaneeseeetstanesssssssmasessssssmnsssssssssmmnesessssesmmosnesesseses 32
5.2 APPLICATION MANAGEMENT OF CRITICAL SECURITY PARAMETERS. ...c.uuuttiteneeeteeeeeeeeeeeeeeeeeeeeeeeeneseennaaeees 32
TAENUEYING CSPS...eiiniiiiieeee ettt et e st e et e e e it e e ennbbeesnabaeesnnseeeens 32

KEY GENETALION.coiiiiiiiiiieiieeee et ettt et e e e e e e saeeenneens 33
Output of Keys Used for Key EstabliShment.............ccccueiiiiiiiniiiiiiiiieiieeeceeee e 33
StOTAZE OF TSP, ettt et e ettt e s sabe e e s bt e e ebbeeesabeeeennae 33
DESIIUCHON OF C Pt e e e e e et e e e e e e e e e e aeeeeeeeaaaeseeeeeaaaaaeeas 33

0. GLIOSSARY cuiiiieeeeerererenesesesesesesssesesesssssesss 34
T REFERIENCES . .eeaeeeeeeeereeeeeseesscsssssessassssss 35
APPENDIX A FINITE STATE MODEL......ucueeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssssosssssassane w37
AT DIAGRAM. ..ttt ettt e et e et s e et e ettt s e e tee s e et e st et e saaa s e e aaasesaaesestaaseesnneesanns 37
A2 STATE IDESCRIPTIONS. ..cetttuuueeeettitiieeeeeeetaseeeeeeeetataeesesessasanseseessssnneesessssraesessessnnssesesssssnnssseeesses 38
StALE 11 POWET-ON STALE. . .ceeeee e e et e e et e e et e e s e eaaeeeeeeeeeaaeseeanaaaees 38

STALE 2: SEIE-TESE STALE....ceeeiieeeeeeeeeeeeiit ettt e e ettt eeeeeeeetaaaaaeeseetteaaaaeesseeessanneneeeesesnanas 38

SHALE 31 EITOT STALE ...t e e e e e e e e e et e e e e e e e s eeaeeeaaaaaaes 39

State 4: OPeratioNal STALE..........eeeiiieeiiieeiie ettt et e st e st e e s beeesebeeesbeeesbeeensseesnnes 39

State 5: Crypto-OffICEr STAte........ccoviiiiiiiiiiieieeie et 39

SHALE O U ST SETALE...eeeeeeeee et eeeeeeeeee et e e et e e e e e e e e e e e e e teaaaaeseesaeaeeaeseeeeeaaanaaaseeeneannnas 39

SHAtE 7: SNOW STAUS STALE.....eeeiiirieieeee ettt ettt e e e eeeetaareeeeeeeetataeeseseeessanraesesessssannnes 39

State 8: Key Management STALE..........eeiruieiiiiiiiiiiiiieiiiee ettt ettt e 40

SHALE O: POWET-O T STALE...eeiveeneeeee ettt ettt e e e e e e et et reeeeseeeeetaaasraeseseeeaeananas 40
APPENDIX B CONTROLLED SOURCE FILE FINGERPRINTccoeetttueeccreeseneecesssssesesssssssenss 41
APPENDIX C INSTALLATION AND INITIALIZATION 42
C.0 VALIDATING THE SOURCE DISTRIBUTION FILE. ... ceiiiiiiiieee et e e e e eaenaees 42

Page 7 of 45

OpenSSL FIPS 140-2 Security Policy

C.1 BUILDING THE FIPS OBJECT MODULE FROM SOURCE.......cccciiiuiiieeeiiiiieeeeiiieeeesiteeeeesareeeeearaeeessnsnseeeeanns 42
C.2 INSTALLING AND PROTECTING THE FIPS OBIECT MODULE.cctiiiiiiiiiiciiiiiiiieeeeeeeeeeeeeeirivreeeeeeeeeeeeeeeaans 43
C.3 LINKING THE RUNTIME EXECUTABLE APPLICATION.....cccuttiieeeitteieeeesiieeeeeesstreeeesensnseeeeassnssseseessssseeeeeanns 43
C.4 FIPS MODE INITIALIZATION.uvvvvteeeeeeeeeeeeietteereeeeeseeeeeeeeeetassssssesssessessaeeeeseeesesssssssssasssesaseeeeeenasnnnnes 44

Page 8 of 45

OpenSSL FIPS 140-2 Security Policy

TABLE OF FIGURES

Table of Contents

TABLE 2.3 - APPROVED CRYPTOGRAPHIC ALGORITHMS......cccccceeeeerccrsrsceeesessessasseaeeseasacees 18
TABLE 2.4 - NON-APPROVED CRYPTOGRAPHIC ALGORITHMS.....ccccceceeerrrrrnneerseeneeeeeeeeces 19
TABLE 3.1- SERVICES AUTHORIZED FOR ROLES........ccccccccrrrrrnnneeecccccscssosennans 21
TABLE 3.3 - AUTHORIZED SERVICES 23
TABLE 4.5.1 - POWER-UP SELF-TESTS............. evvmesssssammssssssssasssee 30
TABLE 4.5.2 - CONDITIONAL TESTS....cotttccecccrsssrsssesneeeeeceeeesccsscss 31
EXAMPLE 4.C - INVOCATION OF FIPS_MODE_SET()......coeuevvvvtmmeesssssmaessssssnssssssssmsssssssassssees 44

Page 9 of 45

OpenSSL FIPS 140-2 Security Policy

1. Introduction

This document is the non-proprietary FIPS 140-2 security policy for the OpenSSL FIPS software
object module to meet FIPS 140-2 level 1 requirements. This Security Policy details the secure
operation of the OpenSSL FIPS Object Module v1.1.1 (OpenSSL FIPS) by the Open Source Software
Institute (oss-institute.org) as required in Federal Information Processing Standards Publication 140-2
(FIPS 140-2) as published by the National Institute of Standards and Technology (NIST) of the United
States Department of Commerce.

1.1 Audience

This document is required as a part of the FIPS 140-2 validation process. It describes the OpenSSL
FIPS Object Module in relation to FIPS 140-2 requirements. The companion document OpenSSL FIPS
140-2 User Guide (Reference 14) is a technical reference for developers using, and system
administrators installing, the OpenSSL FIPS software, for use in risk assessment reviews by security
auditors, and as a summary and overview for program managers.

1.2 Document Organization

This Security Policy document is one part of the complete FIPS 140-2 Submission Package. The
Submission Package contains:

Non-proprietary FIPS 140-2 Security Policy: this document

Algorithm Certificates: Listed in Table 3.3 of this document

Design specification and functional specification of OpenSSL software: included with the
standard OpenSSL software distributions and available at http://openssl.org/. Also see

Reference 11 and Reference 14

Crypto Officer and User Guidance documentation: subsumed in this document
Finite State Machine: Appendix A of this document

Vendor Evidence Document: OpenSSL FIPS 140 Vendor Evidence Document, v1.0
Source Code Listing: included in the OpenSSL source distributions

Page 10 of 45

http://openssl.org/
http://www.oss-institute.org/

OpenSSL FIPS 140-2 Security Policy

This Security Policy document is available online at the NIST Cryptographic Module Validation
website, http://csrc.nist.gov/cryptval/140-1/1401val2006.htm, and is also included in the OpenSSL
distributions.

This document outlines the functionality provided by the module and gives high-level details on the
means by which the module satisfies FIPS 140-2 requirements.

1.3 References

For more information on the OpenSSL FIPS Object Module please visit http://www.oss-institute.org/.

For more information on the OpenSSL project see http://openssl.org/. For more information on NIST

and the cryptographic module validation program, please visit http://csrc.nist.gov/cryptval/.

1.4 Relationship to the OpenSSL API

The FIPS object module is designed for use in conjunction with the separate API libraries provided by
the OpenSSL project. Applications linked with the FIPS object module and with the separate OpenSSL
libraries can use the FIPS validated cryptographic functions of the FIPS object module and the high
level support and encapsulation features of OpenSSL.

Page 11 of 45

http://csrc.nist.gov/cryptval/
http://openssl.org/
http://www.oss-institute.org/
http://csrc.nist.gov/cryptval/140-1/1401val2006.htm

OpenSSL FIPS 140-2 Security Policy

2. Module Specification

For the purposes of FIPS 140-2 validation the OpenSSL FIPS Object Module v1.1.1 is defined as a
specific discrete unit of binary object code (the “FIPS Object Module) generated from a specific set
and revision level of C language source files embedded within a source distribution. These platform
portable source files are compiled to create this object code in an isolated and separated form that is
used to provide a cryptographic API (Application Programming Interface) to external applications.
The term Module elsewhere in this document refers to this OpenSSL FIPS Object Module object code
(“FIPS Object Module™).

The source code may be used to generate Modules for use on a wide variety of hardware and operating
system platforms. The Module provides an API for invocation of FIPS approved cryptographic
functions from calling applications. The Module is designed for use in conjunction with separate
libraries provided by the OpenSSL project.

The Module was tested by the FIPS 140-2 Cryptographic Module Testing (CMT) laboratory for two
specific test platforms. The OpenSSL FIPS Object Module, when generated from the identical
unmodified source code, is "Vendor Affirmed" to be FIPS 140-2 compliant when running on other
supported computer systems provided the conditions described in §4, "Operational Environment", are
met. On any platform the Module generated from the Module source code is not validated if that
source code is modified in any way.

The Module was designed and implemented to meet FIPS 140-2 requirements. As such, there are no
special steps, other than building the binary FIPS Object Module file from the OpenSSL FIPS approved
and HMAC-SHA-1 verified source code, and loading and initializing with a runtime executable
application, required to ensure FIPS 140-2 compliant operation of the Module. This process of
generating the FIPS Object Module and the runtime application from source code is the same for all
platforms and is documented in the User Guide, Reference 14.

The Module provides confidentiality, integrity, and message digest services. It natively supports the
following algorithms: DES', Triple DES, AES, RSA (for digital signatures and key wrapping), DH,
DSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, and HMAC-SHA-1, HMAC-SHA-224,

'Non-Approved algorithm. Note DES is provided for backward compatibility with legacy applications and must not be
used in FIPS 140-2 compliant operation. The use of DES is not allowed in the Approved FIPS mode of operation, and its
use will result in the module operating in a non-Approved state.

Page 12 of 45

OpenSSL FIPS 140-2 Security Policy

HMAC-SHA-256, HMAC-384, HMAC-SHA-512. OpenSSL FIPS performs ANSI X9.31 compliant
pseudo-random number generation.

2.1 The FIPS Object Module

The generation of the Module from source code introduces some new challenges in complying with the
requirements of the FIPS 140-2 standard.

The concept of the FIPS Object Module and the documented process for creating it from source code
were developed to satisfy those requirements. The single integrity test of a validated binary executable
is replaced by a chain of integrity tests beginning with the source files used for the CMVP validation
testing, and ending with the runtime executable application generated from that source code.

The purpose of the FIPS Object Module is to maintain the separate and distinct identity of the object
code within the logical boundary as required by FIPS 140-2. Since the Module is generated from
source code and not distributed as pre-built binary code, this separation must be maintained for all
phases of the software from source code to intermediate object code to executing memory mapped
runtime code. The process of generating the binary FIPS Object Module must assure that the same
unmodified source is used with the same build-time options, and that unmodified object code is used in
the generation of runtime executable applications.

The concept of the FIPS Object Module and the documented process for creating it from source code
were developed to address the following specific areas of concern:

Integrity of Source Code
Integrity of Object Code

Integrity of Executable Code
Exclusivity of Integrity Tests

2.1.1 Integrity of Source Code

The integrity of the sequestered source files is protected by a HMAC-SHA-1 digest of the entire source
distribution. This digest is published in this document (see Appendix B), and should be checked

Page 13 of 45

OpenSSL FIPS 140-2 Security Policy

manually as specified in Appendix C. Since this document is posted on the CMVP validation list
website the digests recorded there cannot be arbitrarily changed.

2.1.2 Integrity of Object Code

Once generated the FIPS Object Module file is protected by a HMAC-SHA-1 digest. This digest
protects only object code belonging to the Module, and is verified at the time the FIPS Object Module
is incorporated into an executable application.

Fixed Object Code Order and Content

The presence and relative order of the generated object code in the FIPS Object Module must be fixed
and invariant.

The sequestered source files are used to generate the FIPS Object Module. The instructions in this
document forbid user specified build-time options when building the FIPS Object Module, hence all
the object code derived from the sequestered source code is always included in the FIPS Object
Module.

The usual compilation and linking process does not care about the relative order of individual object
modules, and can omit object code not needed to satisfy link references. When generating or linking
against the validated binary code we are required to prevent any such omission or rearrangement of the
object code derived from the sequestered source files.

The FIPS Object Module is created by compiling all the sequestered source code into a single
monolithic object module®, the FIPS Object Module. The object code within the FIPS Object Module
cannot be removed, replaced, rearranged, or extended by the standard tools used for the management of
software libraries or the creation of executable application code. All subsequent references to this
monolithic object module will preserve the relative order, and presence, of the original object code.
The FIPS Object Module is not a static library. It may be incorporated into shared library files or
runtime executable application files, but in any event can only be incorporated intact and in its entirety.

Isolation of Object Code

*Here the technical term object module is used in the context of software development and computer science, not FIPS 140-
2.

Page 14 of 45

OpenSSL FIPS 140-2 Security Policy

The object code generated by the compilation of these sequestered source files is carefully isolated
from all other OpenSSL and application object code. This isolation is accomplished by collecting all of
this sequestered object code into a single discrete unit of object code. We refer to this discrete unit as
the FIPS Object Module, which resides in the FIPS Object Module file, f i pscani ster. o.

The FIPS Object Module contains only the object code belonging to the Module. The integrity of the
FIPS Object Module file is protected by a HMAC-SHA-1 digest that is calculated over the file at the
time it is created, and stored in a separate file, f i pscani st er. o. shal, that is installed along with

fi pscani ster.o. This digest is checked whenever an application is linked against the FIPS Object
Module file.

2.1.3 Integrity of Executable Code

The design of the FIPS Object Module includes the definition of reference points within the object code
that are used to define the object code to be protected by the runtime integrity test.

At application link time a HMAC-SHA-1 digest of the memory mapped object code within the FIPS
Object Module is created and stored in the FIPS Object Module. This digest is calculated entirely
within the confines of the FIPS Object Module and so will never include extraneous object code. This
digest is independent of other object code, data, memory or file areas, etc. that may adjoin, surround,
embed, link to, or otherwise reference the FIPS Object Module.

In order to test the integrity of the FIPS Object Module, an integrity test is required over the object
code within the logical boundary only. This requirement is satisfied with the runtime in-core integrity
test over object code within the FIPS Object Module that carefully excludes any non-sequestered object
code from the digest calculation and verification.

Note this integrity testing technique is conceptually similar to the case of firmware integrity testing: not
only is non-sequestered code omitted from the digest, but also non-executing ancillary data specific to
the particular executable format. Only the actual machine code byte sequence directly executed by the
CPU and the actual data referred to in the course of execution are included in the digest; i.e. only what
really matters to the general purpose computer at runtime, pure code as with firmware.

Page 15 of 45

OpenSSL FIPS 140-2 Security Policy

2.1.4 Exclusivity of Integrity Tests

Each of the checks in the chain of integrity tests is exclusive to components specific to the Module.

The HMAC-SHA-1 digests that protect the sequestered source files are specific to only those files.
The HMAC-SHA-1 digest that protects the FIPS Object Module in the FIPS Object Module file is
specific to only that file which contains only object code generated from the sequestered source
files.

The HMAC-SHA-1 digest that protects the FIPS Object Module in a executable module is specific
to object code within the Module.

2.2 Ports and Interfaces

For the purposes of this FIPS-140-2 validation the Module is considered a multi-chip standalone
module. Although the Module is software the physical embodiment is a general purpose computer that
consists of multiple components, considered to be a multi-chip standalone module by FIPS-140-2.

The logical cryptographic boundary for the Module is the discrete contiguous block of object code (the
FIPS Object Module) containing the machine instructions and data generated from the OpenSSL FIPS
source, as used by the calling application. The physical cryptographic boundary contains the general
purpose computing hardware of the system executing the application. This system hardware includes
the central processing unit(s), cache and main memory (RAM), system bus, and peripherals including
disk drives and other permanent mass storage devices, network interface cards, keyboard and console
and any terminal devices.

The Module provides a logical interface via an Application Programming Interface (API). This logical
interface exposes services that applications may utilize directly or extend to add support for new data
sources or protocols. The API provides functions that may be called by the referencing application.
The API interface provided by the Module is mapped onto the FIPS 140-2 logical interfaces: data input,
data output, control input, and status output. Each of the FIPS 140-2 logical interfaces relates to the

Module's callable interface, as follows:

Data input - input parameters to all functions that accept input from Crypto-Officer or User entities

Page 16 of 45

OpenSSL FIPS 140-2 Security Policy

Data output - output parameters from all functions that return data as arguments or return values
from Crypto-Officer or User entities

Control input — all API function input into the module by the Crypto-Officer and User entities
Status output - information returned via exceptions (return/exit codes) to Crypto-Officer or User
entities

The API function specifications are included in the OpenSSL project documentation which covers both
FIPS and non-FIPS functions.

2.3 Approved Cryptographic Algorithms

The Module supports the following FIPS-approved cryptographic algorithms:

Triple DES, Digital Signature Algorithm (DSA - FIPS 186-2), Rivest Shamir Adleman (RSA) PKCS
#1 digital signatures, Diffie-Hellman, Advanced Encryption Standard (AES — FIPS 197), Secure
Hashing Algorithm (SHA-1, SHA-2 - FIPS 180-2), and Keyed-Hash Message Authentication Code
(HMAC - FIPS 198). Triple DES may be used, for example, to protect the contents of a key database
when used with a mode of operation that requires an initialization vector (IV), i.e. Electronic
Codebook (ECB) mode is not permitted for key database protection purposes.

The Module performs ANSI X9.31 pseudo-random number generation.

Page 17 of 45

OpenSSL FIPS 140-2 Security Policy

Approved Algorithms
Algorithm Algorithm Standard FIPS Use
Type Validation
Certificate
#
asymmetric | RSA ALG[ANSIX9.31]; |177 sign and verify
keys SIG(gen); operations
SIG(ver);
ALG[RSASSA-
PKCS1_V1_5]7;
SIG(gen);
SIG(ver)
sign and verify
ALG[RSASSA- operations
PSS]; SIG(gen);
SIG(ver);
DSA FIPS 186-2 175
symmetric 3DES - CBC, CFB8, | FIPS 46-3 451 encrypt/decrypt
key CFB64, ECB, OFB operations
modes
AES - (CBC, CFBS, FIPS 197 420
CFB128, ECB, OFB
each with 128,
192, or 256 bit
keys
HMAC HMAC-SHA-1 FIPS 198 194 module integrity
HMAC-SHA-224 code integrity
HMAC-SHA-256 message integrity
HMAC-SHA-384
HMAC-SHA-512
hashing SHA-1 FIPS 180-2 490 hashing
SHA-224
SHA-256
SHA-384
SHA-512
RNG ANST X9.31 ANSI X9.31 216 random number
generation

Table 2.3 - Approved Cryptographic Algorithms

The RSA implementation includes known answer tests at startup which consist of a sign and verify

operation and pair-wise consistency test which is also a sign and verify operation when keys are

generated.

Page 18 of 45

OpenSSL FIPS 140-2 Security Policy
2.4 Non-Approved Cryptographic Algorithms

With the exception of Diffie-Hellman (DH), all non-FIPS algorithms (those algorithms not listed in
Table 2.2) are not included in the Module. As a convenience for application developers the use of non-
FIPS algorithms in the separate OpenSSL library is disabled in FIPS mode.

Diffie-Hellman (key agreement, key establishment) methodology supports 80 bits to 256 bits of
encryption strength.

RSA (key wrapping; key establishment) methodology provides between 80 and 150 bits of encryption
strength)

Algorithm Algorithm Standard FIPS Approval # Use

Type

key DH N/A none key agreement
agreement

symmetric DES FIPS 46-3 none encrypt, decrypt
asymmetric | RSA ANSI X9.31 | none key wrapping

Table 2.4 - Non-Approved Cryptographic Algorithms

Note that FIPS 140-2 does not strictly require that all non-FIPS approved algorithms be disabled, and
other validated cryptographic libraries are available which support non-FIPS approved algorithms.
However, since the Module is intended for general use with the OpenSSL library by applications that
will not require separate FIPS 140-2 validations, this choice was made as a deliberate design decision
to maintain confidence that those applications are operating in Approved mode when using the FIPS
Object Module in FIPS mode in conjunction with the OpenSSL library.

2.5 Approved Mode of Operation

A single initialization call, FIPS_mode_set (), is required to initialize the Module for operation in the
FIPS 140-2 Approved mode, referred to herein as "FIPS mode". When the Module is in FIPS mode all
security functions and cryptographic algorithms are performed in Approved mode, with the exception
of DES which is not allowed in the Approved FIPS mode of operation, and its use will result in the
module operating in a non-Approved state. Use of the FIPS_mode_set () function call is described in
the User Guide, Reference 14. The Module is not in FIPS mode until FIPS mode is initialized.

Page 19 of 45

OpenSSL FIPS 140-2 Security Policy

The FIPS mode initialization is performed when the application invokes the FIPS_mode_set () call.
Prior to this invocation the Module is uninitialized with the internal global flag FIPS_mode set to
FALSE indicating non-FIPS mode by default.

The FIPS_mode_set () function verifies the integrity of the runtime executable using a HMAC-SHA-1
digest computed at build time. If this computed HMAC-SHA-1 digest matches the stored known digest
then the power-up self-test, consisting of the algorithm specific Pairwise Consistency and Known
Answer tests, is performed. If any component of the power-up self-test fails the internal global error
flag FIPS_selftest_fail is set to prevent subsequent invocation of any cryptographic function calls.
If all components of the power-up self-test are successful then FIPS_mode_set () sets the FIPS_mode
flag to TRUE and the Module is in FIPS mode.

2.6 Test Environment

The Module was tested by the FIPS 140-2 CMT laboratory on the following computer systems:

Hewlett-Packard HP-9000 Model 320 (PA-RISC architecture) running the HP-UX 111 operating
system and gcc v3.4.2.
IBM NetVista (x86 architecture) running the SUSE Linux 9.0 operating system and gcc v3.3.1.

The OpenSSL FIPS Object Module, when generated from the identical unmodified source code, is
"Vendor Affirmed" to be FIPS 140-2 compliant when running on other supported computer systems
provided the conditions described in IG G.5 (Reference 3), are met. On any platform the Module
generated from the Module source code (the source files identified in Appendix B) is not validated if
that source code is modified in any way.

Page 20 of 45

OpenSSL FIPS 140-2 Security Policy

3. Roles, Services and Authentication

3.1 Roles and Services

The User and Crypto Officer roles are implicitly assumed by any entity that can access services
implemented in the Module. In addition the Crypto Officer role can install and initialize the Module;
this role is implicitly entered when installing the Module or performing system administration
functions on the host operating system:

Role Authorized Services
User role All services except installation and
initialization
Crypto Officer role All services including installation and
initialization

Table 3.1- Services Authorized for Roles

The Module meets the FIPS 140-2 level 1 requirements for Roles and Services for User and Crypto
Officer roles. As a library and as allowed by FIPS 140-2 the Module does not support user
identification or authentication for those roles.

3.2 Authentication

The Module does not provide identification or authentication mechanisms that would distinguish
between the two supported roles. These roles are implicitly assumed by the services that are accessed,
and can be differentiated by assigning module installation and configuration services to the Crypto
Officer. Only a single user in a specific role may access Module services at the same time.

3.3 Authorized Services

The services provided by the Module are listed in the following table. All services may be performed
in both User and Crypto Officer roles except for the Module installation and Initialization services
which may only be performed by in the Crypto Officer role:

Page 21 of 45

OpenSSL FIPS 140-2 Security Policy

Roles

Service

Critical
Security
Parameters

Algorithm

API Functions

Access

User,
Crypto
Officer

Symmetric
Encryption/
Decryption

symmetric
key

AES

3DES
(2 key)?

3DES
(3 key)*

AES_cbc_encrypt
AES_decrypt
AES_encrypt
AES_set_decrypt_key
AES_set_encrypt_key
AES_Td

AES_Te
_x86_AES_decrypt
_x86_AES_encrypt
DES_check_key_parity
DES_decrypt3
DES_ede3_cbc_encrypt
DES_encryptl
DES_encrypt2
DES_encrypt3
DES_is_weak_key
DES_key_sched
DES_ncbc_encrypt
DES_set_key
DES_set_key_checked
DES_set_key_unchecked
DES_set_odd_parity

Read
Write
Execute

User,
Crypto
Officer

Digital
Signature

asymmetric
private
key

RSA

DSA

DSA_generate_key
DSA_generate_parameters
DSA_OpenSSL
FIPS_dsa_check

Read
Write
Execute

User,
Crypto
Officer

Message Digest

none

SHA-1, SHA-2

HMAC key

HMAC

SHA1
shal_block_asm_data_order
shal_block_asm_host_order
SHA1_Final

SHA1_Init
SHA1_Transform
SHA1_Update

SHA224

SHA224_Final
SHA224_1Init
SHA224_Update

SHA256
SHA256_block_data_order
SHA256_block_host_oeder
SHA256_Final
SHA256_Init
SHA256_Transform
SHA256_Update

SHA384

SHA384_Final
SHA358_Init

Read
Write
Execute

’DES_encrypt2 is used exclusively with 2 Key Triple DES for encryption and decryption.

*DES_decrypt3, DES_encrypt3 are used exclusively with 3DES for decryption and encryption respectively.

Page 22 of 45

OpenSSL FIPS 140-2 Security Policy

Roles

Service

Critical
Security
Parameters

Algorithm

API Functions

Access

SHA384_Update
SHA512
SHA512_Final
SHA512_Init
SHA512_Transform
SHA512_Update

User,
Crypto
Officer

Random Number
Generation

seed key

ANST X9.31

FIPS_rand_method
FIPS_rand_seed
FIPS_rand_seeded
FIPS_set_prng_key

Read
Write
Execute

User,
Crypto
Officer

Show Status

none

N/A

FIPS_mode
FIPS_mode_set

Execute

Crypto
Officer

Module
Initialization

none

N/A

FIPS_check_incore_fingerprint
FIPS_check_rsa
FIPS_dsa_check
FIPS_incore_fingerprint
FIPS_mode_set
FIPS_rand_check
ERR_load_FIPS_strings

Read
Execute

User,
Crypto
Officer

Self Test
(includes
integrity,
known answer,
and pair-wise
consistency
tests)

none

N/A

FIPS_selftest
FIPS_selftest_aes
FIPS_selftest_des
FIPS_selftest_dsa
FIPS_selftest_failed
FIPS_selftest_hmac
FIPS_selftest_rng
FIPS_selftest_rsa
FIPS_selftest_shal

Execute

User,
Crypto
Officer

Key
Establishment

asymmetric
public and
private
keys

RSA

DH

RSA_generate_key
RSA_PKCS1_SSLeay
RSA_X931_derive
RSA_X931_generate_key
DH_check
DH_compute_key
DH_generate_key
DH_generate_parameters
DH_OpenSSL

Read
Write
Execute

Table 3.3 - Authorized Services

See the Vendor Evidence document, Appendix A, "API Entry points by Source File" for the
correspondence between the API and the source files which implement that API.

Page 23 of 45

OpenSSL FIPS 140-2 Security Policy

3.4 Finite State Machine Model

The Module implements the finite state machine detailed in Appendix A.

Page 24 of 45

OpenSSL FIPS 140-2 Security Policy

4. Operational Environment

The FIPS Object Module is generated from source code available for use on a wide variety of computer
hardware and operating system platforms. Applications referencing the FIPS Object Module run as
processes under the control of the host system operating system.

Modern operating systems segregate running processes into virtual memory areas that are logically
separated from all other processes by the operating system and CPU. The FIPS Object Module
functions completely within the process space of the process which loads it. It does not communicate
with any processes other than the one that loads it, and satisfies the FIPS 140-2 requirement for a single
user mode of operation.

The FIPS Object Module was built from source and tested on specific hardware/software environments
(See §2.6) . As stated in §G.5 of Reference 3 ("Implementation Guidance for FIPS 140-2 and the
Cryptographic Module Validation Program") the Module maintains FIPS 140-2 validation on other
hardware and operating systems provided that:

1. The source code that is compiled into the FIPS Object Module is bitwise identical to’ the
source code used for the validation testing, and is compiled in the same way.

2. The host operating system satisfies the rules of operation outlined in the following section,
§4.1.

The CMVP allows the re-compilation of the software cryptographic module utilizing the unchanged

source files specified in Appendix B with compilers different than the listed compilers that were used
for validation testing. The validation status is maintained utilizing the different compilers without re-
testing the newly compiled cryptographic module. However, the CMVP makes no statement as to the

correct operation of the module utilizing compilers not listed in Appendix B.

The CMVP allows user porting of a validated software cryptographic module on an OS(s) and/or
GPC(s) which were not included as part of the validation testing. The validation status is maintained
on the new OS(s) and/or GPC without re-testing the cryptographic module on the new OS(s) and/or
GPC(C(s). However, the CMVP makes no statement as to the correct operation of the module when
executed on an OS(s) and/or GPC(s) not listed on the validation certificate.

*Note the verification of the source distribution file with the HMAC-SHA-1 digest as described in Appendix B assures this
bitwise identity.

Page 25 of 45

OpenSSL FIPS 140-2 Security Policy

The module validated by the CMVP and which assurance is provided is based as caveated on the

validation certificate and when compiled with the reference compilers and operated on the reference

operating systems annotated on the certificate. FIPS 140-2 IG G.5 and the above caveats allow re-

compilation and porting but without CMVP assurance as to the correct operation of the module.

4.1

10.

Rules of Operation

The Module is initialized in the FIPS mode of operation using the FIPS_mode_set () function
call.

The replacement or modification of the Module by unauthorized intruders is prohibited.

The Operating System enforces authentication method(s) to prevent unauthorized access to
Module services

All Critical Security Parameters are verified as correct and are securely generated, stored, and
destroyed.

All host system components that can contain sensitive cryptographic data (main memory,
system bus, disk storage) must be located in a secure environment.

The referencing application accessing the Module runs in a separate virtual address space with a
separate copy of the executable code.

The unauthorized reading, writing, or modification of the address space of the Module is
prohibited.

The writable memory areas of the Module (data and stack segments) are accessible only by a
single application so that the Module is in "single user" mode, i.e. only the one application has
access to that instance of the Module.

The operating system is responsible for multitasking operations so that other processes cannot
access the address space of the process containing the Module.

Secret or private keys that are input to or output from an application must be input or output in
encrypted form using a FIPS Approved algorithm. Note that keys exchanged between the
application and the FIPS Object Module may not be encrypted.

4.2 Compatible Platforms

The Module is designed to run on a very wide range of hardware and software platforms as long as the

conditions in IG G.5 (Reference 3) are met. Any such computing platform that meets the conditions

Page 26 of 45

OpenSSL FIPS 140-2 Security Policy

listed above can be used to host a FIPS 140-2 validated Module generated in accordance with this
Security Policy®. At the time the OpenSSL FIPS Object Module v 1.1.1 was developed all platforms
supported by the full OpenSSL distribution were covered by the FIPS validated source files included in
the Module. However, successful compilation of the Module for all such platforms was not verified’.
If any platform specific errors occur that can only be corrected by modification of the Module source
files (Appendix B) then the Module will not be validated for that platform.

Note also that future releases of OpenSSL may add support for additional platforms requiring new
platform specific source replacing parts of the current sequestered source, in which case the modified
Module will not be validated for those new platforms.

Note there is a possibility that the introduction of a new platform may be incompatible with the design
of the integrity test, preventing a valid verification. The implementation of the integrity test is
designed to fail for any such unrecognized platforms.

4.3 Software Security

Several separate integrity checks are performed in the process of generating and running an application
using the Module:

1. First, the integrity of the entire source distribution file openssi-fips-1.1.1.tar.gz must be checked
as documented in Appendix C. If that digest does not match then any software generated from
the distribution cannot be considered validated.

The cryptographic algorithm implementations are from the OpenSSL project
(www.openssl.org), and have been validated separately by NIST/CSE. All of this code is
located in the openss1-fips-1.1.1.tar.gz distribution file. The OpenSSL source distribution
is identified by a HMAC-SHA-1 digest which is published in this document in Appendix B.
Because of this isolation from the other software the files contained in that distribution are
known as sequestered files. The software generated from this source code has been given the
version designation "OpenSSL FIPS Object Module vi.1.1". The code in this cryptographic

°See §2.4 and §G.5 of Reference 3 ("Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module
Validation Program")
"In particular cross-platform compilation has not been addressed.

Page 27 of 45

http://www.openssl.org/

OpenSSL FIPS 140-2 Security Policy

module cannot be changed without affecting the FIPS 140-2 validation, hence the isolation of
the code within the distribution and the distinct version number.

2. The integrity of the binary FIPS Object Module file is checked before generating the runtime
executable application .

When the FIPS Object Module file has been built, a HMAC-SHA-1 digest for that file is
generated, and is installed along with the file itself. When the application is generated this
HMAC-SHA-1 digest is used to check the integrity of the installed FIPS Object Module file,
and a HMAC-SHA-1 digest of the resulting runtime executable application is created and
embedded within the FIPS Object Module.

3. The integrity of the FIPS Object Module in the runtime executable application is checked at
runtime prior to performing the power-up self-tests.

At runtime the FIPS_mode_set () function uses the embedded HMAC-SHA-1 digest to check
the integrity of the memory mapped contents of the FIPS Object Module®.

This chain of integrity checks assures that applications using OpenSSL, such as Apache-ssl, mod_ssl,
OpenSSH, stunnel, etc., will use FIPS 140-2 validated cryptography when built using the validated
FIPS Object Module.

4.4 Critical Security Parameters

A Critical Security Parameter (CSP) is information, such as passwords, symmetric keys, asymmetric
private keys, etc., that must be protected from unauthorized access. Since the Module is accessed via
an API from a referencing application’, the Module does not manage CSPs. In fact, for most
applications CSPs will be found in multiple locations external to the Module, such as in application
buffers, primary (RAM) memory, secondary disk storage, CPU registers, and on the system bus. In the
case of networked client-server applications some CSPs will be found on both the client and server
system and on the network infrastructure in between (Ethernet and WAN communication lines, routers,
switches).

*Specifically, the object code (text segment) and initialized read-only data (rodata segment) areas of memory as mapped by
the runtime linker/loader from the FIPS Object Module file.
’Either directly, or indirectly via a separate library referenced by the application.

Page 28 of 45

OpenSSL FIPS 140-2 Security Policy

The application designer and the end user share a responsibility to ensure that CSPs are always
protected from unauthorized access. This protection will generally make use of the security features of
the host hardware and software which is outside of the cryptographic boundary defined for this
Module.

As an example of the relationship between OpenSSL FIPS Object Module and the calling application,
consider the OpenSSH application. The FIPS Object Module is used for actual cryptographic
operations (random number generation, encryption, decryption) but the CSPs are stored and managed
by the OpenSSH application. The persistent per-user CSPs (public and private keys) are stored in the
~/.ssh/ subdirectory and the application enforces the presence of appropriate permissions (private key
owned by the user account and not world readable or group writable).

4.5 Self-Tests

The Module performs a number of power-up and conditional self-tests to ensure proper operation of the
Module. Power-up tests include cryptographic algorithm known answer tests and integrity tests. The
integrity tests are performed using a HMAC-SHA-1 digest calculated over the object code in the FIPS
Object Module. Power-up tests are run automatically when the Module is initialized. Additionally,
power-up tests may be executed at any time by calling the FIPS_selftest () function and verifying it
returns true. No FIPS mode cryptographic functionality will be available until after successful
execution of all power-up tests. No authentication is required to perform self-tests either automatically
or upon demand.

The failure of any power-up self-test or continuous test causes the Module to enter the Self-Test Failure
state (see Appendix A), and all cryptographic operations are disabled until the Module is reinitialized
with a successful FIPS_mode_set () call. Note the most likely cause of a self-test failure is memory or
hardware errors. In practice a self-test failure means the application must exit and be restarted.

4.5.1 Power-up Tests

Known Answer Tests (KATs) are tests where a cryptographic value is calculated and compared with a
stored previously determined answer. The power-up self-tests for the following algorithms use a
KAT:

Page 29 of 45

OpenSSL FIPS 140-2 Security Policy

Algorithm Known Answer Test

AES encryption and decryption with 128 bit key

2 Key Triple DES | encryption and decryption

3DES encryption and decryption

DSA pairwise consistency test (signing and signature
verification)"

RSA pairwise consistency test with 1024 bit key
public encryption and private decryption with 1024 bit
key
sign and verify test with 1024 bit key

HMAC HMAC-SHA-1
HMAC-SHA-224
HMAC-SHA-256
HMAC-SHA-384
HMAC-SHA-512

RNG random number generation from known IV

Table 4.5.1 - Power-up Self-Tests

4.5.2 Conditional Tests

In addition to the power-up tests, the Module performs several conditional tests including pair-wise

consistency tests on newly generated public and private key pairs.

Conditional tests are performed automatically as necessary and cannot be turned off. Currently, all
conditional tests relate to services available only to users. Thus, conditional and critical function tests

are not performed at any time in response to Crypto Officer actions.

Algorithm Conditional Test
DSA pairwise consistency test (signing and signature verification)
RSA pairwise consistency test (public encryption and private

' Note FIPS 140-2 allows a pairwise consistency test in lieu of a KAT for DSA.

Page 30 of 45

OpenSSL FIPS 140-2 Security Policy

decryption with 1024 bit key)
RNG Continuous RNG test per FIPS 140-2 §4.9.2

Table 4.5.2 - Conditional Tests

Pair-wise Consistency Test

A pairwise consistency test is performed when RSA and DSA key pairs are generated by applying a
private key to the ciphertext and verifying that the result equals the original plaintext.

Software/Firmware Load Test

Not applicable; the Module does not utilize externally loaded cryptographic modules.

Manual Key Entry Test

Not applicable; keys are not manually entered into the Module.

Bypass Test

Not applicable; the Module does not implement a bypass capability.

4.5.3 Critical Function Tests

The Module does not implement any critical function tests.

4.6 Physical Security

The Module does not claim to enforce any physical security as it is implemented entirely in software.

4.7 Mitigation of Other Attacks

The Module does not mitigate against any specific attacks.

Page 31 of 45

OpenSSL FIPS 140-2 Security Policy

5. Design Assurance

The Module is managed in accordance with the established configuration management and source
version control procedures of the OpenSSL project, with additional mechanisms to assure the integrity
of source code as delivered and used to create applications.

5.1 Source Code Control

Software development functions for OpenSSL software (configuration management, version control,
change control, software defect tracking) are managed by the OpenSSL group. The source code
revisions are maintained in a CVS'' repository (http://cvs.openssl.org/) with public read access but with

write access restricted to the core OpenSSL team. Individually packaged revisions are released
periodically in "tarball" (compressed tar archive) form. The integrity of the Module is based on
HMAC-SHA-1.

The OpenSSL group also maintains several mailing lists for developers and end users
(http://www.openssl.org/support/), accessible on a subscription basis or as searchable archives.

5.2 Application Management of Critical Security Parameters

Identifying CSPs

All CSPs must be created, stored, and destroyed in an approved manner as described by Reference 1,
FIPS 140-2. CSPs are those items of information which must be protected from disclosure, such as
symmetric keys, asymmetric private keys, etc. Note that the application designer and end user/system
administrator/Crypto Officer share a responsibility for protection of CSPs; the former to include
appropriate technical protections and the latter to install and configure the application correctly.
Technical protections include checks to require that files storing CSPs have appropriate permissions
(not group writable or world readable, for example). Administrative protections include installation of
the runtime software (executables and configuration files) in protected locations. End users have a
responsibility to refrain from comprising CSPs (as by sending a password in clear text or copying an
encryption key to an unprotected location).

' See http://www.cvshome.org/.

Page 32 of 45

http://www.openssl.org/support/
http://www.openssl.org/support/
http://www.openssl.org/support/
http://cvs.openssl.org/
http://www.cvshome.org/

OpenSSL FIPS 140-2 Security Policy

Key Generation

The Module API provides cryptographic functions used for key generation. As with other validated
cryptographic libraries, API function calls from the calling application that lies outside of the logical
cryptographic boundary are used to generate keys. For example, a call to the RSA_generate_key() API
function would be used to generate RSA keys, AES_set_encrypt_key() for AES, DES_set_key() for
3DES, and so forth. The control input that drives the invocation of the Module API functions comes
from the calling application.

Qutput of Keys Used for Key Establishment

Secret keys used for key establishment must be wrapped with RSA by the calling application (the
application using the Module to perform cryptographic operations) before being output. For key
wrapping using RSA, the key used to wrap the transported key should be larger than the key that is
being transported. The minimum key size that must be used for this operation is 1024 bits which
provides 80 bits of encryption strength.

Storage of CSPs

The Module does not store any critical security parameters (CSPs) in persistent media; while the
Module is initialized any CSPs reside temporarily in RAM and are destroyed at the end of the session.
Any keys or other CSPs otherwise stored in persistent media must be protected in accordance with
FIPS requirements in Reference 1, FIPS 140-2.

Destruction of CSPs

When no longer needed, CSPs contained within the application must be deleted by overwriting in a
way that will make them unrecoverable. The fips_rand_bytes() function in the Module can be used
to generate random data to overwrite the storage location of a CSP.

Note the OPENSSL_cleanse() function call which is typically used to perform key wiping functions is

not part of the Module. This function overwrites a memory storage area to ensure destruction of data,
using the random data generation functions of the Module.

Page 33 of 45

6. Glossary

AES
API
CBC
CFB
CMT
CMVP
CO
CSE
CSp
DES
DH
DSA
ECB
FIPS
FSM
HMAC-SHA-1
v
KAT
NIST
OFB
OpenSSH
OpenSSL
oS
RSA
SHA-1
SSH
SSL
tar
tarball
TLS
XOR
3DES

OpenSSL FIPS 140-2 Security Policy

Advanced Encryption Standard

Application Programming Interface

Cipher Block Chaining

Cipher Feedback

Cryptographic Module Testing

Cryptographic Module Validation Program
Crypto Officer

Communications Security Establishment (Canada)
Critical Security Parameter

Digital Encryption Standard

Diffie-Hellman

Digital Signature Algorithm

Electronic Codebook

Federal Information Processing Standard

Finite State Machine

Hash based Message Authentication Code
Initialization Vector

Known Answer Test

National Institute of Standards and Technology (United States)
Output Feedback

The open source SSH implementation

The open source cryptographic library implementation
Operating System

Rivest, Shamir and Adleman

Secure Hash Algorithm

Secure Shell application layer protocol

Secure Socket Layer transport layer protocol

Tape Archive command common to Unix® based and Linux® systems
Compressed tar archive, a common format for software distribution

Transport Layer Security
Exclusive Or
Triple DES

Page 34 of 45

7.

10.

11.

OpenSSL FIPS 140-2 Security Policy

References

. FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May 2001, National Institute

of Standards and Technology

Derived Test Requirements for FIPS PUB 140-2, Security Requirements for Cryptographic
Modules, 15 November 2001 (draft), National Institute of Standards and Technology

Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation
Program, January 21, 2005, National Institute of Standards and Technology

FIPS PUB 197, Advanced Encryption Standard (AES), 26 November 2001, National Institute of
Standards and Technology

FIPS PUB 46-3, Data Encryption Standard (DES), 25 October 25 1999, National Institute of
Standards and Technology

FIPS PUB 81, DES Modes of Operation, 2 December 1980, National Institute of Standards and
Technology

The Advanced Encryption Standard Algorithm Validation Suite (AESAVS), 15 November 2002,
National Institute of Standards and Technology

NIST Special Publication 800-20, Modes of Operation Validation System for the Triple Data
Encryption Algorithm (TMOVS): Requirements and Procedures, April 2000, National Institute of
Standards and Technology

NIST Special Publication 800-17, Modes of Operation Validation System (MOVS): Requirements
and Procedures, February 1998, National Institute of Standards and Technology

FIPS 180-1, Secure Hash Standard (SHS), 17 April 1995, National Institute of Standards and
Technology

Network Security with OpenSSL, John Viega et. al., 15 June 2002, O'Reilly & Associates

Page 35 of 45

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf
http://csrc.nist.gov/publications/nistpubs/800-20/800-20.pdf
http://csrc.nist.gov/cryptval/aes/AESAVS.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/cryptval/140-1/FIPS1402IG.pdf
http://csrc.nist.gov/cryptval/140-1/fips1402DTR.pdf
http://csrc.nist.gov/cryptval/140-1/fips1402DTR.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

OpenSSL FIPS 140-2 Security Policy

12. FIPS 171, National Institute of Standards and Technology, 27 April 1992,
http://csrc.nist.eov/publications/fips/fips171/fips171.txt

13. RFC 2246, The TLS Protocol, T. Dierks, C. Allen, January 1999,
http://www.ietf.org/rfc/rfc2246.txt

14. OpenSSL FIPS 140-2 User Guide, v1.0, included in OpenSSL distributions and available at
http://www.openssl.org/.

15. Handbook of Applied Cryptography, Alfred Menezes, October 1996, CRC Press. The relevant page
describing a RNG implementation is available online at

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf.

16. X9.31-1988, Digital Signatures using Reversible Public Key Cryptography for the Financial
Services Industry (rDSA), September 9, 1998, American National Standards Institute.

Page 36 of 45

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf
http://www.openssl.org/
http://www.ietf.org/rfc/rfc2246.txt
http://csrc.nist.gov/publications/fips/fips171/fips171.txt

OpenSSL FIPS 140-2 Security Policy

Appendix A Finite State Model

This Appendix describes the Finite State Machine (FSM) model for an application utilizing the
OpenSSL FIPS Object Module. Figure A.1 is a finite state diagram showing the states and transitions
between states. At any point in time the Module is in one and only one state. Various software or
operating system driven events can cause a transition to another state.

A.1 Diagram

1
POWER-ON
STATE

Page 37 of 45

OpenSSL FIPS 140-2 Security Policy

/

2
3
SELF-TEST > ERROR
STATE STATE
4 4
> OPERATIONAL
A STATE
5 6
CRYPTO- USER STATE

OFFICER STATE

R\

SHOW STATUS
STATE

8
KEY

4 MANAGEMENT >

STATE

9

v > POWER-OFF

STATE

Figure A.1 - Finite State Machine Diagram

A.2 State Descriptions

State 1: Power-On State
The application containing the FIPS Object Module has not been loaded into memory by the host
operating system. The Module transitions to the Power-On State when the application is invoked as a

process by the host operating system.

State 2: Self-Test State

Page 38 of 45

OpenSSL FIPS 140-2 Security Policy

The application has been loaded into memory for a process created by the host operating system, but
the power-up self-tests and FIPS mode initialization (FIPS_mode_set () call) have not yet been
performed. The FIPS_mode_set() call will transition to either the Error or Operational state. Any of
the following errors can occur during the power-up self test, all cause a transition to the Error state:

FIPS_R_FINGERPRINT_DOES_NOT_MATCH "fingerprint does not match"
FIPS_R_FINGERPRINT_DOES_NOT_MATCH_NONPIC_RELOCATED

"fingerprint does not match, possibly because of non-PIC relocatation”
FIPS_R_FINGERPRINT_DOES_NOT_MATCH_SEGMENT_ALIASING

“fingerprint does not match, because of invalid segment aliasing"

FIPS_R_FIPS_MODE_ALREADY_SET "fips mode already set"
FIPS_R_FIPS_SELFTEST_FAILED "fips selftest failed"
FIPS_R_NON_FIPS_METHOD "non fips method"
FIPS_R_PAIRWISE_TEST_FAILED "pairwise test failed"
FIPS_R_SELFTEST_FAILED "selftest failed"
FIPS_R_UNSUPPORTED_PLATFORM "unsupported platform"

State 3: Error State
The initial power-up self-test or subsequent optional self-test has failed. The application and Module

will typically terminate on detection of the power-up self-test error. While not likely in practice, a
successful re-invocation of the power-up self-test could transition to the Operational state.

State 4: Operational State

The power-up self-test has executed successfully. The cryptographic algorithms in the Module can
now be accessed by the application. The Module will remain in the Operational state until the
application is terminated and enters the Power-Off state.

State 5: Crypto-Officer State

The application is in crypto-officer state.

State 6: User State

The application is in user state.

State 7: Show Status State

Page 39 of 45

OpenSSL FIPS 140-2 Security Policy

The application is performing a show status operation.

State 8: Key Management State

The application is performing a key management operation.
State 9: Power-Off State

The host operating system has terminated the application process and released all memory.

Page 40 of 45

OpenSSL FIPS 140-2 Security Policy

Appendix B Controlled Source File Fingerprint

The OpenSSL FIPS Object Module v1.1.1 consists of the FIPS Object Module (the fipscanister.o
contiguous unit of binary object code) generated from the specific source files found in the specific
special OpenSSL distribution openssi-fips-1.1.1.tar.gz with HMAC-SHA-1 digest' of

2cc00efb18f78bfa0abd4cc59b683f5cadec46b0

at http://www.openssl.org/source/openssl-fips-1.1.1.tar.gz. The set of files specified in this tar file

constitutes the complete set of source files of this module. There shall be no additions, deletions, or
alterations of this set as used during module build. The OpenSSL distribution tar file shall be verified
using the above HMAC-SHA-1 digest.

The arbitrary 16 byte key of:

65 74 61 6f 6e 72 69 73 68 64 6¢c 63 75 70 66 6d

(equivalent to the ASCII string "etaonrishdlcupfm") is used to generate the HMAC-SHA-1 value for
the FIPS Object Module integrity check.

Note the reference compilers for the two tested platforms were gcc v3.4.2 (HP-UX) and gcc v3.3.1
(SUSE).

"The command “openssl shal -hmac etaonrishdlcupfm openssi-fips-1.1.1.tar.gz” will display this HMAC-SHA-1 digest
value.

Page 41 of 45

http://www.openssl.org/source/OpenSSL-fips-1.0.tar.gz

OpenSSL FIPS 140-2 Security Policy

Appendix C Installation and Initialization

These instructions assume the following:

1. The reader has the basic knowledge of how to unpack a source distribution; and
2. The reader has a functional development environment to execute the instructions below.

C.0 Validating the Source Distribution File

The HMAC-SHA-1 digest of the openssl-fips-1.1.1.tar.gz source distribution file is published in
Appendix B. Generate a HMAC-SHA-1 digest of that file using the same key and compare it to the
published value to confirm that the file is authentic and unmodified. The following command can be
used on any system that contains a recent version of the standard OpenSSL product:

openssl shal -hmac etaonrishdlcupfm openssl-fips-1.1.1.tar.gz

The displayed digest value must exactly match the published value in Appendix B, or the distribution
cannot be used to generate any FIPS 140-2 validated software.

C.1 Building the FIPS Object Module from Source

Build the OpenSSL FIPS Object Module from source after unpacking the source distribution openssi-
fips-1.1.1.tar.gz. The FIPS specific code is incorporated into the generated FIPS Object Module file
when the f i ps configuration option is specified as:

$./config fips
Note that no other configuration options may be specified by the user.
Then:

$ make

Page 42 of 45

OpenSSL FIPS 140-2 Security Policy

to generate the FIPS Object Module file fipscanister.o, and the digest for the FIPS Object Module file,
fipscanister.o.shal. The fipscanister.o, and fipscanister.o.shal files are intermediate files. The object
code in the fipscanister.o file is incorporated into the runtime executable application at the time the
binary executable is generated.

C.2 Installing and Protecting the FIPS Object Module

The Crypto Officer should install the generated files in a location protected by the host operating
system security features. These protections should allow write access only to Crypto Officers and read
access only to authorized users.

The usual
make install

will install both the fipscanister.o and fipscanister.o.shal files in the default location for the type of
system'” with the appropriate permissions to satisfy the security requirement. In addition the source
file used to generate the embedded digest, fips_premain.c, and the digest that protects that file,
fips_premain.c.shal, are installed as well. The fips_premain.c source file is used at application link
time to create the embedded digest.

After installation of the four files (fipscanister.o, fipscanister.o.shal, fips_premain.c,
fips_premain.c.sha) the unpacked distribution and all other generated files should be discarded.

C.3 Linking the Runtime Executable Application

Note that applications interfacing with the FIPS Object Module are outside of the cryptographic
boundary.

When linking the application with the FIPS Object Module two steps are necessary:

1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified against
the installed digest to ensure the integrity of the FIPS object module.

“Typically /usr/local/lib/ for Unix® based or Linux® systems.

Page 43 of 45

OpenSSL FIPS 140-2 Security Policy

2. A HMAC-SHAI digest of the FIPS Object Module must be generated and embedded in the FIPS
Object Module for use by the FIPS_mode_set () function at runtime initialization.

The OpenSSL distribution contains a reference utility'* which can be used to perform the verification of
the FIPS Object Module and to generate the new HMAC-SHA-1 digest for the runtime executable
application. Failure to embed the digest in the executable object will prevent initialization of FIPS
mode.

At runtime the FIPS_mode_set () function compares the embedded HMAC-SHA-1 digest with a

digest generated from the FIPS Object Module object code. This digest is the final link in the chain of
validation from the original source to the runtime executable application file.

C.4 FIPS Mode Initialization

Somewhere very early in the execution of the application FIPS mode must be enabled. This should be
done by invocation of the FIPS_mode_set () function call as in this example:

#ifdef OPENSSL_FIPS
if(options.no_fips <= 0)

{

if('FIPS_mode_set (1))
{
ERR_load_crypto_strings();
ERR_print_errors(BIO_new_fp(stderr,BIO_NOCLOSE));
exit(1l);
3

else
fprintf(stderr,"*** IN FIPS MODE ***\n");

}

#endif

Example 4.C - Invocation of FIPS_mode_set()

"“This utility is the “openssl sha” command with the -hmac option switch. It is included in the FIPS Object Module
distribution and also in all recent OpenSSL distributions. The version of this utility generated from the FIPS Object
Module distribution can be used to check the validity of the distribution tarball digest after the fact. Note that in principle a
software distribution could be corrupted in such a way as to incorrectly return the expected digest. This risk is present for
all validated products, of course, and would be even harder to detect without visible source code.

Page 44 of 45

OpenSSL FIPS 140-2 Security Policy

Note that it is permitted to _not_ enable FIPS mode, in which case, the FIPS Object Module used in
conjunction with the OpenSSL API should function as the OpenSSL API alone always has. The
application will not, of course, be FIPS 140-2 validated.

Page 45 of 45

	Table of Contents
	1.	Introduction
	1.1	Audience
	1.2	Document Organization
	1.3	References
	1.4	Relationship to the OpenSSL API

	2.	Module Specification
	2.1	The FIPS Object Module
	2.1.1	Integrity of Source Code
	2.1.2	Integrity of Object Code
	2.1.3	Integrity of Executable Code
	2.1.4	Exclusivity of Integrity Tests

	2.2	Ports and Interfaces
	2.3	Approved Cryptographic Algorithms
	2.4	Non-Approved Cryptographic Algorithms
	2.5	Approved Mode of Operation
	2.6	Test Environment

	3.	Roles, Services and Authentication
	3.1	Roles and Services
	3.2	Authentication
	3.3	Authorized Services
	3.4	Finite State Machine Model

	4.	Operational Environment
	4.1	Rules of Operation
	4.2	Compatible Platforms
	4.3	Software Security
	4.4	Critical Security Parameters
	4.5	Self-Tests
	4.5.1	Power-up Tests
	4.5.2	Conditional Tests
	Pair-wise Consistency Test
	Software/Firmware Load Test
	Manual Key Entry Test
	Bypass Test

	4.5.3Critical Function Tests

	4.6	Physical Security
	4.7	Mitigation of Other Attacks

	5.	Design Assurance
	5.1	Source Code Control
	5.2	Application Management of Critical Security Parameters
	Identifying CSPs
	Key Generation
	Output of Keys Used for Key Establishment
	Storage of CSPs
	Destruction of CSPs

	6.	Glossary
	7.	References
	Appendix A	Finite State Model
	A.1	Diagram
	A.2	State Descriptions
	State 1: Power-On State
	State 2: Self-Test State
	State 3: Error State
	State 4: Operational State
	State 5: Crypto-Officer State
	State 6: User State
	State 7: Show Status State
	State 8: Key Management State
	State 9: Power-Off State

	Appendix B	Controlled Source File Fingerprint
	Appendix C	Installation and Initialization
	C.0	Validating the Source Distribution File
	C.1	Building the FIPS Object Module from Source
	C.2	Installing and Protecting the FIPS Object Module
	C.3	Linking the Runtime Executable Application
	C.4	FIPS Mode Initialization

